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Recent advances in gene therapy and genome-engineering technologies offer the opportunity to correct sickle
cell disease (SCD), a heritable disorder caused by a point mutation in the b-globin gene. The developmental
switch from fetal c-globin to adult b-globin is governed in part by the transcription factor (TF) BCL11A. This TF
has been proposed as a therapeutic target for reactivation of c-globin and concomitant reduction of b-sickle
globin. In this and other approaches, genetic alteration of a portion of the hematopoietic stem cell (HSC)
compartment leads to a mixture of sickling and corrected red blood cells (RBCs) in periphery. To reverse the
sickling phenotype, a certain proportion of corrected RBCs is necessary; the degree of HSC alteration required
to achieve a desired fraction of corrected RBCs remains unknown. To address this issue, we developed a
mathematical model describing aging and survival of sickle-susceptible and normal RBCs; the former can have a
selective survival advantage leading to their overrepresentation. We identified the level of bone marrow
chimerism required for successful stem cell-based gene therapies in SCD. Our findings were further informed
using an experimental mouse model, where we transplanted mixtures of Berkeley SCD and normal murine bone
marrow cells to establish chimeric grafts in murine hosts. Our integrative theoretical and experimental approach
identifies the target frequency of HSC alterations required for effective treatment of sickling syndromes in
humans. Our work replaces episodic observations of such target frequencies with a mathematical modeling
framework that covers a large and continuous spectrum of chimerism conditions.
Am. J. Hematol. 00:000–000, 2016. VC 2016 Wiley Periodicals, Inc.

! Introduction
Sickle cell disease (SCD) is a hereditary blood disorder [1] that results from a point mutation in the b-globin gene, leading to a Glu!Val sub-

stitution in the protein, yielding sickle b-globin (bS) [2]. A human fetus is initially not affected by this mutation, because fetal blood is dominated
by expression of c-globin in red blood cells (RBCs), leading to predominance of fetal hemoglobin (HbF) [3]. Phenotypic manifestations of SCD
ensue as HbS and a2b

S
2 becomes the major constituent of the RBCs [4,5].

The developmental switch from fetal to adult hemoglobin is controlled by expression of the transcription factor BCL11A, a repressor of
c-globin expression [5,6]. Silencing of BCL11A reactivates c-globin gene expression and the resulting elevated levels of HbF strongly mitigate the
effects of SCD and b-thalassemia. Genetic knockout of BCL11A in erythroid cells provides correction of SCD in engineered mouse models [7],
suggesting that down-regulation or knockout of BCL11A in autologous hematopoietic stem cells (HSCs) may constitute an attractive form of gene
therapy. As compared with allogeneic bone marrow transplantation, autologous therapy with gene modified cells would eliminate the risk of graft-
vs.-host disease [8] and the search for suitable matched donors [9].

Current clinical gene therapy protocols and those anticipated in the near future lead to gene modification and engraftment of only a fraction of
HSCs. This results in an average stable mixture of genetically altered and untransduced cells. In peripheral blood, the proportion of gene-altered
RBCs will not be identical to marrow chimerism. RBC destruction correlates with cell age due to normal physiological parameters [10–13], but
RBC life-span is shortened in SCD [14,15] and an increased relative abundance of immature erythrocytes including reticulocytes is a sign of hema-
topoietic stress [16]. Hence SCD is characterized by baseline increases in reticulocyte counts to compensate for ongoing increased hemolysis of
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sickled RBCs. RBCs that contain more HbF than average demonstrate
prolonged RBC survival. In SCD patients, naturally occurring genetic
variants leading to higher HbF levels appear to have attenuated dis-
ease phenotypes, which is the basis for the current use of hydrox-
yurea in the treatment of SCD [15].

Gene therapy approaches with potential permanent benefit for SCD
patients include lentiviral-vector mediated transfer of non-sickling globin
genes [17,18], gene editing to correct the SCD-causing point mutation
[19], and genetic alteration of the BCL11A transcription factor to induce
c-globin and concurrently reduce expression of bS-globin [5]. The bene-
fits of these approaches depend on the steady-state level of HbF (or on
HbA levels if a normal b-globin gene is supplied) in the developing ery-
throid precursors and in peripheral RBCs. There is currently no quanti-
tative predictive tool available that would allow the assessment of gene
therapy leading to long-term coexistence of sickling and normal RBCs.
We describe RBC formation driven by HSC proliferation and differen-
tiation independent of hemoglobin type and age-structured RBC survival
(Fig. 1A) using an age-compartment approach (Fig. 1B). Quantification
of the steady state of the system predicts the extent of cellular modifica-
tion of the HSC population required for phenotypic correction of the
RBC compartment, which we tested using both previously published
RBC survival data and a new mouse model experiment (Fig. 1C). Our
approach fills a gap concerned with prediction of optimal strategies for
gene therapy of hemoglobinopathies [20,21].

! Methods
Experimental mouse model. Mononuclear cells (MNC) were isolated via Ficoll

PaqueTM Plus (GE Healthcare, Uppsala, SE) from the bone marrow of healthy
B6.SJL-Ptprca Pepcb/BoyJ mice (CD45.1) or Berkeley-sickle cell (SCD) mice
((Hbatm1Paz Hbbtm1Tow Tg(HBA-HBBs)41Paz/J) CD45.2) [22], which exclusively
express human HbS. Healthy MNC were mixed with SCD MNC to constitute 1, 2, 4,
8, 12, 16, 20, 25, 30, 35, 50, or 54% of the total population. In total, 3.5 3 106 cells
of each mixture were injected into lethally irradiated (4.5 Gy) NSG recipient mice.
After 10 weeks after transplantation, mice were sacrificed and the contribution of the
two competitor population in the peripheral blood CD451CD11b1 myeloid frac-
tion was assessed via FACS. The chimerism in the peripheral blood red cell compart-
ment was assessed via alkaline cellulose acetate electrophoresis followed by Ponceau S
stain according to the manufacturer’s instructions (Helena Laboratories, Beaumont,
TX). Quantification was performed on an Amersham Imager 600. To account for
the technical error both the myeloid engraftment and hemoglobin analyses were

performed in independent triplicates. All animal work was conducted according to
national guidelines and has been approved by the Boston Children’s Hospital IACUC
(approval number 74-03-2621R). For euthanasia of mice CO2 was used.

Mathematical modeling of healthy and sickling hematopoietic cells. We derived a
quantitative description of the RBC composition in peripheral blood based on the
extent of HSC chimerism in the bone marrow. We incorporated basic principles of
mammalian blood formation in the bone marrow and an age-compartment
approach to RBC survival. We considered two populations: hematopoietic stem
cells (HSCs) and RBCs. HSCs have the capacity to self-renew, give rise to RBCs at
a fixed rate per day (in equilibrium, i.e., after a sufficiently long time), and are con-
sidered to be at constant population size. We considered discrete time dynamics
and a discrete age compartment structure [23]. The RBC population is subdivided
into a number of age compartments (i5 0, 1, . . . k). The number of cells in each
age compartment is given by zi and varies over time, but eventually reaches equilib-
rium. We considered genetic differences amongst cells with regard to their hemo-
globin phenotype: type S RBCs contain mostly HbS and have a reduced lifespan
due to sickling-induced hemolysis. Non-S RBCs contain HbF, HbA, or HbAS and
exhibit a normal lifespan. In other hematopoietic cell populations the fraction of
non-S cells is taken to be equal to the fraction of non-S HSCs (Fig. 1A). Because of
differential removal due to hemolysis, this equality is not maintained in mixed RBC
populations.

The destruction rate of RBCs at age t is denoted by da. The RBC production
rate from HSCs is the same for S and non-S cells, leading to

z0 t1Dtð Þ2z0 tð Þ
Dt

5a X2rz0 (1)

zi t1Dtð Þ2zi tð Þ
Dt

5r 12di21ð Þzi212rzi (2)

Equation 1 describes reticulocyte formation at rate a proportional to the number of
HSCs, X, and loss of cells proportional to rate r, which sets the timescale. Equation
2 describes the dynamics of all older age classes of RBCs, where loss of a cell in a
specific age compartment occurs either due to aging or due to destruction. Gain
from compartment i21 is equal to 12di21ð Þzi21, conditional on non-destruction.
The rate of loss of cells in compartment i is r3zi . We calculated di as the fraction
of cells that do not progress to age i1 1 but are removed between times t and
t1Dt (Supp. Online Material; see also a recent study addressing the benefits of dis-
crete time models for age compartment approaches to blood dynamics [23]). To
investigate stable chimerism in the blood, we were interested in the stationary state
solutions, where zi t1Dtð Þ2zi tð Þ50: zi5a X

Qi21
l50 12dlð Þ, and we set r51=Dt: Note

that eqs. 1 and 2 and their solution holds individually for any RBC population in the
system; differences in cell survival are implemented in the function dl . We denote
the fraction of non-S RBCs by %(RBCs)non-S5 y. This quantity can be calculated as a
function of the fraction of HSCs (Supp. Online Material), denoted by %(HSCs)non-
S5 x, and is given by

Figure 1. A mathematical model of sickle cell disease. A. We considered two functional compartments; hematopoietic stem cells (HSCs) and red blood cells
(RBCs). For interpretation of our experimental results, we also considered CD45.1/2 positive leukocytes. RBCs were structured into age compartments. A 1:1 mix-
ture of sickling and normal cells in the HSCs does not translate into a 1:1 mixture in the RBCs due to differential survival statistics related to the dominant
hemoglobin type. For leukocytes, the HSC ratio is maintained because hemoglobin has no effect. B. Schematic of the mathematical model of RBC aging: dis-
crete age compartments (cell age in days, i) are defined by their destruction rate di. C: Basic schematic of our integrative approach that combines mathemati-
cal modeling, literature derived data and new experimental results. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Altrock et al. RESEARCH ARTICLE

2 American Journal of Hematology, Vol. 00, No. 00, Month 2016 doi:10.1002/ajh.24449



% RBCsð Þnon2S5
1

11q 1
% HSCsð Þnon2S 21
! " (3)

In this formula, the dimensionless parameter q contains all information about the
different destruction/survival mechanisms that characterize the S and non-S red
blood cell populations.

! Results
Differential survival in S and non-S RBCs

The relationship between HSCs and RBCs, eq. 3, can be used to
quantify how many HSCs are required to reach a desired target level of
RBCs. Fractions of non-S and S cells differ between RBCs and HSCs,
since aging in the two RBC populations is driven by different age-
dependent survivals (summarized by q). Our model leads to a differen-
tial survival factor q that solely depends on the destruction rates of S
and non-S RBCs, dSl and dnon 2 S

l. These rates uniquely describe
hemolysis-related destruction. We thus predicted the fraction of non-S
RBCs in periphery using the steady state eq. 3 together with estimates
for the dl. The longer lifespan of non-S RBCs in comparison to S
RBCs is represented by a smaller differential survival factor, e.g.,
human S RBCs have an expected life span of 20–30 days, whereas
non-S RBCs have an expected life span of about 120 days [24].

Simple relations between the fraction of non-S HSCs and the dif-
ferential survival factor emerge if we consider a desired fraction of
non-S RBCs. For instance, a target fraction of non-S RBCs of y5 0.3
requires a non-S HSC fraction of x5 3q/(71 3q), y5 0.5 requires
x5 q/(11q), and y5 0.7 requires x 5 7q/(31 7q). If the survival
properties of S and non-S RBCs are such that the resulting differen-
tial survival factor is q 5 0.1 (corresponding to a high non-S RBC
survival benefit), a value of y5 0.5 in periphery would require a sta-
ble fraction of x5 0.091 in periphery. In individuals with intermedi-
ate non-S cell benefit q 5 0.5, a target of y5 0.5 would require
x5 0.333. Differential survival of q 5 0.9 (low non-S RBC survival
benefit) would require x5 0.474.

Determination of RBC survival functions
A common way to infer aging characteristics of RBCs is by mea-

surement of the decay of a labeled sample of RBCs [25]. The resulting
label decay curves are typically not identical to the cohort survival
curves [26]. However, label decay data can be interpreted using an
age-dependent model of RBC survival. The resulting estimates of age-
dependent properties of RBCs then inform the mathematical model-
ing predictions.

We used published data of in vivo RBC labeling in a murine sys-
tem, performed by Xu et al. [7], who assessed RBC survival via biotin
labeling of RBCs in SCD mice (S) and in control mice (non-S). We
analyzed the label decay curves using two different modeling
approaches to RBC age-dependent survival using (i) a constant failure
model, and (ii) an accelerated failure model. For each, we compared
the predicted label decay curves with experimentally determined
curves and assessed statistical goodness of fit (Supporting Information
Fig. S1). The connections between the shape of the cell destruction
function, the survival curve of a homogeneous cohort and the decay
curve of a labeled sample from the stationary age distribution are dis-
played in Supp. Online Material Fig. S2.

First, we used a constant failure model of RBC destruction, which
results in exponential label decay curves and identifies a constant
destruction rate. The mean life span of a red blood cell in periphery is
then proportional to the inverse of this constant destruction rate. The
constant failure function implies that there is no actual age structure,
but rather that cells are removed at a constant rate per time (exponen-
tial decay, see Supp. Online Material). We found a mean RBC life span

of 14.94 days in non-S mice (adjusted R-Squared5 0.985), and a mean
life span of 4.76 days in S mice (adjusted R-Squared5 0.832). The
RBC destruction function corresponds to the daily fraction of cells
removed between age a and age a1 1, conditioned on survival up to
this age. On the basis of the survival function of peripheral RBCs of
age a (in days), S(a), we have da512S a11ð Þ=S að Þ. In case of a con-
stant destruction rate, this expression becomes independent of age.
Because the survival function is of the form S að Þ5e2a a, with a being
the inverse of the mean life span (MLS), we find da512e2a. The
resulting differential aging factor is then given by

q5
eanon2S

21
expaS21

eanon2S2aS
(4)

Using this model and independent label decay data (Supp. Online
Material) leads to q 5 0.342.

Second, we used an accelerated failure model, which is a paramet-
ric model based on the log-logistic distribution [27], modeling an ini-
tial increase in the destruction rate followed by a moderate decrease
[28]. The log-logistic destruction rate can be written in closed analyti-
cal form with two parameters: the median and a parameter that mod-
ulates the shape of the survival function between monotonically
decreasing and sigmoidal (Supp. Online Material Fig. S2). We fixed
the shape parameter to 2 and fitted the median as a free parameter.
The MLS follows directly from this fit. We found MLS5 16.26 days
(median 10.33 days) in non-S mice (adjusted R-Squared5 0.997), and
MLS5 3.5 days (median 2.25 days) in S mice (adjusted R-
Squared5 0.950), with resulting differential aging factor q 5 0.193.
Thus a bone marrow mixture with 16.2% non-S HSCs would result
in a mixture of 50% non-S RBCs in periphery. In this second
approach, MLS differs from the one obtained in the first approach as
a result of the different underlying destruction function.

Insights from a preclinical mouse model
We used an experimental mouse model (Fig. 2) to differentiate

between the alternative ways to model RBC destruction in sickling
individuals outlined above. We designed a preclinical experiment to
investigate the relative proportion of HbA and HbS-containing
RBCs in the peripheral blood of mice transplanted with different
mixtures of HSCs from wild-type and Berkley SCD mice [22]. SCD
and control origins of HSCs were tracked with CD45.2 and CD45.1
surface isotypes by flow cytometry, respectively. To closely mimic
autologous bone marrow alteration via gene therapy, the mouse
model experiments consisted of three steps. First, bone marrow was
harvested from SCD and wild-type mice. Second, artificial mixtures
of cells were transplanted into irradiated recipient mice, resulting in
mixed hematopoietic chimerism. Third, we determined the propor-
tion of HbA and HbS in the peripheral blood. The fraction of
CD45.1 positive (non-S genotype) myeloid cells served as a surro-
gate for the fraction of HSCs (Fig. 2A).

Mixtures of mononuclear cells of 1% to 54% Berkley sickle cell mice
(CD45.2; HbS) and wild-type competitor mice (CD45.1; HbA) were
transplanted into lethally irradiated NSG mice. Animals were sacrificed
10 weeks later, and the ratio of CD45.1 vs. CD45.2 of myeloid cells
was assessed. We observed peripheral white blood cell chimerism that
closely correlated with the initially injected fractions of CD45.1 and
CD45.2 cells (Fig. 2B). This correlation was systematically lower, poten-
tially as a result of higher HSC density in SCD mice due to elevated
stress levels. Note that such discrepancy does not impact our results,
since we only focus on the equilibrium fraction of non-S RBCs relative
to a given fraction of non-S HSCs. We further analyzed the fraction of
red cell precursors defined by expression of CD71 cells (CD711, a sur-
rogate for reticulocytes and other immature RBC precursors) in periph-
eral blood, which served as an indicator of erythropoietic stress due to
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SCD-associated hemolysis and resulting anemia. We observed a corre-
lation with reduced numbers of CD711 immature erythroid cells in
the presence of increased levels of non-sickling HbA (Fig. 2C and Sup-
porting Information Fig. S3). We then determined the contribution of
HbA and HbS in erythrocytes (Fig. 2D), and interpreted the results in
the context of our mathematical model.

Each pair of data points of our preclinical experiment consisted of
a fraction of non-S RBCs in a mixture of S and non-S cells, and of a
fraction of CD45.11 myeloid cells in mixture of CD45.11 and
CD45.21 cells, taken from peripheral blood samples of mice 10
weeks post transplantation. We set the fraction of CD45.11 equal to
the fraction of non-S HSCs and observed a clear selective advantage of

non-S over S RBCs in periphery, which could be explained using both a
constant or an accelerated failure approach to RBC survival (Fig. 3A).
Although S and non-S cell survival measured by MLS differed by a fac-
tor of 3 to 4, the resulting fitted curve (solid line in Fig. 3A) was rela-
tively flat. This fact arose because the differential survival factor that
determines this curvature measures RBC survival over all cell ages, and
this integral function is less sensitive to changes in MLS.

We then compared model-predicted and actually measured non-S
RBC fractions (Fig. 3B) using the Akaike information criterion (AIC,
see Supp. Online Material) for the two different RBC survival mecha-
nisms (constant and accelerated destruction). This statistical compari-
son served as a method to evaluate which survival model better

Figure 2. A transgenic mouse model of sickle cell disease. A: Schematic of the experimental mouse model. Mononuclear bone marrow cells were isolated
from BERK-SCD (S) mice or BoyJ healthy donor mice (non-S), mixed in various ratios ranging from 1 to 54% non-S cell contribution, and subsequently
engrafted into a cohort of 12 radiated recipient mice. Blood samples were taken after 10 weeks post transplantation and BoyJ/BERK-SCD donor origin could
be distinguished using CD45.1 and CD45.2 cell surface markers, respectively. B: The peripheral blood chimerism in the myeloid compartment measured 10
weeks post transplantation (y axis) is similar to the initial mixing ratios of CD45.1 vs. CD45.2 cells injected into the animals. The differences could result from
an unlikely competitive disadvantage of non-S HSCs, or one could speculate that SCD mice have higher HSC density in their BM. C: Murine recipient hosts
reacted to sickling with increased erythropoiesis, indicated by increased fractions of immature CD71-positive cells in periphery after 10 weeks. Hematopoi-
etic stress negatively correlated with HbA content (non-S cell density). D: HbA and HbS content in the twelve mice after 10 weeks. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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explained the experimental data. The simpler mathematical model of
constant destruction provided a fit with lower AIC. The AIC of the
constant failure model was 227.33, while the AIC of the two-
parameter accelerated failure model was 213.96. Thus we chose the
simpler model and were able to use the parameterized mathematical
framework to predict stable fractions of non-S RBCs in periphery.
Note that in our mouse experiments we aimed for a diverse range of
chimerism, and thus our experiments cannot serve to estimate vari-
ability across mice in the hypothetical scenario of identical non-S
HSC fractions. The error bars in Fig. 3A inform the accuracy of our
cellularity measurements. Additionally, while a selective disadvantage
of healthy HSCs is unlikely [29], our data suggest that the frequencies
of repopulating cells within BM mononuclear fraction slightly differ
between SCD and healthy mice.

Predictions for a human clinical trial
The success rate of interventions that attenuate the disease phenotype

is driven by variability on two levels. First, there is variability in the effi-
ciency of lentiviral gene transfer, resulting in transduction rates of HSCs
that may range from 10 to 50% of cells [30–33], and the rate of engraft-
ment of modified HSCs may not reach 100% gene-modified cell engraft-
ment. In allogenic bone marrow transplants of SCD patients [9], long-
term donor cell engraftment has ranged between 11 and 95%, with the
majority of patients achieving around 90% donor chimerism [9]. Using
autologous HSCs, host vs graft issues leading to reduced donor engraft-
ment should be minimal, but the effect of reduced intensity conditioning
may contribute to endogenous recovery. Second, the characteristic life
span of S RBCs varies across patients and with HbF content [15]. Our
predictions of human gene therapeutic interventions (Fig. 4A) leading to
alterations in recipient chimerism of gene-modified HSCs can account
for these variabilities.

To investigate the impact of such variability on outcomes, we gener-
ated a virtual patient cohort (N5 10,000). First, we considered a distri-
bution of the fraction of HSCs that can be successfully altered to
normal phenotype, e.g., by BCL11A knockdown, mainly driven by the
projected transduction efficiency in HSCs with a mean cell fraction of
0.2 (Fig. 4B). Second, we considered a constant mean life span of nor-

mal RBCs of 120 days [24,34,35], and a distribution of the remaining
sickling RBCs with an expected mean life span of 20 days (Fig. 4C).
Using eq. 4, we then calculated a distribution of differential survival
factors, which led to a patient distribution of stable normal RBC frac-
tions in periphery calculated by eq. 3 (Fig. 4D), with a mean cell frac-
tion of 0.79 (standard deviation5 0.09). Using a similar approach, we
calculated distributions of normal RBC fractions as a function of the
fraction of normal HSCs using an underlying variability in the life
span of sickling erythrocytes in patients (Table I, Fig. 4E).

Our quantitative predictions based on the expected distributions of
S cell survival depend on the survival function at all stages of the
RBC life cycle. In the murine system we observed that normal cells
survive three to four times longer than sickle cells (Supporting Infor-
mation Fig. S1). In humans, this factor may be between 6 and 10; the
resulting differential survival factors thus yield significantly different
consequences of bone marrow alteration. In a sickling mouse, 25%
altered HSCs would lead to about 50% non-sickling RBCs. In
humans, 25% altered HSCs could lead to about 65% non-sickling
RBCs. Current large scale HSC transduction protocols using high-
titer lentivirus vectors have been shown to yield gene transfer efficien-
cies in this range, predicting clinical benefit using this approach.

! Discussion
Here we used a combined mathematical and mouse modeling

approach to investigate the potential effects of gene therapy in SCD.
We incorporated empirical evidence of sickling and normal cell sur-
vival and predicted the amount of stable RBC chimerism in periph-
eral blood based on bone marrow alteration when targeting
differences in c-globin expression. Our approach is based on the pre-
mise that the severity of SCD can be attenuated with persistent
expression or re-activation of c-globin leading to high fetal hemoglo-
bin (HbF) containing RBCs, and considers that transduced and non-
transduced HSCs produce equal numbers of progenitors. Knockdown
of BCL11A as a potential molecular therapeutic intervention could
lead to stable expression of high HbF in RBCs. Indeed, we have
recently demonstrated in RBCs derived from HSCs of SCD patients

Figure 3. Use of the mathematical model to explain transgenic mouse model data. A. We compare the predictions of our mathematical modeling framework
to our preclinical mouse data (12 mice with different initial conditions, 3 replicate measurements per mouse giving rise to the error bars). Symbols are mean
and standard error. In the statistical analysis for model selection, these averages were used. The solid line corresponds to the prediction of the constant
failure model with a differential survival factor of 0.342 (mean life spans of S and non-S cells: 4.8 and 14.9 days, respectively, see Supporting Online Material
Fig. S1). The dashed line corresponds to the prediction of the accelerated failure model with a differential survival factor of 0.193 (mean life spans of S and
non-S cells: 3.5 and 16.2 days, respectively, see Supporting Online Material Fig. S1). B. Comparison of constant versus accelerated destruction models and
experimental observations. Mathematical model performance was evaluated using the Akaike Information Criterion and the adjusted R2 (see Supp. Online
Material). Based on both criteria, the constant failure approach to model RBC survival is favored. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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transduced with a clinically applicable lentivirus vector targeting
BCL11A that up to #70% of the b-like globin is HbF (Brendel et al.,
manuscript submitted). So far, precise quantification of the required
number of HSCs that will give rise to non-sickling RBCs has been
elusive, but is very important for clinical implementation of
BCL11A–RNA interference based gene therapy [7,19,33].

Future preclinical data will be used to adjust our model based on
observed survival rates of gene therapy treated RBCs. In a clinical
gene therapy setting, the fraction of gene-modified RBCs contains
variable amounts of both healthy HbF and sickling HbS. Hence the
RBC half-life will likely be lower than in the wild type RBCs used in
this study. Although highly relevant for translation, using data from
preclinical gene therapy models is inappropriate for establishing the
basic framework for a mathematical model, which was the scope of
this work. This fact arises due to several factors. First, different gene
therapy approaches and vectors used for BCL11A interference or
recombinant expression of c- or b-globin lead to different RBC sur-

vival rates, depending on the levels and concentrations of normal
b-like globin [20,36–38]. Second, vector copy number variations
within the transduced population and between experiments lead to
substantial variability in preclinical gene therapy models. The current
framework can be easily adjusted to account for altered survival
kinetics in various gene therapy approaches, and to perform appro-
priate power calculations for future studies. Several clinical scenarios
can be studied, such as different distributions of underlying character-
istics of SCD patients and their effects on gene therapy outcomes.
Genetic treatment of SCD may lead to clinical improvement when
10-30% chimerism is reached [39]. It is believed that 70% non-S
RBCs would alleviate the impact of SCD cells [33]. Here we derived a
quantitative connection between HSC alteration and RBC chimerism
from first principles. For instance, Fig. 4 demonstrates how in a
patient population with variable S RBC destruction rates, 40% non-S
HSCs lead to a median of non-S RBCs fraction around 80%.

Mathematical models of hematopoiesis often incorporate the com-
plete differentiation hierarchy of the tissue [40]. However, in equilib-
rium we expect that a constant HSC population governs the
production of committed cells, e.g. the production of RBCs or leuko-
cytes [41]. We thus modeled hematopoiesis as a simple one-step
deterministic process and considered that all committed cell compart-
ments obey the same form of dependence on the HSC population.
This approach allowed us to focus on the survival statistics in RBCs.
An extension of this model to describe more components of

Figure 4. Application of the mathematical model for gene therapy in patients with sickle cell disease. A: Strategy for autologous bone marrow transplanta-
tion, e.g. modification via knockdown of BCL11A. HSCs cells are harvested and altered (1). Meanwhile the patient is prepared and conditioned (2). B: Variabili-
ty in the fraction of successfully altered hematopoietic stem cells (HSCs) due to pre-transplantation transduction rates and post-transplantation engraftment
success for which we considered a mean cell fraction of 0.2 (standard deviation 0.25), a conservative estimate [30–33]. C. Patient variability in the mean life
span (MLS) of sickling red blood cells (RBCs), with an expectation value of 20 days (standard deviation54 days, minimal MLS5 5 days). D: Using the distri-
butions in B and C we generated a virtual patient cohort (N5 10,000) that informs about the statistics of the expected stable fraction of normal RBCs in
periphery after gene therapy (mean non-S RBC fraction50.58, standard deviation50.11). E: Variability of the patient distribution for fixed fraction of non-S
HSCs in the bone marrow, but variable non-S RBC life span (according to panel C). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

TABLE I. Considering a distribution of sickle cell life span in a patient pop-
ulation (Fig. 4B), we calculated the expected fraction of normal RBCs
given a graction normal HSCs after gene therapy

Normal HSC fraction 0.10 0.20 0.30 0.40

Normal RBC fraction (median) 0.40 0.60 0.72 0.80
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mammalian hematopoiesis, as well as temporal fluctuations in stem
and progenitor compartments, could be developed to describe effects
of engraftment alterations due to conditioning [42], or effects of slow,
long-term changes in a patient’s bone marrow composition [9,43].
Such extensions point to future mathematical modeling for which
more detailed experimental evidence of short- and long-term bone-
marrow cellular dynamics under perturbations are necessary.

Similarly, application of more complicated survival models [13]
would require engaged computational effort and the addition of more
parameters and their estimation in an appropriate system. Addition-
ally, other complex dynamic processes may contribute to RBC selec-
tion, e.g., early removal in form of neocytolysis [44], nonlinear mid-
life destruction of dysfunctionality and longevity [45]. These factors
likely influence short-term properties of the system. Our approach
can be parameterized in direct relation to the mean life span of red
blood cells and is suited to study the long-term effects and benefits of

gene therapy. Our model may also guide future combined experimen-
tal and modeling efforts studying other hematopoietic diseases. The
mathematical model allows for a better understanding of uncertainties
associated with diverse gene therapy approaches, and could be
extended to study incomplete anti-sickling activity as a function of
vector copy load [20,36], which is expected in a heterogeneously
transduced patient population with various levels of anti-sickling
hemoglobin. Our approach can be readily expanded to include more
diverse populations.
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Calculating the fraction of non-S RBCs 1 

For a given cell population, the total number of RBCs in equilibrium is calculated by summing over all age compartments 2 
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[5]!  

In principle, the sum goes to infinity. In reality there are no cells left above a certain age. Two different co-existing 3 

populations of RBCs, the ratio of cell counts will be skewed by a factor that is directly influenced by the differences in 4 

age structure. Here we provide an equation for fraction of non-S RBCs as a function of this differential survival factor. 5 

The HSC population sizes for types non-S and S are given by +23204, +4. The corresponding population sizes in any 6 

other myeloid lineage that does not express hemoglobin are 523204, 54. Although the latter may be a significantly 7 

larger than the HSC population sizes, for the ratio of population sizes we expect to find  8 
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[6]!  

Due to age structure, for the ratio of the RBC population sizes, we can state 9 
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[7]!  

In order to see how the relation [7] impacts fractions of cells, we write 10 
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[8]!  

This leads to the non-linear relationship between the fraction of non-S stem cells, 923204, and the fraction of non-S red 11 

blood cells  12 

 
823204 =

1

1 +
* 10:;<

=>?
<@A

B
=@A

* 10:CDC>;<
=>?
<@A

B
=@A

1

ECDC>;
− 1

 
[9]!  

We can isolate the expression for the differential survival factor from this equation:  13 
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Modeling the RBC destruction process 1 

RBC destruction is determined by a survival function S(a) over age a. In a discrete age compartment model the 2 

destruction rate per time unit (1) is given by the fraction of cells that live to age*) and are then removed between ) and 3 

age ) + Δ):  4 
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[11]!  

We can also calculate the fraction of labeled cells that remain after a certain time t, after labeling a random sample of size 5 

L( (2, 3)  6 
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[12]!  

This quantity is often measured in labeling experiments, in order to gain information about the aging process in the red 7 

blood cell population (2, 4, 5). We examined the connection between destruction, or hazard function, survival curve and 8 

decay of labeled sample (Fig. S3). 9 

The log-logistic survival model is often used in accelerated failure models (1). The survival function that underlies the 10 

log-logistic model is given by 11 

 
I ) = *

1

1 +
H

P

Q 
[13]!  

Here α is the median life span, and β is called the shape parameter that changes both width and skewness of the 12 

destruction rate. We chose the log-logistic model because is analytically traceable, parametric and describes a destruction 13 

rate that is non-monotonic over age. The simples non-linear case emerges when β=2. RBC destruction between a and 14 

a+Δa then calculated to be   15 
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The differential survival factor of this accelerated failure model is then 1 

 
6 = *
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[15]!  

where coth UT = eS[P + 1 eS[P − 1  is the hyperbolic cotangent. The mean life span (MLS) of this model can be 2 

calculated from the median life span α directly: 3 

 MLS = *
U

2
T [16]!  

 4 

Parameter estimation and model selection 5 

Consider L observations, each resulting in a pair of numbers 9%, 8% , the first number we treat as the independent variable. 6 

Then the dataset of observations is given by 81, 8S, … , 8a . Using the independent variable and a specified set of 7 

parameters b1, bS, …, we can make a set of model predictions 8 

 c1 b1, bS, … , bF; 91 , cS b1, bS, … , bF; 9S , … , ca b1, bS, … , bF; 9a  [17]!  

There are as many predictions as there are observations. For any set of model parameters, we can calculate the estimated 9 

residual of the fitted model   10 
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[18]!  

We can evaluate the goodness of the fit of the model, using k different model parameters, unknown true variance and n 11 

data points, by applying the Akaike Information Criterion (AIC) (6, 7) 12 

 
AIC = *2* i + 1 + L ln
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L
+ n 1 + ln 2U  

[19]!  



 

 5 

assuming i.i.d. normally distributed errors. The AIC relates the relative quality of predictions from different models, given 1 

the same data. AIC itself does not inform about the overall goodness of the fit. For model selection, low values of AIC are 2 

preferred over higher values (8). We used AIC in the following way. The xi are the measured fractions of non-S HBCs. 3 

The yi are the measured fractions of non-S RBCs. The pi are calculated as a function of the xi=%(HSC)non-S, using 4 

Equation [3] and an independently obtained value of the differential survival parameter ρ (Eq. [7]). The differential 5 

survival parameter is a summary of the underlying survival model and was determined by fitting the label decay curve (Eq. 6 

[9]) to the decay of biotin labeled S or non-S RBCs, see Fig. S1. This model fit determined k. In the case of the constant 7 

RBC destruction model this last step involved either one parameter (k=1, the mean life span). In the case of the 8 

accelerated destruction model we had k=2 (the median life span and the shape of the destruction rate over cell age, see Fig. 9 

S2). We calculated RSS as the sum of squared differences of predicted and measured non-S RBC fractions (in Fig. 3B), 10 

with n=12. In an equivalent way we calculated the total sum of squares, using the mean of the observed data Y 11 
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[20]!  

Then, using the coefficient of determination RS = 1 − RSS TSS, we assessed survival model performance to explain our 12 

mouse model data using the adjusted R2 13 

 
RS = 1 − (1 − RS)

L − 1

L − i − 1
 

[21]!  

Both AIC and the adjusted R2 are given in Fig. 3, where we used different functional forms of RBC destruction to explain 14 

our experimental observations, parameterized using literature data from Xu et al. (9). 15 
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SUPPORTING FIGURES 1 

 2 

Fig. S1: Analyzing biotin-label decay curves to infer RBC survival characteristics. The RBC survival function is an 3 

integral part of our mathematical model. We used two different approaches to model RBC survival. First, we used a 4 

constant destruction (or hazard) model. This model leads to exponential decay of a labeled sample of red blood cells (A, 5 

B). The rate of decay is uniquely determined by the constant destruction rate. Second, we used an accelerated destruction 6 

model (C, D), which considers two parameters that are associated with mean and variance in cellular life span. For our 7 

analysis we used the simples non-linear approach of a fixed shape parameter of 2 (see main text).  Both models were fitted 8 

to data that measured biotin label decay (9), P<0.001 (two-sided t-test). One set of data measured label decay over time in 9 

sickling cells in mice, the other measured decay in normal cells. The adjusted R-squared (see Methods) values for each 10 

model fit are given in each panel. 11 



 

 8 

 1 

Fig. S2: Destruction rates, survival curves and label decay curves. A, B, C: Destruction rate function, survival curve 2 

and label decay curve of the constant destruction approach to model RBC survival. The single parameter determining the 3 

system is the rate of destruction independent of cell age. Both survival curve and decay of a labeled sample take the form 4 

of exponential decay. The destruction rate chosen is 0.67 per day (corresponding to a MLS of 14.9days, see Fig. S1). D, E, 5 

F: Destruction rate function, survival curve and label decay curve of the accelerated destruction approach to model red 6 

blood cell survival. Two parameters determine the system: median life span (α=10.3days, leading to a MLS of 16.2 days, 7 

see Fig. S1) and a shape parameter β=2. The destruction rate shows a peak and then settles to a constant value, the label 8 

decay curve displays a fatter tail. 9 
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 1 

Fig. S3: Hemoglobin and immature erythroid content. Samples from each of the twelve mice were split into three 2 

replicates to take into account the systematic error in cellularity measurements (which does not inform about variability 3 

across mice). A: HbA and HbS content of each mouse, and a control mouse (“C”), sacrificed after 10 weeks post BM 4 

alteration. B: HbA content and immature erythroid count were correlated inversely, indicated by a shift in CD71 positive 5 

counts. 6 


