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Background: Two recent observations regarding the Warburg effect are that (i) the metabolism of stem cells is constitutive
(aerobic) glycolysis while normal cellular differentiation involves a transition to oxidative phosphorylation and (ii) the degree of
glucose uptake of a malignancy as imaged by 18F-fluorodeoxyglucose positron emission tomography (FDG–PET) is associated
with histologic measures of tumor differentiation. Combining these observations, we hypothesized that the high levels of
glucose uptake observed in poorly differentiated cancers may reflect persistence of the glycolytic metabolism of stem cells in
malignant cells that fail to fully differentiate.

Patients and methods: Tumor glucose uptake was measured by FDG–PET in 552 patients with histologically diverse cancers.
We used normal mixture modeling to explore FDG–PET standardized uptake value (SUV) distributions and tested for
associations between glucose uptake and histological differentiation, risk of lymph node metastasis, and survival. Using RNA-seq
data, we carried out pathway and transcription factor analyses to compare tumors with high and low levels of glucose uptake.

Results: We found that well-differentiated tumors had low FDG uptake, while moderately and poorly differentiated tumors had
higher uptake. The distribution of SUV for each histology was bimodal, with a low peak around SUV 2–5 and a high peak at SUV
8–14. The cancers in the two modes were clinically distinct in terms of the risk of nodal metastases and death. Carbohydrate
metabolism and the pentose-related pathway were elevated in the poorly differentiated/high SUV clusters. Embryonic stem
cell-related signatures were activated in poorly differentiated/high SUV clusters.

Conclusions: Our findings support the hypothesis that the biological basis for the Warburg effect is a persistence of stem cell
metabolism (i.e. aerobic glycolysis) in cancers as a failure to transition from glycolysis-utilizing undifferentiated cells to oxidative
phosphorylation-utilizing differentiated cells. We found that cancers cluster along the differentiation pathway into two groups,
utilizing either glycolysis or oxidative phosphorylation. Our results have implications for multiple areas of clinical oncology.
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Introduction

In normoxia, fully differentiated tissues primarily utilize oxidative

phosphorylation, but when hypoxic, they switch to glycolysis.

Conversely, normal embryonic stem cells constitutively utilize gly-

colysis. In the 1950s, Otto Warburg [1, 2] observed that many can-

cers also constitutively utilize glycolysis—that is, they are glycolytic

in both hypoxic and normoxic environments, hence using ‘aerobic

glycolysis’. Because cancers utilizing aerobic glycolysis need

increased levels of glucose, they have increased numbers of cell sur-

face glucose transporters. This fact has been exploited in positron

emission tomography (PET) based on 18F-fluorodeoxyglucose

(FDG), a modified form of glucose so that it can be taken up by
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cells but can neither be metabolized nor excreted, and therefore

accumulates intracellularly and can be measured as a standardized

uptake value (SUV). The degree of glucose uptake of a malignancy

as imaged by FDG–PET is associated with histologic measures of

tumor differentiation [3–5]. Based on these observations, we

hypothesized that glycolytic cancer cells may have persistence of

stem-cell metabolism as a result of a failure of normal differentia-

tion. Here, we investigated the relationship between glucose uptake

as measured by PET imaging and patient/tumor characteristics

including histologic differentiation and survival as well as the

expression patterns of metabolism- and stem-cell-related genes.

Materials and methods

Patient cohorts

A waiver of authorization was obtained from the Memorial Sloan

Kettering Cancer Center Institutional Review Board (IRB) to perform

this retrospective study. Data including demographic and clinical charac-

teristics were either extracted from prospectively maintained databases

(including the Memorial Hospital Thoracic Service database and the

Hepatopancreaticobiliary Service databases), or from data collected from

previously completed retrospective studies [6, 7]. The datasets aggregated

included patients with the following characteristics:

(i) Patients with newly diagnosed and untreated non-small-
cell lung cancer (NSCLC) who underwent R0 anatomic
resections on whom PET was carried out preoperatively.

(ii) Patients with newly diagnosed and untreated esophageal
carcinoma who underwent R0 anatomic resections on
whom PET was carried out preoperatively.

(iii) Patients with newly diagnosed and untreated cholangio-
carcinoma who underwent R0 resections.

(iv) Patients with NSCLC on whom PET was carried out
before and after induction therapy for NSCLC who then
underwent R0 resections.

(v) Patients with esophageal cancer on whom PET was carried
out before and after induction therapy who then under-
went R0 resections.

Tumor pathologic differentiation status was obtained from the path-

ology report. PET SUV values were derived from radiology reports.

RNA sequencing data

Sample collection was conducted by the Director‘s Challenge (DC) project,

a consortium of four institutions: University of Michigan Cancer Center

(UM), H. Lee Moffitt Cancer Center (HLM), Memorial Sloan-Kettering

Cancer Center (MSKCC) and the Dana-Farber Cancer Institute (DFCI). In

this study, we utilized data from the 20 MSKCC samples for which SUV

data was available. Demographic and clinical information for the DC vali-

dation cohort of lung adenocarcinoma patients from MSKCC (the

MSKCC cohort) [7, 8] was obtained from the MSKCC Thoracic Service

database. One microgram of total RNA (RNA integrity number varying

from 6 to 8.9) underwent ribosomal depletion and Truseq library prepara-

tion according to instruction provided by Illumina (TruSeq
VR

Stranded

Total RNA LT, cat#RS-122-2202), with six cycles of PCR. Samples were

barcoded and run on a Hiseq 2500 in a 50 bp/50 bp paired-end run, using

the TruSeq SBS Kit v3 (Illumina). On average, 74 million paired reads were

generated per sample, 24% of the data mapped to the transcriptome (range

from 5% to 34%). Isoform-level expression of mRNA sequencing data was

quantified by kallisto [9], which performs pseudoalignment of reads

against cDNA sequence of transcripts. Gene-level expression was estimated

as the sum of expression of associated isoforms. Transcriptome sequences

(Homo_sapiens.GRCh38.rel79.cdna.all.fa.gz) were downloaded from the

kallisto website [https://pachterlab.github.io/kallisto/, (6 January 2016,

date last accessed 06/01/2016)]. Expression levels were reported as

Transcripts Per Million (TPM). Then gene set analysis was carried out

using the GSVA Bioconductor package [10]. We curated gene sets for vari-

ous metabolism- and stem-cell-related pathways (supplementary Table S1,

available at Annals of Oncology online). We calculated the statistical signifi-

cance of the correlation between SUV and the gene set enrichment score

using a two-sided rank sum test as implemented in the wilcox.test R func-

tion followed by false discovery rate (FDR) correction using the

Benjamini–Hochberg method [11]. For comparison of transcriptomes of

lung adenocarcinoma specimens to stem cells, human mesenchymal stem

cells (hMSC) RNA sequencing data from GEO [12] (GSE87497) was

downloaded and analyzed by the same processing pipeline as outlined

above. All statistical analyses were carried out in R 3.0.2. RNA-Seq datasets

have been deposited to GEO with accession number GSE99790.

Normal mixture modeling

PET scores were analyzed with mclust version 4.2, a normal mixture mod-

eling software. A small number of extreme outliers (6 out of 985 PET SUV

scores), defined as samples with SUVs larger than four standard deviations

above the mean, were excluded for model training only. This approach was

taken since mclust tends to place these outliers into separate mixture com-

ponents (clusters). The optimal number of clusters was defined with the

corresponding feature available in mclust for each dataset separately.

mclust calculates the Bayesian Information Criterion (BIC) for different

models and the model with optimal BIC is chosen; complex models with

higher numbers of clusters are only selected when the increase in complex-

ity yields a sufficiently large increase in the goodness of fit of the model.

Cluster numbers from one to nine were tested. In all but two cases, the opti-

mal model was bimodal; one dataset (esophageal squamous cell carci-

noma) displayed clear bimodal SUV patterns, but the bimodal model was

not significantly better than the unimodal model due to the small

sample size (n¼ 31). The other dataset (lung adenocarcinoma)

had an optimum of three modes, but the first two modes were very similar

(PET SUV 1.8 and 3.3). We thus used a bimodal model for all datasets.

We assessed the robustness of model training by bootstrapping: for a

dataset with N samples, we randomly drew N samples with replacement

and trained a bimodal model. This procedure was repeated 1000 times

and the observed variances of the two modes were used to calculate 95%

confidence intervals of the two model modes. To estimate the robustness

of the number of modes, we carried out the same bootstrapping without

forcing a bimodal model and reported the percentage of bootstrap repli-

cates for which the best model was bimodal.

We used the wilcox.test R function to test for statistically significant

difference in PET SUV and differentiation and node status.

We independently examined the association of PET SUV and node sta-

tus by using the area under the receiver-operating characteristic curve

(AUC) and local regression. The local regression was carried out using

the loess R function with default parameters.

We carried out a Kaplan–Meier analysis to determine the survival

associated the two mclust PET SUV clusters. Corresponding P-values

were calculated with the log-rank test, implemented in the survival R

package (version 2.37). All statistical tests were two-sided. The raw data

of SUV score are provided in Supplementary Table S4 and S5, available at

Annals of Oncology online.

Results

We first examined the relationship between histologic differentia-

tion of diverse cancer types and the maximum SUV of the pri-

mary site of disease in a unique dataset of 552 patients (Figure 1).
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We found that well-differentiated tumors had strikingly low FDG

avidity, while moderately and poorly differentiated tumors pre-

dominately had high FDG avidity.

The distributions of PET SUVs for a diverse group of untreated

epithelial malignancies including cholangiocarcinoma, esopha-

geal adenocarcinoma, esophageal squamous cell carcinoma, lung

adenocarcinoma and lung squamous cell carcinoma (Figure 2;

supplementary Figure S1, available at Annals of Oncology online)

were robustly bimodal. This indicates that there are two kinds of

tumors—SUV low and SUV high—and that glucose avidity is

not a simple continuous tumor characteristic. Supplementary

Table S2, available at Annals of Oncology online, lists the peak
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Figure 1 . The relationship between 18F-FDG PET SUVmax and histologic differentiation of previously untreated cancer types before resection
(A–E). ***P< 0.001, **P< 0.01.
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Figure 2. The distribution of SUVmax of diverse untreated cancer types (A–E). The red vertical lines mark the two modes of the bimodal
distributions.
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SUVs of the SUV modes of these different histologies. The modes

were remarkably similar across cancer types treated surgically,

with the first mode usually below 6 and the second above 8.

We then examined whether cancers associated with the high or

low SUV modes were clinically distinct. Figure 3 displays the risk

of lymph node metastases as a function of 18F-FDG PET SUVmax in

patients with surgically treated cholangiocarcinoma, esophageal

squamous and adenocarcinomas, and lung squamous and adeno-

carcinomas. In each example, the lower SUV mode was associated

with a lower risk and the higher SUV mode a higher risk of lymph

node metastases being present (supplementary Figure S2A and B,

available at Annals of Oncology online). Also, congruent with pre-

vious studies, the high SUV mode tumors were associated with a

markedly worse prognosis after resection than the low SUV mode

tumors in Kaplan–Meier survival analysis (supplementary Figure

S3, available at Annals of Oncology online). We then investigated

the distribution of SUVs before and after induction chemotherapy

for NSCLC and esophageal carcinoma and found a strong shift

between SUV modes after treatment (Figure 4).

Finally, we sought to explore the differences in gene expression

of metabolism- and stem-cell-related genes of the two SUVmax

modes (well-differentiated/low SUV and moderate-poorly differ-

entiated/high SUV). A heat map combined with regression analy-

sis of metabolism-related pathways for samples from the MSKCC

Director‘s Challenge dataset is shown in Figure 5. Figure 5A dem-

onstrates a significant separation of the high SUV specimens from

the low SUV specimens (P< 0.01, Fisher’s exact test); the left clus-

ter contains 9 of the 13 samples with low SUV (SUV> 6) and the

right cluster has 7 of 7 samples with high SUV (SUV<6.0). We

found that carbohydrate/pentose-related genes were elevated only

in the high SUV cluster. The distribution of high and low SUVs

appears to be the result of an activation of these pathways in the

high SUV cluster. As expected, a proliferation signature (‘Ben-

Porath.proliferation’ [11]) correlates with SUV (FDR<0.001,

Figure 5B; supplementary Table S3, available at Annals of

Oncology online), implying that the high SUV cluster is character-

ized by a high proliferation rate. In addition, we observed a statis-

tically significantly activation (P< 0.01) of the Ben-Porath stem-

cell signatures [13], including genes overexpressed in human ES

cells (Ben-Porath.ES.exp.1 and Ben-Porath.ES.exp.2) and c-Myc

targets in ES cells (Ben-Porath.Myc.targets). The PRC2 target sig-

nature that is repressed in stem cells [13] was negatively correlated

with SUV. Beside these, we also compared signatures of lung

adenocarcinoma specimens with that of hMSC. Most signatures

overexpressed in hMSC were also activated in high SUV speci-

mens, suggesting that the signature profile of high SUV specimens

is close to that of stem cells (supplementary Figure S4, available at

Annals of Oncology online).

Discussion

When oxygen is readily available, fully differentiated cells gener-

ate ATP primarily through mitochondrial oxidative phosphory-

lation. If the supply of oxygen is limited, differentiated cells

utilize glycolysis, a cytoplasmic process not requiring oxygen. If

oxygen levels are restored, cells revert to oxidative phosphoryla-

tion. In the 1950s, Otto Warburg observed that many cancers uti-

lize ‘aerobic glycolysis’, that is, are glycolytic in both normoxic

and hypoxic environment (now commonly referred to as the

‘Warburg effect’). This led to the development of 18F-FDG PET

for the imaging of malignant disease [14–17]. Later on it was
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Figure 3. SUV score is a predictor of lymph node metastases in untreated cancer types (A–E). Patients with lymph node metastases have a
high 18F-FDG PET SUVmax. ***P< 0.001, **P< 0.01.
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Figure 4. The distribution of SUVmax pre- and post-induction chemotherapy for esophageal carcinoma (A and B) and non small cell lung car-
cinoma (C and D).
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found that the degree of FDG avidity of a cancer was prognostic

[3, 7, 18–20] but the underlying biology of the Warburg effect has

remained obscure.

Here we observed that poorly differentiated tumors have

higher SUVs than well-differentiated tumors [3–5] (Figure 1).

The differentiation process from stem cells to somatic tissue

involves both the gain of markers of differentiation (e.g. produc-

tion of mucin or cytokeratins) and the loss of stem-cell markers

[21]. This led us to hypothesize that the metabolism of cancers

may represent persistence of the metabolism of stem cells in can-

cers, rather than the appropriate switch to oxidative phosphory-

lation occurring during normal differentiation.

Our findings are consistent with the hypothesis that the retained

stem-cell metabolism is the basis of the Warburg effect in cancers.

First, the degree of histologic differentiation was found to be closely

linked to glucose uptake, with poorly differentiated tumors demon-

strating high avidity for FDG and the well-differentiated tumors

demonstrating low avidity for FDG (Figure 1). Second, using data

from PET scans on 552 patients, we demonstrated that SUVs follow

a remarkably robust and similar bimodal distribution across cancer

types (Figure 2). Third, cancers with a high SUV have a higher likeli-

hood of having nodal metastases (Figure 3). Interestingly, consistent

with the bimodal distribution of SUVs, the relationship was discon-

tinuous; tumors with a high glycolytic activity (i.e. above SUV of 8)

had a steady risk of finding nodal metastases, but as the SUV fell

below 7, there was an abrupt reduction to near zero of the risk of

finding nodal metastases (supplementary Figure S2A, available at

Annals of Oncology online). Fourth, tumors with a high glycolytic

activity (above an SUV of 8) were associated with a worse prognosis

than tumors with low SUV (supplementary Figure S3, available at

Annals of Oncology online). Finally, a comparison of metabolism-

and stem-cell-related gene expression showed that carbohydrate/

pentose/nucleotide synthesis-related genes were elevated only in

tumors that had high glucose uptake and were similar in gene

expression patterns to stem cells (Figure 5).

The modal distribution of cancers has clinical implications.

For example, if lung cancers of the high and low SUV modes have

different times to recurrence, and different prognoses after the

diagnosis of recurrent disease, then it should be possible to model

the cost-effectiveness of different schedules of clinical follow-up.

Similarly, if lung cancers of the high and low SUV modes differ in

levels of aggressiveness, then the time to detection during cancer

screening would likely be different. The Early Lung Cancer

Action Program [22] which found that 92% of lung adenocarci-

nomas detected due to prevalence (initial) CT screening exams

were poorly differentiated and 8% well differentiated. By com-

parison, 97% found on incidence (subsequent) screening exams

were poorly differentiated and 3% well differentiated.

Finally, we observed that before chemotherapy, the SUVs of

lung adenocarcinomas were primarily high and the SUVs after che-

motherapy were primarily low (Figure 4), a finding which remains

to be explained. It is possible that tumors contain two populations

of cells of different metabolisms [23], which also differ in chemo-

sensitivity: a more poorly differentiated subclone utilizing aerobic

glycolysis may be more susceptible to chemotherapy, leaving a dif-

ferentiated oxidative phosphorylation population after treatment.

Alternately, a poorly differentiated tumor utilizing aerobic glycoly-

sis may differentiate during chemotherapy into a population of

differentiated cells utilizing oxidative phosphorylation [24]. These

possibilities remain to be investigated.
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