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Tumor cell populations display a remarkable extent of variability in non-genetic characteristics such as DNA
methylation, histone modification patterns, and differentiation levels of individual cells. It remains to be elucidat-
ed whether non-genetic heterogeneity is simply a byproduct of tumor evolution or instead a manifestation of a
higher-order tissue organization that is maintained within the neoplasm to establish a differentiation hierarchy, a
favorable microenvironment, or a buffer against changing selection pressures during tumorigenesis. Here, we re-
view recent findings on epigenetic diversity, particularly heterogeneity in DNA methylation patterns in hemato-

g;{gméiﬁsi'cs logic malignancies. We also address the implications of epigenetic heterogeneity for the clonal evolution of
Heterogeneity tumors and discuss its effects on gene expression and other genome functions in cancer.
Cancer © 2014 Published by Elsevier B.V.
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1. Introduction

A series of recent studies have suggested that tumors may contain a
large number of distinct clones, each defined by different landscapes of
genetic and epigenetic alterations [ 1-5]. While most investigations have
concentrated on the extent of genetic and genomic variability within
tumor cells, non-genetic diversity has only recently come to the
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forefront of research interests. Such epigenetic heterogeneity among
normal cells has long been noted as important since it drives tissue-
specific differences among cells: as all cells in an individual share the
same genotype (with the exception of somatic mutations, chromosomal
losses and gains, and immunoglobulin rearrangements in immune sys-
tem cells), the phenotypic identities and differentiation stages of normal
cells are defined by non-genetic mechanisms. As such, non-genetic di-
versity in cells has been classified into two qualitatively different states
[6]: deterministic variability and stochastic variability (Fig. 1). Deter-
ministic variability refers to cell type-specific differences that are readily
recapitulated across individuals and which lead to tissue-specific differ-
entiation hierarchies. Stochastic variability, in contrast, leads to cell-to-
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Fig. 1. Deterministic versus stochastic epigenetic heterogeneity. Deterministic epigenetic heterogeneity (a) arises during differentiation of cells, in which progressive and predictive chang-

es are accumulated. In contrast, stochastic epigenetic heterogeneity (b) emerges due to unpredictable changes that differ between patients and clones.

cell variability within differentiation hierarchies such that even individ-
ual cells of the same differentiation stage display marked heterogeneity.
DNA methylation, histone modifications and non-coding RNAs are
critical for establishing the epigenome of a cell. Epigenetic variability
can thus arise via cell-to-cell differences in the patterning of DNA meth-
ylation, histone modifications, expression of protein coding genes and
noncoding RNAs. For instance, DNA methylation patterns in cancer
cells differ considerably from those in normal cells [7], and even within
cancer cell populations, there is a large extent of diversity in DNA meth-
ylation patterns. The epigenetic patterning of individual cancer samples
can even be used to cluster them into different subtypes. Figueroa et al.
recently showed that classification of AML patients based on their DNA
methylation profiles can help identify novel biologically distinct sub-
types in acute myeloid leukemia and predict patient survival [8].
Attempts are under way to assess the extent of epigenetic heteroge-
neity at different levels. Capturing heterogeneity in histone modifica-
tions and non-coding RNAs requires single cell profiling technologies,
which remain technically difficult. However, due to recent advances in
sequencing technologies, it has become feasible to interrogate DNA
methylation patterns and heterogeneity therein at a genome-wide
scale. Hence, in this review, we focus primarily on DNA methylation pat-
terns in hematopoietic and other cancer types. We first discuss deter-
ministic DNA methylation patterning in cancer, with a focus on B-cell
ontogeny and lymphomagenesis. We then review stochastic DNA
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methylation patterning in lymphomas. We conclude by discussing func-
tional implications of DNA methylation heterogeneity, and by compar-
ing the patterns observed in leukemias and lymphomas to those
identified in other cancer types.

1.1. Deterministic DNA methylation patterning in cancer

While all somatic cells in the body have a similar genomic content,
the epigenetic makeup of cells and their tissue microenvironment
may have a crucial role to play in tumor initiation, as suggested by the
different cells of origin of individual cancer types. According to the can-
cer stem cell model, epigenetic heterogeneity during neoplastic trans-
formation persists as a reflection of the developmental hierarchy
within the tumor (Fig. 2). Indeed, gene expression profiles of relatively
differentiated and stem cell-like subpopulations in cancers cluster more
closely to their counterparts in normal tissues than they do to each
other [9,10]. Baylin and colleagues recently identified a DNA hyperme-
thylation module that marks a stem cell signature and promotes self-
renewal and persistence of tumor cells [11]. These and other observa-
tions have led to the formulation of the epigenetic progenitor model
of cancer [12]. This model postulates that epigenetic aberrations of pro-
genitor cells are a key determinant not only of the predisposition to can-
cer, but also of the dynamics of tumor progression and the extent of
heterogeneity within the tumor that arises from these progenitor cells.
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Fig. 2. The epigenetic progenitor model. According to the epigenetic progenitor model, cancer arises in three steps. First is an epigenetic alteration of stem/progenitor cells within a given
tissue, which is mediated by aberrant regulation of tumor-progenitor genes. Second is a gatekeeper mutation (of tumor-suppressor genes or oncogenes). Although these GKMs are them-
selves monoclonal, the expanded or altered progenitor compartment increases the risk of cancer when such a mutation occurs and the frequency of subsequent primary tumors (shown as
separately arising tumors). Third is genetic and epigenetic instability, which leads to increased tumor evolution. Note that many of the properties of advanced tumors (invasion, metastasis
and drug resistance) are inherent properties of the progenitor cells that give rise to the primary tumor and do not require other mutations (highlighting the importance of epigenetic fac-
tors in tumor progression).
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The first step, according to the epigenetic progenitor model, is an
epigenetic disruption of a progenitor cell population, which leads to a
polyclonal population of cells within a particular tissue. This disruption
might perturb the normal balance of cell division within this tissue, for
instance by changing the ratio of symmetric to asymmetric cell division
or the relative frequency of certain progeny cell types. These cells then
accumulate a number of genetic and/or epigenetic alterations, which
allow them to undergo cycles of clonal expansion and selection. Finally,
the model posits that cancer involves genetic and epigenetic plasticity —
an enhanced ability to evolve the phenotypes of cells through both ge-
netic and epigenetic mechanisms. This plasticity then explains the
widespread heterogeneity observed within and across human tumors.
This model has attractive implications for understanding the interac-
tions between tumors and the (micro)environment, the mechanisms
for generating heterogeneity, as well as other biological and etiological
characteristics of human tumors [12].

1.2. Genetic alterations driving DNA methylation patterning in cancer

Epigenetic abnormalities in cancer genomes are often caused by
genetic alterations. For instance, several studies have found recurrent
mutations in epigenetic modifier enzymes and pathways involved in
DNA methylation, demethylation as well as chromatin packaging,
histone modification and chromatin remodeling (see [13] for a compre-
hensive review). Genetically driven DNA methylation abnormalities in
the genome usually follow deterministic patterns and can thus be dis-
tinguished from other methylation changes due to other causes [13].

Mutations in DNA methyltransferases (e.g. DNMT1, DNMT3A,
DNMT3B), a family of enzymes involved in incorporating methyl groups
to CpG sites in DNA, are found in diverse types of cancer. DNMT3A
mutations have been reported in different subgroups of acute myeloid
leukemia [14] and also in solid tumors [15]. Usually, these mutations
either affect the enzymatic activity of the protein or change its binding
affinity to histones. Recent studies indicate that another DNA methyl-
transferase, DNMT3B, acts as a haploinsufficient tumor suppressor
gene in MYC-induced lymphomagenesis [16]. In a murine model,
DNMT1 haploinsufficiency affects leukemia stem cell function via de-
repression of bivalent chromatin domains [17]. Perhaps not surprising-
ly, mutations in the DNMTs are associated with changes in methylation
patterns.

Like DNMTs, the TET family of DNA demethylating enzymes are also
frequent targets of alterations in hematopoietic and solid tumors. The
TET1-MLL translocation t(10,11) has been found in AML [18] and
more recently in lymphoblastic lymphoma [19]. Functionally deleteri-
ous mutations in TET2 occur at a high frequency (~7.5%) in AML patients
[20], and those tend to be mutually exclusive with IDH1 and IDH2 mu-
tations [21]. Mutant IDH enzymes produce 2-hydroxyglutarate (2HG),
which competes with the TET substrate a-ketoglutarate, leading to
global methylation abnormalities in tumor genomes. IDH1/2-mutant
AMLs usually display specific genome-wide DNA methylation signa-
tures. Another major factor is AID, which is an APOBEC family cytidine
deaminase enzyme that plays a role in DNA demethylation [22] and
has also been implicated in tumorigenesis.

A third type of DNA methylation regulators includes CTCF elements,
which help mark the boundaries of chromatin domains and are impor-
tant for the maintenance of methylation signatures. Chr16q22.1, which
harbors the CTCF gene locus, is frequently deleted in many cancer types
[23].1t has also recently been shown that CTCF haploinsufficiency desta-
bilizes global DNA methylation patterns and increases cancer predispo-
sition [24].

In addition, alterations in genes involved in other types of epigenetic
deregulation such as chromatin packaging (e.g. H3F3A), histone modifi-
cation (e.g. EZH2), and chromatin remodeling (e.g. ARIDIA) are com-
mon in different types of cancer [13]. Given the crosstalk among
different epigenetic modifications and chromatin organization, it is

conceivable that these changes also indirectly affect methylation pat-
terns in tumor genomes at a local or global scale.

1.3. Deterministic variability and plasticity of DNA methylation during B-
cell ontogeny and lymphomagenesis

B-cell lymphomas represent a heterogeneous group of diseases,
which arise from mature B-cells that have left the bone marrow com-
partment. Many B-cell lymphomas arise from a germinal center B-cell
due to the high proliferative rate and unique hypermutability of
centroblasts undergoing somatic hypermutation (SHM) and class
switch recombination (CSR) [25-27]; expression of the Bcl6 transcrip-
tion factor that suppresses sensing and the response to genotoxic stress
[28,29]; and a unique functional activity of AID, which is physiologically
involved in creating genetic diversification of Ig-variable loci, while also
targeting many somatic transcription factors [27,30,31]. While genomic
diversification is well described as part of the germinal center reac-
tion [32,33] its epigenetic consequences are currently being unraveled.
Based on the epigenetic progenitor model described above, germinal
center B-cells represent a “progenitor cell population” that give rise to
germinal center-derived lymphomas. Differentiation of B-cells is associ-
ated with deterministic changes in the epigenome that have been delin-
eated in many studies. Ji et al. [34], for instance, studied epigenetic
modifications that accompany the differentiation of multipotent
progenitors (MPPs) into various hematopoietic lineages, including
lymphoid, myeloid, and erythroid lineages, using Comprehensive
High-throughput Arrays for Relative Methylation (CHARM) that exam-
ine 4.6 million CpG sites. These studies demonstrated that lymphoid
commitment involved a larger extent of methylation than other line-
ages, supported by the fact that treatment with DNA methyltransferase
inhibitors resulted in myeloid predominance. Methylation of CpG
shores displayed a greater correlation with gene expression, supporting
a previous finding by Irizzary et al. [35] in colon cancer.

During early lymphoid development, the epigenetic landscape
shows a marked plasticity: differentially methylated regions (DMRs)
between MPPs and common lymphocyte progenitors (CLPs) showed a
loss of methylation in the latter, while later during transition to the
DN1 stage (double negative stage 1), 15-fold more DMRs showed a
gain of methylation. Interestingly, DNMT1 hypomorphic mice have nor-
mal myeloid, but diminished lymphoid development [36], suggestive of
the crucial role that DNMTT1 plays in DNA methylation during lineage
commitment. Deaton et al. recently confirmed prior findings that not
only methylation of CpGs close to TSS has biological significance, but
also that CpGs in intergenic and intragenic CpG islands confirm cell-
type specificity of DNA methylation [37,38]. This study indicated that
DNA methylation changes mirrored the developmental distance of cell
types much better than gene expression, suggesting a greater stability
of DNA methylation marks. Emerging data suggests that the patterning
of DMRs between normal B-cell and lymphoma subtypes can point to
the evolutionary distance between subtypes as well as predict patient
survival [39,40].

B-cells undergoing the germinal center transit continue to modify
their epigenetic landscape with many stage-specific DMRs: we recently
demonstrated in primary human tonsillar naive B-cells and germinal
center B-cells that entry into the germinal center is associated with a
predominant loss of methylation in nearly all of the 235 differentially
methylated genes that are enriched for NFkB and MAP kinase pathways
[31]. Interestingly, many tumors undergo a dramatic loss of DNA
methylation with as much as 20-60% less 5 methyl cytosine (5mC) in
tumor cells [41,42]. Such DNA hypomethylation predominantly affects
gene bodies and repetitive sequences [43]. Our data also points to the
loss of DNA methylation in lymphomas [39,40] and may reflect their
origin from the germinal center cells. Thus, germinal center B-cells
may function as a progenitor cell population for many subtypes of lym-
phomas and may equip those lymphomas with critical, but subsequent-
ly mutated or aberrantly expressed epigenetic factors [37,38]. Loss of
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methylation may then result in chromosomal instability leading to nu-
merous chromosomal aberrations, not unlike those seen in DLBCLs
[44]. It can also lead to reactivation of transposable elements [45,46]
and loss of imprinting.

Somatic mutations in DNA methyltransferases may contribute to
chromosomal instability, as supported by the observation of increased
mutation frequencies in patients with germline mutations in DNMT3b
[47]. DNMTT1 is the main methyltransferase expressed in germinal cen-
ter B-cells, along with smaller quantities of DNMT3b. Both are likely
responsible for resetting the DNA methylation profile during commit-
ment to plasma cells and memory B-cells, and for aberrant methylation
during the malignant transformation of those precursor cells [48]. Over-
expression of DNMT1 and DNMT3b has furthermore been linked to
advanced clinical stages of DLBCLs [49].

Germinal center B-cells have some qualities of stem cells: the capac-
ity to differentiate into multiple cell lineages, albeit in a more restricted
way in the case of germinal center B-cell, and the ability to tolerate
genotoxic stress [28,29]. Thus, the deterministic DNA methylation
patterning described above must be the consequence of tissue-specific
transcription factors and also epigenetic factors that possess stage-
specific expression patterns [50].

Indeed, key transcription factors have been shown to maintain the
differentiated cellular identity [51-53]. Loss of expression of those tran-
scription factors may result in the induction of pluripotent states with
the ability to give rise to other lineages. B-cell lineage commitment,
for instance, requires PAX5 [54,55] and its loss results in a decrease in
mature characteristics and the generation of B-cells that are similar to
uncommitted progenitors [56]. These cells can repopulate the entire he-
matopoietic system including T-cells, myeloid cells and macrophages.
Propagation of the cell fate program with a progressive silencing of
genes driving alternative fates even in the presence of key transcription
factors requires epigenetic modifications like in PcG proteins [57],
which create repressive histone marks such as H3K27Me3 that, togeth-
er with DNA methylation marks, lead to a repressive chromatin envi-
ronment and a compaction of chromatin [58,59]. The fact that the
differentiation fate depends on epigenetic plasticity is underscored by
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an elegant experiment by Bhutani et al. [22] in which mouse embryonic
stem (ES) cells were fused with human fibroblasts. This resulted in a
large proportion of fused cells, which initiated reprogramming into plu-
ripotent cells as early as on day 1 after the fusion. These cells displayed
increased expression of human NANOG and OCT4 that depended on
progressive demethylation of their promoters [22]. These experiments
led to similar results as reprogramming of iPS cells [60].

Thus the epigenetic plasticity during B-cell development depends on
the maintenance of a complex pattern of histone modifications and DNA
methylation. The breakdown of normal patterning in lymphomas is ev-
ident in the example of histone methyltransferase enhancer of zeste-2
(EZH2) [57]. Both normal germinal center B-cells and ES cells express
high levels of EZH2 — a member of the PRC2 polycomb complex that
mediates transcriptional repression through methylation of H3K27
[57]. The 1800 promoter targets of EZH2 in germinal center B-cells are
mostly overlapping with those of ES cells and are predominantly
hypomethylated in normal B-cells. The targets include cell cycle-
related tumor suppressor genes; it has also been shown that in lympho-
mas, many targets of PRC2 are hypermethylated and may also carry
H3K27Me3 marks, which represent the breakdown of regulatory epige-
netic mechanisms [40]. These events may be due to mutations in the
SET domain of EZH2 that have been detected in up to 12% of follicular
lymphomas and 21.7% of GCB-like DLBCLs [61,62] (Fig. 3).

1.4. Stochastic DNA methylation patterning in lymphomagenesis

Stochastic variability, in contrast, leads to cell-to-cell variability
within differentiation hierarchies such that even individual cells of the
same differentiation stage display marked heterogeneity. It remains
unclear whether the stochastic cell-to-cell variation in DNA methylation
patterns arises due to poor fidelity of the DNA-methylating and
-demethylating enzymes, or whether it represents a mechanism for
introducing an epigenetic buffer state into a cell population. Recent
work on methylomes of aging peripheral blood cells suggested that
cells undergo age-related epigenetic drift [63] that is accelerated in
cancer cells. Either way, the results of this stochastic variability are
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Fig. 3. Changes in DNA methylation during B cell development and lymphomagenesis. Graphical representation of the aberrant changes in DNA methylation at preGC (pre germinal center
stage), germinal center stage and postGC (post germinal center stage) as cells progress from naive B-cells (NBC) to germinal center B-cells (NGC) and during neoplastic transformation into
Follicular Lymphoma (FL), GCB-like (GCB) and ABC-like (ABC) diffuse large B-cell lymphoma. Main characteristic aberrant changes in DNA methylation are: 1. Hypermethylation of EZH2
target sites 2. Hypomethylation of AICDA target sites 3. Spreading of aberrant methylation limited by CTCF binding. Epigenetic diversity is also increasing as cells progress through the

germinal center and transform into lymphoma.


image of Fig.�3

R. Shaknovich et al. / Biochimica et Biophysica Acta 1846 (2014) 477-484 481

that cell-to-cell epigenetic variability cannot be explained by cellular
differentiation states, gene expression patterns, or any other character-
istics usually related to the deterministic patterns outlined above. Thus,
such heterogeneity represents an unpredictable addition of variability
into a cell population of otherwise similar characteristics.

Lymphomagenesis provides a useful example for the extent of sto-
chastic variability on both the genomic and the epigenomic level. Many
mature B-cell lymphomas arise from germinal and post-germinal center
B-cells and carry the burden of Ig mutations as well as somatic mutations
caused by AID, which is expressed in the germinal center [64-66]. AID
not only initiates SHM and CSR targeting Ig genes, but also regulates
non-immunoglobulin genes like CD79A, MYC, PAX5, BCL6, and MIR142,
among others [67-69], leading to potentially deleterious mutations
and also chromosomal abnormalities [70]. The role of AICDA in genomic
diversification, whether physiologic or pathologic, is well-established
[30,71]. Recently, AID has been implicated in having a novel function
as a DNA demethylase [72,73]. In zebrafish, AICDA and Apobec family
genes are necessary to demethylate exogenous DNA [74], and in
mouse primordial germ cells, AICDA knock-out results in genome-wide
hypermethylation [75] (Fig. 3).

AID can deaminate cytidine residues in single stranded DNA through
its interaction with stalled POL Il RNA polymerase resulting in U:G mis-
matches that can be repaired by base-repair excision or mismatch repair
pathways [76]. This AID-induced cytidine deamination and repair
results in a removal of methylated cytidine and its replacement with
unmethylated cytidine, thus causing effective demethylation [77]. Inter-
estingly, this activity of AID does not depend on DNA replication, as
shown by the heterokaryon experiments by Bhutani et al. [22]. This
activity puts AID into the forefront of research interests as both epige-
netic mutator in actively dividing tumor cells and also in “cancer stem
cells” that are quiescent in the GO/G1 phase of the cell cycle. Interesting-
ly, naive B-cells predominantly loose methylation after entry into the
germinal center reaction, with 223 of 225 DMRs being hypomethylated
in germinal center B-cells [48]. Hypomethylated loci were found to have
a statistically significant enrichment for the putative AICDA binding
RGYW motif [78] and for the experimentally proven targets of AICDA
using CHIP seq [77]. This observation is highly suggestive of a
demethylase function of AICDA in germinal center B-cells. AID chip-
seq data in in vitro activated B lymphocytes [77] revealed a broad bind-
ing pattern of AID at more than 12,000 loci outside of Ig genes, and
particularly at actively transcribed genes. Presumably, binding of AID
to POL II through a multiprotein complex allows a certain extent of
promiscuity with which AID associates with single stranded DNA and
transcribed genes. This scenario can lead to stochastic removal of meth-
ylation at heterogeneous sites in the genome. Indeed, centroblasts
exhibit a larger extent of inter- and intra-sample heterogeneity in
DNA methylation with an attenuation of the normal bimodal distribu-
tion of methylation and the emergence of many sites with a variable
level of methylation between individual cells [48]. Nevertheless, recent
work by Fritz et al. [79] did not confirm a demethylating function of AID
in mouse splenic B-cells that were activated ex vivo. Further studies will
consolidate our understanding of the role AID plays in epigenetic mod-
ifications within B-cells. Finally, epigenetic diversification is not unlike
genetic diversification and may contribute to the clonal evolution of
normal B-cells, but also to the emergence of “novel” malignant clones
in lymphomas.

Many factors like DNA methyltransferases may also contribute to a
less programmatic deposition of cytosine methylation marks, possibly
due to somatic mutations like in the case of DNMT3A and leukemias
[80,81], or due to the breakdown of chromatin domain packaging as a
result of aberrant expression of insulator proteins like CTCF [82,83].

1.5. The functional implications of epigenetic heterogeneity

We are just at the beginning of our understanding of the implications
of epigenetic heterogeneity in normal development and tumorigenesis.

Recent findings suggest that apparently normal pluripotent stem cells
are epigenetically heterogeneous, and that such heterogeneity contrib-
utes to functional variability that could change the signaling response
of developmental pathways leading to lineage bias, or ‘lock’ the
pluripotency network leading to residual pluripotent cells [84,85]. Epi-
genetic heterogeneity is generally considerably higher in tumors.
While the study of epigenetic heterogeneity in hematopoietic malignan-
cies has recently led to much enthusiasm, most of the evidence regard-
ing functional implications of epigenetic heterogeneity stems from solid
tumors. Indeed, it has been observed that the risk of most cancer types
increases with age, as does the extent of epigenetic abnormalities [12].
Increased epigenetic heterogeneity and loss of DNA methylation in
aging but otherwise normal tissues expose genomic DNA to DNA dam-
age and mutations. In vitro and in vivo studies have shown that global
DNA hypomethylation can lead to chromosomal instability and an
increased incidence of tumor formation [86,87], thus providing a func-
tional link between epigenetic modifications and cancer incidence. For
instance, epigenetic silencing of DNA repair genes, such as MGMT,
BRCA1, and MLH1, prevents their repair activities and thus contributes
to an early onset of tumor types such as breast and colon cancer [88-90].

Changes in DNA methylation and histone modification patterning
can have profound effects on the regulation of gene transcription [91].
For instance, epigenetic silencing of tumor suppressor gene expres-
sion [92] may lead to dramatic differences in cellular behavior, thus pro-
viding a substrate for natural selection to work on in such clones, so that
these epigenetic changes increase in frequency within the population.
At a larger scale, epigenetic alterations of specific intracellular signaling
pathways also modulate the phenotype of cells. Methylation of the
estrogen receptor CpG island, for example, has been observed to
increase the risk of colorectal tumorigenesis [93], while epigenetic
silencing of SFRP leads to Wnt pathway activation, thereby promoting
cell proliferation in colon crypt cells [94]. Similarly, competing non-
coding RNAs, whose expression is epigenetically regulated, alter the
expression of tumor suppressor genes such as PTEN and thereby modify
the phenotype of cells [95], again providing a substrate for clonal selec-
tion within tumor cell populations. Finally, it was recently proposed that
the long non-coding RNA HOTAIR reprograms the chromatin state of
cells, thereby promoting metastasis [96].

Similarly, epigenetic alterations can have important implications for
the spatial architecture of chromatin [91] as well as for replication
timing of DNA. These characteristics are, at least partly, determined by
epigenetic states of genomic regions. Recent work has demonstrated
that replication timing as well as the higher-order nuclear organization
of genomic material predetermines the risk of certain genomic areas to
be altered during tumorigenesis, thus providing an opportunity for a
predictive model for the size and length distribution of somatic copy
number alterations in cancer genomes [97].

We recently proposed a model that abnormal and stochastic hypo-
methylation in genomic regions enriched for potential G-quadruplex
motifs may act as a mutagenic factor driving tissue-specific mutational
landscapes in cancer [98]. According to this model, the stability of G-
quadruplex secondary structures in the genome is regulated by chemi-
cal modifications such as methylation of CpGs that reside within the G-
quadruplex consensus, such that in hypomethylated areas of the
genome, these secondary structures are more stable [99]. Stable G-
quadruplex structures then have the capacity of stalling the movement
of DNA polymerase and introducing DNA breaks as well as loss or gain of
genomic material [100,101].

Similarly, epigenetic regulation of repeat elements may also contrib-
ute to changing phenotypes of cells on the road to cancer. For instance,
changes in the methylation patterns of Long and Short Interspersed El-
ements (LINEs and SINEs) are frequent in cancer cells. Altered expres-
sion of satellite repeats in pancreatic and other cancers is associated
with overexpression of LINE-1 elements, which in turn leads to a drastic
remodeling of the cancer genome [102]. A recent study discovered 7743
somatic LINE-1 insertions in healthy brain samples [103], suggesting
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that these alterations may play a more common role in human tissues
than hitherto realized. Furthermore, hypomethylation of intragenic
LINE-1 can repress gene expression [104] of particular genes, thereby
providing a further mechanism for the regulation of cellular behavior
through epigenetic means.

During tumorigenesis and therapy, epigenetic heterogeneity (to-
gether with genetic changes) allows tumor cells to explore new niches
of epigenetic and fitness landscapes, ultimately driving them towards
cancer attractor phenotypes [105] — stable cellular states that support
the malignant phenotype and offer a growth advantage against the se-
lective pressure imposed by the microenvironment [106,107]. Genetic
and epigenetic diversity present within a tumor cell population also in-
creases the risk of drug resistance and is often a marker for poor survival
[108]. Indeed, in DLBCL, a large extent of epigenetic heterogeneity is cor-
related with poor survival [39]. Even when the extent of genetic diver-
sity is minimal, epigenetic heterogeneity allows distinct clones to
explore different evolutionary niches in a reversible manner [108],
and epigenetic plasticity can potentially lead a cell population to regain
clonal diversity once the selection pressure (e.g. a particular chemother-
apeutic drug) is removed [109]. Recent studies indicate that 5-aza-2’-
deoxcytidine (5-AZA-CdR) and 3-deazaneplanocin-A (DZNep) together
can synergistically reactivate genes that are selectively silenced by EZH2
and PRC2 (polycomb group repressive complex 2) mediated mecha-
nisms in leukemic cells, and lead to a loss of proliferative potential
[110].

The detection of somatic mutations in epigenetic modifier genes like
TET2, DNMT3A, EZH2, and IDH1/2 in myeloproliferative neoplasms
(MPN) and lymphomas has provided the basis for evaluating epigenetic
therapy in the clinic [111-113]. Results from a phase 1 study of the his-
tone deacetylase inhibitor (HDAC) Panobinostat (LBH589) revealed
pronounced anti-MPN effects, including decreases in JAK/STAT signal-
ing, JAK2 V617F allele burden and inflammatory cytokine levels; howev-
er, only 1 patient (3%) experienced a clinical response [114]. Pilot
studies with other HDACs are ongoing [115-117].

Aberrant hypermethylation of genes and the overall disruption of
genome-wide methylation patterns has also served as the rationale for
testing the efficacy of hypomethylating agents in different cancer
types. Up to date there have been 13 phase I or II clinical trials (a total
of 305 patients and 18 tumor types) treated with the hypomethylating
agent DAC in solid tumors (for a review see [118]). In MDS and MPN,
hypomethylating agents like 5-azacytidine have led to promising
results: up to 52% of MDS patients and 24% of MPN patients were report-
ed to experience a partial response to 5-aza [119-121]. Many studies
documented a limited clinical response using demethylating agents
as monotherapy, but improved responses were observed when epige-
netic treatment was followed by chemotherapy, immunotherapy or
targeted therapy. Clozel et al. revealed a mechanism by which the
hypomethylating agent decitabine reverses chemoresistance to doxoru-
bicin in DLBCLs [122]: prolonged exposure to low doses of decitabine
reprogrammed chemoresistant cells and made them chemoresponsive.
A phase I clinical study evaluating azacitidine priming followed by
standard chemoimmunotherapy in high-risk patients newly diagnosed
with DLBCL resulted in a high rate of complete remission. In this
study, reversal of aberrant methylation in 9 genes was associated with
chemosensitization, with SMAD1 being a critical one. In xenograft
models, low doses of decitabine led to a demethylated genome with
minimal DNA damage, allowing for derepression of some key genes
that drive resistance.

In sum, the efficacy of hypomethylating agents across different
types of tumors is variable, but the key anti-cancer effect of these
drugs seems to stem from reducing stochastic heterogeneity of
tumors via genome demethylation. In addition, these agents de-
methylate key tumor suppressor genes and genes that allow
chemosensitization. Future work will help demonstrate the efficacy
of these agents in combination with other drugs as well as mecha-
nisms of sensitivity and resistance.

These observations, together, provide a model for how proliferating
cells are able to broaden their set of phenotypic characteristics. These
options then allow a population of cancer cells to induce genomic insta-
bility, optimally respond to changing environmental conditions such as
the onset of therapeutic interventions, the invasion into new microhab-
itats, and the challenges of angiogenesis and immune system interac-
tions. Phenotypic heterogeneity by means of epigenetic variability
thus provides a key advantage to tumor cells: that of evolvability.

2. Conclusions

Here we have provided an overview of the extent of variability in
non-genetic characteristics such as DNA methylation, histone modifica-
tion patterns, and differentiation levels in individual cells within a
tumor. We particularly focused on heterogeneity in DNA methylation
patterns in hematologic malignancies. We also addressed the implica-
tions of epigenetic heterogeneity for the clonal evolution of tumors
and discussed its effects on gene expression and other genome func-
tions in cancer.

Much work has been done to elucidate the causes and consequences
of epigenetic variability in cancer; however, many open problems still
remain. For instance, a more comprehensive characterization of epige-
netic heterogeneity in cell populations depends on the development
of methodologies that allow for single cell profiling of genome-wide
epigenetic patterning. Such methodology is starting to be developed,
as exemplified by recent work developing single cell reduced represen-
tation bisulfite sequencing (scRRBS) protocols [123], but single cell
methodology for other types of epigenetic changes, such as histone
modifications etc., is currently not available. The development of such
methods will be an important goal of the field. Hand in hand with the
inception and testing of such assays comes the computational analysis
of such data. Since gold standard methods are not yet available, it re-
mains to be seen how new single cell methods can be validated and test-
ed, and how noise can be distinguished from single cell variability of
methylation patterns. Close collaboration between computational and
experimental researchers will be necessary to push the frontier on sin-
gle cell variability. Other areas of future investigation include broader
testing of epigenetic therapeutics, the elucidation of causes and conse-
quences of epigenetic diversity across cell types and in response to se-
lection pressures such as drug exposure and dissemination, and the
development of predictive models to aid in these processes.
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