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Abstract

Summary: DIFFpop is an R package designed to simulate cellular differentiation hierarchies using

either exponentially-expanding or fixed population sizes. The software includes functionalities to

simulate clonal evolution due to the emergence of driver mutations under the infinite-allele as-

sumption as well as options for simulation and analysis of single cell barcoding and labeling data.

The software uses the Gillespie Stochastic Simulation Algorithm and a modification of expanding

or fixed-size stochastic process models expanded to a large number of cell types and scenarios.

Availability and implementation: DIFFpop is available as an R-package along with vignettes on

Github (https://github.com/ferlicjl/diffpop).

Contact: michor@jimmy.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Differentiation is a complex cellular process necessary for multicel-

lular organisms to develop and maintain their tissue systems (Orkin

and Zon, 2008). Cell populations throughout differentiation hierar-

chies have been characterized by increased clonality driven by sto-

chasticity and selection (Akunuru and Geiger, 2016; Jaiswal et al.,

2014; Steensma et al., 2015). Branching processes are a class of sto-

chastic processes that can be used to model the growth and compos-

ition of reproducing populations based on growth parameters

specified for the individuals that compose those populations

(Haccou et al., 2005). Branching processes are used to investigate

the dynamics of cancer evolution and questions regarding pre-

existing versus newly acquired resistance using high complexity bar-

coding libraries, in which each single cell is tagged with a unique

genetic barcode (Bhang et al., 2015). Contrasting the growing

populations in a branching process, a stochastic process model

known as the Moran model describes populations of strictly con-

stant size in which cell proliferation events are balanced by cell

death events (Moran, 1962). Simulation of complex processes such

as cellular differentiation can be implemented using the Gillespie

Stochastic Simulation Algorithm (SSA) (Gillespie, 1977).

DIFFpop uses the branching process, Moran process and Gillespie

Algorithm to simulate cellular differentiation, where each barcode or

cellular clone and its progeny are tracked over time. The process

instantiates all populations using user-specified proliferation, death

and differentiation parameters. Throughout a simulation, cellular an-

cestry can be tracked in each population of the hierarchy using individ-

ual barcodes. Selection is introduced to the system by choosing cells for

proliferation according to their fitness. During a mitosis event, one

daughter cell may harbor a new mutation with a specified probability,
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giving rise to a new clone. This new cell inherits the fitness of its parent

plus an additional change in fitness chosen from a probability distribu-

tion specified by the user.

Our package was designed to work in tandem with experiments

using cell labeling and barcoding in complex differentiation systems

(Busch et al., 2015; Sun et al., 2014). Results from simulations using

DIFFpop can then be compared to experimental data to eliminate sets

of parameters that result in findings not compatible with available data.

2 Description

To simulate exponentially growing populations, DIFFpop uses the dir-

ect Stochastic Simulation Algorithm (Gillespie, 1977) to advance the

simulation by first determining the time until the next event followed

by a stochastic choice of the type of event taking place. For fixed-size

populations, DIFFpop simulates a multi-type modified Moran model

using tau-leaping (Gillespie, 2001) with the introduction of differenti-

ation events, whereby events are coupled together to maintain fixed

population sizes; for instance, a mitosis event generating an additional

cell is followed by a differentiation or apoptosis event to eliminate a

cell. In both simulation scenarios, when a mitosis event occurs, one

daughter cell may mutate to produce a new clone with probability ui,

where i is the population of the parent cell. In such situations, new

clones are formed according to the infinite allele assumption (Pakes,

1989), and the parameter for the change in fitness of the new clone is

randomly chosen from a user-specified fitness distribution. As a de-

fault, fitness changes are drawn from a normal distribution such that

the lower bound for the fitness of any clone is 0.

The flexible nature of the package allows the user to customize

the process, easily change the underlying differentiation structure,

parameters and distributions, and achieve updated results. The hier-

archical structure, population types and attributes and event rates

are specified using functions in R, allowing the user to quickly create

multiple possible trees and implement simulations of each. Users

may also vary the selective pressures at work in the cell populations

by specifying population-level mutation rates and the distribution

from which fitness changes of mutated cells are drawn. Setting the

mutation probabilities to zero results in a process in which no new

clones appear. Allowing for a positive mutation probability but set-

ting the passenger probability, the probability that a mutation does

not affect a clone’s fitness, to 1 simulates the infinite-allele process

where mutations are recorded, but due to a lack of variability in fit-

ness are selectively neutral (McDonald and Kimmel, 2015). After

simulation initiation, no new barcodes are created, and therefore the

maximum total number of barcodes is set at the initiation of the

simulation, allowing for the calculation of diversity indices to com-

pare populations with different model settings.

3 Applications

Our software package uses simulations to explore and test hypothe-

ses in tandem with experimental barcoding or labeling data. The

simulation outputs include statistics related to the population size,

barcode diversity, event rates, mutation events and the fraction of

labeled cells. Additionally, the user can specify how often to output

a census of the entire system to longitudinally track clonal dynamics

Fig. 1. Visualization of DIFFpop outputs. (A) A schematic representation of the hematopoietic system. The common lymphoid progenitor (CLP) population is the

initial population in the lymphoid branch of the hematopoietic system and the focus of panels B and C. Abbreviations: Long-term hematopoietic stem cell (LT),

short-term hematopoietic stem cell (ST), multi-potent progenitor (MPP), common myeloid progenitor (CMP), common lymphoid progenitor (CLP), granulocyte-

macrophage progenitor (GMP), megakaryocyte-erythroid progenitor (MEP), pro-B cell (proB). (B) Experimental label progression results from Busch et al. (blue

points) and DIFFpop simulated trajectories (red lines, median trajectory; grey bands, 25th and 75th percentiles) for the CLP population. Experimental data points

from beyond 400 days (green points) were not used during parameter estimation but are correctly predicted using simulated results. (C) Bar plot of clone sizes

denoted by different colors over the first 100 days of simulation of the CLP population
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throughout the hierarchy. Users may then draw repeated samples

from this population census to compare against data generated from

single cell barcoding or cell labeling experiments.

To illustrate a possible application to experimental data, DIFFpop

simulations were run for a mouse model of the hematopoietic system in

which a fraction of cells contain a fluorescent protein label. Parameters

for the model were determined using the data and methods from a pre-

vious study (Busch et al., 2015). Using DIFFpop, we performed 1000

simulations of the model and recorded the median trajectory along with

25th and 75th quantile confidence bands for each cell population along

with the experimental data from the mouse model (Fig. 1). We found

that the simulated trajectories demonstrated good agreement with ex-

perimental results, including for data points from older mice that were

not used in the determination of the simulation parameters. In addition

to comparing model results to experimental data, other features of

DIFFpop, such as simulations including barcoded cells, can be used to

investigate cellular diversity in the hematopoietic system over time. A

more detailed description and example code for this application can be

found in the application document. This system was further explored

using DIFFpop in two coding vignettes. Additional examples of experi-

mental methods to which DIFFpop simulation results may be applied

are provided in the Supplementary Material.

4 Conclusion

DIFFpop simulates cellular differentiation including single cell bar-

coding and mutation acquisition under the infinite-allele assump-

tion, tracking evolutionary dynamics and other model outputs.

Estimation methods for complex differentiation systems, including

multi-type branching processes and Moran models, quickly become

intractable as the model complexity increases. Simulation methods

such as DIFFpop provide an alternative method for investigation of

these systems and can be performed quickly on a cluster.
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