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Abstract:
Clonal evolution drives tumor progression, dissemination and relapse in multiple myeloma (MM), with most
patients dying of relapsed disease. This multi-stage process requires tumor cells to enter the
circulation, extravasate and colonize distant bone marrow (BM) sites. Here, we developed a fluorescent
or DNA-barcode clone-tracking system on MM PrEDiCT (Progression through Evolution and Dissemination of
Clonal Tumor cells) xenograft mouse model to study clonal behavior within the BM microenvironment. We
showed that only the few clones that successfully adapt to the BM microenvironment can enter the
circulation and colonize distant BM sites. RNA-sequencing of primary and distant-site MM tumor cells
revealed a progression signature sequentially activated along human MM progression and significantly
associated with overall survival when evaluated against patient datasets. 28 genes were then
computationally predicted to be master regulators (MRs) of MM progression. HMGA1 and PA2G4 were
validated in vivo using CRISPR/Cas9 in PrEDiCT model and were shown to be significantly depleted in
distant BM sites indicating their role in MM progression and dissemination. Loss of HMGA1 and PA2G4 also
compromised the proliferation, migration and adhesion abilities of MM cells in vitro. Overall, our model
successfully recapitulates key characteristics of human MM disease progression and identified potential
new therapeutic targets for MM.
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Key Point 

Progression signature identified from in vivo disease modeling revealed clinical 

relevance in multiple myeloma. 

 

Abstract  

Clonal evolution drives tumor progression, dissemination and relapse in multiple 

myeloma (MM), with most patients dying of relapsed disease. This multi-stage process 

requires tumor cells to enter the circulation, extravasate and colonize distant bone 

marrow (BM) sites. Here, we developed a fluorescent or DNA-barcode clone-tracking 

system on MM PrEDiCT (Progression through Evolution and Dissemination of Clonal 

Tumor cells) xenograft mouse model to study clonal behavior within the BM 

microenvironment. We showed that only the few clones that successfully adapt to the 

BM microenvironment can enter the circulation and colonize distant BM sites. RNA-

sequencing of primary and distant-site MM tumor cells revealed a progression signature 

sequentially activated along human MM progression and significantly associated with 

overall survival when evaluated against patient datasets. 28 genes were then 

computationally predicted to be master regulators (MRs) of MM progression. HMGA1 

and PA2G4 were validated in vivo using CRISPR/Cas9 in PrEDiCT model and were 

shown to be significantly depleted in distant BM sites indicating their role in MM 

progression and dissemination. Loss of HMGA1 and PA2G4 also compromised the 

proliferation, migration and adhesion abilities of MM cells in vitro. Overall, our model 

successfully recapitulates key characteristics of human MM disease progression and 

identified potential new therapeutic targets for MM.  
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Introduction 

Cancer is a genetically complex evolutionary process, whereby transformed cells 

continue to acquire genetic and/or epigenetic lesions, giving rise to heterogeneous 

populations of functionally distinct clones1-3. The number of mutant clones per cancer 

can range from tens to hundreds (most commonly) or thousands, out of which only few 

clones are functionally relevant true drivers1,3. Forced to compete for limited resources 

under natural selection, with the presence of microenvironmental and other constraints, 

the most resilient clones with best fitness to self-renew are selected for extensive 

proliferation, migration and invasion4. Ultimately, cancer cells that survive can go on 

to repopulate distant tumor microenvironment, possibly carrying new alterations that 

enhance their malignant potential3,5,6. 

Multiple myeloma (MM), an incurable plasma cell malignancy of the bone 

marrow (BM), is a particularly heterogeneous type of cancer7-10, whose progression 

from the well-defined precursor stages of monoclonal gammopathy of undetermined 

significance (MGUS) and smoldering multiple myeloma (SMM) is underlain by 

marked evolution11-13. As such, although at the early stage of disease a few clones with 

limited number of alterations are present, subsequent abnormalities are acquired as 

patients progress to overt disease, conferring fitness advantage and allowing for tumor 

expansion8,14. Nevertheless, genetic/epigenetic aberrations are seldom enough to drive 

cancer progression by themselves; a permissive microenvironment and reciprocal 

interactions between tumor and microenvironmental cells are equally important15,16. 

Multiple components in the tissue environment can influence cancer clonal evolution 

and cancer cells in turn can also remodel the micro-environment for their competitive 

advantage15,17,18. Thus, a model of MM progression with the presence of tumor 
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microenvironment is crucial and can provide a unique platform to understand clonal 

heterogeneity, evolution and dissemination mechanisms.  

In this study, we described a novel "bone chip" xenograft mouse model (MM 

PrEDiCT), which in combination with a fluorescent or DNA barcodes system, can be 

used to track and profile heterogeneous clonal evolution, as they disseminate from the 

primary sites to peripheral blood and distant BM sites. Subsequently, we use this model 

to define an RNA expression signature of progression, which we find to correlate with 

disease progression and survival in MM patient data, confirming its relevance. Finally, 

we identified potential drivers of progression, HMGA1 and PA2G4 in our model and 

validate their significance in MM disease progression and dissemination through an in 

vivo CRISPR screen and in vitro assays.   

 

Methods 

Mouse studies and tumor transplantation 

All mouse experiments were performed with an Institutional Animal Care and Use 

Committee (IACUC)-approved animal protocol at our facility (Dana Farber Cancer 

Institute). SCID-beige mice (C.B-Igh-1b/GbmsTac-Prkdcscid-Lystbg N7) were obtained 

from Taconic. For tumor-bearing bone chip implantation, femurs were resected from 

6-7 week-old female SCID-beige mice. Two million myeloma cells were injected into 

the BM cavity of femurs resected from donor mice, and were then transplanted 

subcutaneously into syngeneic recipient mice of the same age. 

 

RNA sequencing analysis  

For RNA sequencing, poly-A selection and cDNA synthesis were performed, followed 

by library preparation using Illumina TruSeq RNA Sample Prep Kit, sequencing (75-

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2020005885/1789074/blood.2020005885.pdf by FR

AN
C

IS A C
O

U
N

TW
AY (H

arvard U
niv) user on 08 D

ecem
ber 2020



 5 

bp paired reads), and sample identification for quality control. RNA-seq data was 

processed by Kallisto19, a pseudoalignment tool to quantify abundances of transcripts, 

which were represented as Transcript Per Million (TPM). Estimated counts were 

imported by R package tximport for downstream analysis. Differential expression 

analysis was performed by DESeq220 with a false discovery rate (FDR) cutoff 5%.  

  

Study approval 

All mice were treated, monitored, and sacrificed in accordance with an approved 

protocol of the Dana-Farber Cancer Institute Animal Care and Use Committee.  

Bone marrow samples from relapsed/refractory MM patients were obtained under the 

approval from the Dana-Farber Cancer Institute Institutional Review Board. Informed 

consent was obtained from all patients in accordance with the Declaration of Helsinki. 

 

Statistical analysis 

All statistical analysis was performed in R and multiple hypothesis testing was 

corrected by Benjamini–Hochberg method.  

 

Data availability 

All datasets have been deposited in the Gene Expression Omnibus and are accessible 

under GSE121007. Additional datasets include: MM patient samples from different 

disease stages from GSE6477 and GSE2113; MM patient survival data from GSE24080.  

 

For original data, please contact irene_ghobrial@dfci.harvard.edu 
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Results 

Generation and validation of MM PrEDiCT mouse model as a clone-tracking tool 

To investigate the dynamics of clonal heterogeneity in vivo within the BM 

microenvironment, we developed a tumor dissemination xenograft model characterized 

by subcutaneous implantation of myeloma-bearing femur bone chips into syngeneic 

SCID-Beige mice (Supplemental Figure 1A). Two weeks following bone chip 

implantation, engraftment was assessed using confocal microscopy. At that point, 

functional vessels and bone remodeling could be observed, while myeloma cells had 

started colonizing the proximal vessel plexus, suggesting that the implanted bone chips 

had rapidly engrafted and were functioning as a permissive microenvironment for the 

growth and migration of myeloma cells (Supplemental Figure 1B). Disseminated MM 

cells had colonized distant BM sites by week 6 (Supplemental Figure 1C), while by 

weeks 8-10, host mice presented with limb paralysis, displaying multiple skeletal lytic 

lesions. We were able to reproducibly model distant BM dissemination of various 

myeloma cell lines using bone chip implants (Supplemental Figure 1D), mimicking the 

human MM dissemination phenotype. In contrast, direct subcutaneous injection of 

MM.1S into SCID-beige mice didn’t reveal significant amount of disseminated GFP+ 

cells in the blood, BM or spleen (Supplemental Figure 2). This data suggests MM cells 

alone are not sufficient for progression, a permissive BM stromal environment is 

required for disease progression/dissemination. Thus, we named this model MM 

PrEDiCT: MM Progression through Evolution and Dissemination of Clonal Tumor 

cells. 

Subsequently, we took advantage of the fluorescent tagging system to generate 

a stable 15-color cell library with cells bearing fluorescence proteins encoding GFP, 

BFP, RFP and iRFP (Figure 1A)21. These 15-color sub-populations can be flow-sorted, 
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mixed in equal proportions (Figure 1), and ‘visually’ tracked in PrEDiCT model, 

hereafter referred to as "rainbow" system.  

 

In vivo tracking of rainbow cells reveals clonal selection in distant BM sites 

Rainbow cell-bearing bone chips were implanted as described above. Around 60 days 

post transplantation, rainbow cells from in vitro culture, in vivo primary bone chips and 

distant BM were isolated and analyzed by flow cytometry. Results revealed that both 

primary and distant tissues are composed of persistent and fluctuating clones. The 

fluorescence distribution of in vitro culture was approximately even at days 30 and 60 

post transplantation (Figure 1B). By contrast, although all 15 subpopulations in the 

primary tumor could be detected at day 60, they showed uneven distributions in size 

with some colors unequivocally overtook others (Figure 1C), reflecting the existence 

of clonal competition even within the primary bone chip, where few "dominant" clones 

adapted quickly and were able to evolve and outcompete the rest. Upon disease 

progression, reduced clonal (color) diversity was observed in the distant BM and a few 

large clones accounting for majority of all cells (Figure 1C and Supplemental Figure 

3A). Interestingly, clones that dominate the matched circulating tumor cell (CTC) 

population were also found to dominate distant BM sites (Figure 1C), consistent with 

certain clones locally invading the primary tumor parenchyma, intravasating into 

nearby microvessels and seeding distant BM sites. Strikingly, although "dominant" 

clones exhibited inter-mouse variability, similar "dominant" clones were observed in 

the left and right femur of each mouse, with tightly correlated fluorescence distributions 

between matched femurs and CTCs (Supplemental Figure 3B). These results suggest 

that following circulatory dissemination, the tumor microenvironment might be largely 
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 8 

similar across different BM sites, allowing for expansion of similar clones with minimal 

site heterogeneity.  

We next sought to understand the clonal architecture within each site, by 

observing the implanted bone chip and distant BM sites with confocal microscopy. 

Tumor cells appeared to form multiple clusters in both sites. Interestingly, under high 

magnification, the primary site clusters appeared to comprise various cell 

subpopulations, as evidenced by the multitude of colors seen in those clusters (Figure 

1D), whereas most of distant BM clusters comprised single-color populations (Figure 

1E). These results demonstrate the existence of significant spatial heterogeneity within 

each distant BM site, with clear demarcation of each clone's area of residence.  

 

Monitoring clonal evolution in vivo at single cell level 

To improve clone-tracking depth and accuracy, we developed a lentiviral DNA 

barcoding system with a 12-base random sequence tag, that can generate up to 16 

million unique and inheritable barcodes detectable by next generation sequencing 

(NGS)22. Two million barcoded cells were injected into femurs as described above. As 

expected, while the pre-transplantation pool showed no major clonal bias (Figure 2B), 

primary tumors, disseminated cells and CTCs exhibited clonal selection, with distant 

sites demonstrating much less diversity (Figure 2C). In addition, within each mouse, 

left/right femurs and CTCs exhibited the same "dominant" clones (Figure 2C), while 

clonal distributions in different mice were distinct, as evidenced by strong shifts in the 

respective cumulative distribution rankings (Figure 2D). These results further confirm 

that clonal competition, in the context of tumor heterogeneity, started at an early stage, 

only a small number of clones that can adapt to the environment and evolve quickly to 

compete with other clones, have the ability to successfully disseminate.  
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 9 

We also compared different injection methods on clonal evolution. The clonal 

distributions of CTCs and disseminated BMs of both intravenous and intra-tibial 

injections had much higher diversity (Supplemental Figure 4), indicating that clonal 

selection/competition power was much lower than bone chip model. The implanted 

bone chip acts as a strong bottleneck that selects for cells that are able to first survive 

at the primary sites and it is out of those that circulation is permitted, enabling a clearer 

tracking of winning clones from primary tumor to circulation and to distant BM. Thus, 

PrEDiCT model largely reflects a multi-stage process of dissemination/metastasis 

including invading the local primary tissue, intravasating into the tumor vasculature, 

circulating and ultimately extravasating into the parenchymal of distant tissue for 

further colonization23-25.  

 

‘Progression signature’ identified from PrEDiCT model correlates with MM 

patient survival 

To explore the molecular mechanisms underlying disease progression, we 

performed RNA sequencing on three human cell lines (MM.1S, IM-9 and OPM2) 

harvested from matched primary bone chips and distant BMs separately. Since IM-9 is 

an EBV-transformed B lymphoblastoid cell line derived from MM patient and MM.1S 

and OPM2 have notable genetic differences, such as mutation status of TP53 gene, we 

thus utilized MM.1S as our main model for signature discovery and OPM2 and IM-9 

as references. Differential expression analysis identified 1109 up-regulated genes and 

1865 down-regulated genes in MM.1S model at FDR cutoff of 5% (Supplemental Table 

1). Top 300 up- and down-regulated genes were selected as a signature to track the 

dissemination potential of MM cells (Figure 3A), we designated this gene set as 

progression signature. We employed Gene Set Enrichment Analysis (GSEA) and 
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 10 

showed that both up- and down-regulated signatures were significantly enriched in IM-

9 model (Supplemental Figure 5A and 5B), and only down-regulated signatures were 

also significantly repressed in OPM2 model (Supplemental Figure 5C).  

Next, we sought to validate the relevance of this signature in human MM 

progression using a public patient gene expression dataset (GSE6477)26. Strikingly, our 

signature was sequentially activated during MM progression, with more significant p-

values were observed at later stages (Figure 3B). Of note, signature enrichment could 

already be detected at MGUS stage (p = 0.004), potentially reflecting the malignant 

potential of this early precursor stage, and was further increased in plasma cell leukemia 

(Figure 3C), an advanced and aggressive form of MM. Most importantly, progression 

signature was significantly associated with inferior overall survival (p = 0.0344) 

(GSE24080, Figure 3D and Supplemental Figure 6)27. Together, our results suggest that 

PrEDiCT model closely mirrors MM disease progression within patient clinical setting, 

at the phenotypic, cellular and molecular level. Pathway enrichment analysis of dis-

regulated genes in MM.1S indicates that several pathways contribute to progression 

potential of MM cells (Figure 3E, Supplemental Table 2). For example, apoptosis and 

p53 signaling pathway were repressed, which are related to proliferation and 

transformation. Some immune pathways such as Fc gamma R−mediated phagocytosis 

signaling are repressed as well. Spliceosome is the only activated pathway while its 

biological significance remains to be explored.   

 

Identification of potential upstream regulators that drive MM progression  

Gene expression signatures are known to represent phenotypical markers and do not 

usually suggest upstream regulators. Previous studies have shown that regulon analysis 

using the MR inference algorithm can help identify aberrantly activated tumor drivers28. 
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Briefly, we applied ARACNe29 on a public MM patient expression data set (GSE6477) 

and identified a regulatory network, which contains 591 MRs targeting 12395 genes, 

with a p-value cutoff of 10-8. VIPER28 was then applied to identify potential MRs that 

could be driving MM progression and dissemination in our model, as measured by 

enrichment of progression signature. A total of 28 MRs were found to be significant 

with FDR threshold of 5%, including 15 activated and 13 repressed regulators (Figure 

4A, Supplemental Table 3). Of note, some of the repressed MRs were down-regulated 

in distant BM sites, including FOSB, JUN, and KLF6. Next, we looked at the MRs' 

gene dependency scores in the Project Achilles dataset (v20Q2) and found that the 

majority of the MRs discovered in our model are indeed essential in MM cell lines 

(Figure 4B and Supplemental Figure 7)30. For the purposes of validation, we selected 

activated ones as they may serve as novel therapeutic targets. After ruling out 

previously reported factors in MM like MYC31-33, CDKN2A34-36, TOP2A37,38 and 

TCF339, as well as non-essential genes in MM based on DepMap data, HMGA1, 

PA2G4 and TRIM28 were selected based on statistical significance, novelty and 

putative functional importance as potential therapeutic targets (Figure 4C).  

 

In vivo validation of MRs regulating MM progression using a targeted CRISPR 

screen 

We designed a targeted CRISPR library containing 30 sgRNAs targeting HMGA1, 

PA2G4 and TRIM28 as well as 100 non-targeting control sgRNAs (Supplemental Table 

4). Lentiviruses expressing the library were used to transduce MM.1S-GFP-Luc-Cas9 

cells, which were then cultured in vitro for 1 week before being transplanted into SCID-

beige mice. For each gene, we sequenced and compared distribution of normalized 

sgRNA counts in both primary tumors and BM at the time of limb paralysis (10-12 
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weeks post-transplantation) using software package MAGeCK40. SgRNAs targeting 

HMGA1 and PA2G4 were first significantly depleted in the late-stage primary sites 

compared to injection pool (Supplemental Figure 8A), and further depleted in distant 

BM sites, as compared to primary sites, while nonspecific sgRNAs have similar median 

read counts in primary tumor and BM (Figure 4D). Both HMGA1 and PA2G4 were up-

regulated MRs, which tend to be essential for cell survival in MM cell lines (Figure 

4B), indicating both genes can be potential targets for treating myeloma. When looking 

at the gene expression data from different stages of MM using GSE6477 dataset, 

expression levels of both HMGA1 and PA2G4 were found to be significantly higher in 

newly diagnosed and relapsed MM (p=0.011 and p=0.013, p=3.90e-05 and p=1.23e-04 

respectively), compared to healthy donors, and in the case of PA2G4, expression levels 

were even significantly higher in MGUS and SMM (p=0.019, p=0.04 respectively) 

(Figure 5). Our results suggest that these genes become increasingly important to MM 

cells, as the disease progresses, confirming their importance in myeloma progression 

and as potential therapeutic targets.  

We next tested whether HMGA1 and PA2G4 regulate the same set of genes 

from progression signature. Loss of HMGA1 and PA2G4 were confirmed by western 

blot (Supplemental Figure 8B). Real-time PCR was performed on these cells for 5 

significantly upregulated (CD38, FANCF, MGST1, AARSD1 and LBR) and 5 

downregulated (KLF6, LGMN, SIRT2, GAB1 and TIPARP) genes shared by MM.1S, 

OPM2 and IM-9 models. Interestingly, among those genes activated at disseminated 

sites, only CD38, FANCF and LBR had significantly reduced expressions in HMGA1 

deficient cells but not in PA2G4 deficient cells (Supplemental Figure 8C).  Expression 

levels of both MGST1 and AARSD1 were slightly increased in both HMGA1 and 

PA2G4 knockout cells. Similarly, for the 5 genes downregulated at disseminated BM 
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sites, loss of HMGA1 and PA2G4 drastically increased the expression of LGMN, 

SIRT2 and TIPARP but only loss of PA2G4 increased KLF6 expression (Supplemental 

Figure 8D). These data suggest that these 2 MRs potentially regulate different gene 

networks to give cell distinct advantages for disease progression, in other words tumor 

heterogeneity gives rise to subclones that possess different evolutionary advantages 

over the others within the tumor environment. 

 

Loss of HMGA1 and PA2G4 compromised the proliferation, migration and 

adhesion ability of MM cells in vitro 

To further confirm the important roles of HMGA1 and PA2G4 in driving MM 

progression, we performed in vitro proliferation, migration and adhesion assays with 

and without bone marrow stromal cells (BMSCs) isolated from relapsed/refractory MM 

patients. The overall proliferation rates of MM.1S were increased when cocultured with 

BMSCs, however, loss of HMGA1, PA2G4 and MYC caused significant reductions in 

proliferation when compared to control cells in both culturing conditions (Figure 6A). 

We used MYC here as a positive control. Similarly, all knockout cells all showed 

significantly reduced migration and adhesion (Figure 6B and 6C) towards BMSCs 

confirming the important roles of these genes in driving MM progression and 

dissemination. Interleukin-6 (IL-6) is a pro-inflammatory cytokine crucial to the growth, 

proliferation and survival of myeloma cells41-43. Addition of 10 ng/ml IL-6 increased 

overall proliferation and migration, however, loss of HMGA1, PA2G4 and MYC 

compromised the proliferation and migration ability of MM cells significantly 

(Supplemental Figure 9).  
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Discussion 

MM is an incurable plasma cell malignancy of the BM. Although many alterations 

regulating MM disease progression are tumor cell autonomous, be they genetic or 

epigenetic8,44-46, they are not the sole determinants of tumor behaviors and insufficient 

to induce progression and dissemination47,48. A permissive microenvironment is 

required for overt malignancy to emerge47,49. Indeed, studies have shown that tumor 

microenvironment is a key regulator in many steps of invasion-metastasis cascade, 

including oncogenesis, egress, protection in the circulation, preparation of the 

metastatic niche, organ-specific homing, and tumor colonization50. As such, disease 

progression in MM is the result of a well-orchestrated, complex network of interactions 

that cannot be studied outside of the context of BM microenvironment. Our goal in this 

study was to develop a xenograft mouse model to reproduce the clonal evolution 

underlying dissemination/metastasis in progressing patients, in the context of stromal 

microenvironment and enable the investigation of mechanisms underlying these events 

where mathematical analysis, library or drug screening can be further performed.  

Studies by many groups have made the effort to track clonal outgrowth and 

dissemination in syngeneic mouse models using intravenous injection method, and 

similar conclusions were made that establishment of dissemination/metastasis is 

extremely inefficient and individual clones exhibited marked differences in 

proliferation and gene expression patterns in BM niche51-53. We also compared the 

differences in clonal evolution using bone chip, intravenous and intra-tibial injection 

methods, and observed significantly reduced clonal diversity in CTCs and distant BM 

in PrEDiCT model, indicating that clonal selection/competition power was much higher. 

The implanted bone chip acts an optimal niche but a strong bottleneck that selects for 

cells that first survive at primary sites and it is out of those that circulation is permitted. 
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PrEDiCT model could model the entire dissemination/metastatic cascade: invasion, 

intravasation, circulation, extravasation and colonization. This approach revealed three 

major findings: clonal competition was already present at the primary sites; 

establishment of CTCs was extremely inefficient and the efficiency was further 

decreased at distant BM sites; the individual disseminated MM cells exhibited marked 

differences in their proliferative fates, with the majority of final tumor burden within a 

bone being attributable to the progeny of very few clones. Thus, PrEDiCT model 

provides a powerful platform for studying the role of tumor cell autonomous alterations 

and BM stromal compartment in MM disease progression.  

In an effort to elucidate expression changes associated with progression, we 

performed RNA sequencing on tumor cells (MM.1S, IM-9 and OPM2) isolated from 

primary and distant BM sites at the time of limb paralysis. We identified significantly 

up and down-regulated genes shared across cell lines and designated those found 

significant in MM.1S cells as "progression signature". In light of the data that tumor 

cells alone are not sufficient for dissemination/metastasis without the presence of a BM 

environment, the progression signature from PrEDiCT model would reflect the changes 

in adaptation to the primary and secondary bone environment as well as the intrinsic 

evolutionary advantages evolved to enable dissemination during progression. 

Confirming our model's relevance in studying human MM progression, GSEA analysis 

of patient expression data showed "progression signature" was sequentially activated 

during MM progression, with more significant p-values were observed when later 

stages of MM were compared to normal controls. And even more importantly, our 

signature was shown to be significantly associated with inferior overall survival in 

patients. These results suggest that PrEDiCT model adequately represents the 

biological processes underlying disease progression in MM, and thus can be used as a 
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tool to improve our understanding of mechanisms involved and identify new 

therapeutic targets. 

To demonstrate the potential of our model for therapeutic target detection, we 

employed a MR analysis approach to identify potential upstream regulators of 

progression signature. We selected and validated activated MRs since they might serve 

as potential therapeutic targets. Loss of HMGA1 and PA2G4 compromised tumor 

adaptation to the primary sites and dissemination to distant sites in vivo, and in vitro 

assays further confirmed compromised abilities of these cells to proliferate, migration 

and adhesion to BMSCs indicating a role for HMGA1 and PA2G4 as progression-

related MM addictions and loss of both genes compromised the overall ability of tumor 

cells to overcome each bottleneck in metastasis process. Although HMGA1 has been 

implicated in oncogenic transformation, invasion and metastasis in various cancers54-60, 

its role in pathogenesis and progression of MM is largely unknown. Similarly, PA2G4 

has been reported as a regulator for proliferation, but its role in cancers has being 

paradoxical61-64. Here, we report for the first time that HMGA1 and PA2G4 were 

sequentially activated along human MM progression in a public dataset65 and might 

play key roles in regulating dissemination of MM tumor cells within BM 

microenvironment, and potentially as markers and therapeutic targets for progression.  

Although both HMGA1 and PA2G4 were validated to be important for MM 

progression, the gene expression networks regulated by them are very different. Loss 

of HMGA1 but not loss of PA2G4 caused reduced expressions of CD38, FANCF and 

LBR, which are activated genes identified from progression signature, and both genes 

could only inhibit some of the repressed genes (LGMN, SIRT2 and TIPARP) in 

progression signature. This is in line with our clonal tracking observations that tumor 

clones at metastatic sites had much reduced diversity but they still exhibited marked 
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differences with some clones dominate disseminated sites over others. In other words, 

we could observe significant tumor heterogeneity from primary tumors to the metastatic 

sites, which gives rise to subclones that possess an evolutionary advantage over the 

others within the tumor environment, as manifested by distinct gene expression patterns, 

metabolism, motility, proliferation and metastatic potential. 

Recent studies showed that tumors are more than insular masses of proliferating 

cancer cells1,66,67. Instead, they are complex tissues composed of multiple distinct cell 

types participating in heterotypic interactions with one another4,46,68-70. One of the 

limitations of current model is lacking an intact immune system, while it is technically 

and experimentally challenging to perform bone chip modeling in syngeneic immune 

competent mice, we found a permissive BM stromal environment is crucial, without 

which dissemination is not achievable. Indeed, coculture of patient BMSCs with MM 

cells increased the malignant potential of MM cells as manifested by significantly 

enhanced proliferation, migration and adhesion. It will be interesting to further explore 

the specific components of stromal compartment and their biological functions in 

driving dissemination to accelerate our understandings of the complex BM 

environment in the future. 

In conclusion, we established a novel xenograft mouse model termed PrEDiCT 

to track clonal dynamics and dissemination of MM, and further validated HMGA1 and 

PA2G4 as potential drivers. Our model is unique in its ability to largely mirror the 

phenotypic, cellular and mechanistic features of myeloma progression, in the context 

of the BM stromal microenvironment. It constitutes a powerful platform for studying 

tumor cell and microenvironmental alterations in myeloma progression, while 

providing new opportunities for investigation of mechanisms underlying these events 

where therapeutic target discovery or drug screening can be further performed.  
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Figure Legends 

Figure 1. Bone marrow (BM) dissemination model with color-coded MM cells. (A) 

A schematic diagram illustrating the study procedures. MM cell lines were transduced 

with a lentiviral mixture carrying four fluorescent proteins (BFP, GFP, RFP and iRFP), 

generating fifteen subpopulations with different fluorescence markers. Each cell 

population was sorted by flow cytometry, expanded in vitro and then mixed together at 

an even proportion. Two million color-coded MM cells were injected into the BM 

cavity of femoral bones freshly resected from syngeneic donor mice. Then, myeloma-

bearing bone chips were subcutaneously transplanted under the dorsal skin of recipient 

mice. (B) The proportion of each of the 15 subpopulations of cells passaged in vitro 

throughout the animal experiment did not change. (C) To assess in vivo clonal dynamics 

in animals during disease course, cells from the implanted bone chip (primary site), left 

and right femur BM (distant BM sites) and CTCs were analyzed upon symptoms of 

hind-limb paralysis. Each uniquely colored circle represents a single colored clone in 

an animal. The area of the circle is proportional to the size of each clone. The proportion 

of the 15 subpopulations of distant BM sites (left and right femurs) showed biased color 

distribution, compared to primary implanted sites. Color distributions of left and right 

femurs were similar to that of matched CTCs. (D) (E) Confocal imaging of color-coded 

MM cells in the primary implanted bone (D), and femur BM (E), bar: 100μm. 

 

Figure 2. Bone marrow dissemination model with DNA-barcoded MM cells. (A) 

Schematic diagram illustrating the study procedures. Twelve-base random DNA 

sequences were inserted into the pCW307 lentivirus backbone with RFP as selection 

marker. MM.1S sells were transduced with the DNA barcode library and injected into 

the cavity of femurs freshly harvested from donor mice. Myeloma-bearing bone chips 
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were subcutaneously transplanted under the dorsal skin of recipient mice. (B) Pie chart 

of barcode diversity in pre-injection cell pool shows absence of major clone bias. (C) 

The proportions of barcoded clones in the implanted bone chip (primary site), left and 

right femur BM and CTCs. (D) Cumulative ranking of barcodes from primary tumor 

site, distant BM site and CTCs from four representative mice. Dotted cutoff lines 

indicate a threshold, which represents 90% of the total reads. Colored numbers are the 

number of barcodes that represents 90% of total reads in different sample types. 

 

Figure 3. Identification and validation of the MM progression signature. (A) 

Differential expression analysis was performed by comparing samples from distant BM 

sites and primary sites in MM.1S model using DESeq2 (FDR<5%). Differentially 

expressed genes were defined by FDR cutoff of 5%, as indicated by the horizontal dash 

line. Top 300 up- or down-regulated genes with highest significance were defined as a 

progression signature, highlighted in blue (down-regulated) or red (up-regulated). (B) 

Association of the progression signature to MM progression and relapse. A Z-score was 

used to quantify the enrichment level of the signature for each gene expression profile 

in dataset GSE6477 (Methods). Distributions were compared between MM stages 

during disease progression to healthy donors, using Wilcoxon's rank-sum test. Number 

of samples in each group and p-values are shown. (C) Association of the progression 

signature to MM progression and aggressive disease. A Z-score was used to quantify 

the enrichment level of the signature for each gene expression profile in dataset 

GSE2113. Distributions were compared between MM stages during disease 

progression, using Wilcoxon's rank sum test. Number of samples in each group and p-

values are also shown. (D) The progression signature acts as a predictor of overall 

survival in MM patients. Using a public dataset of patient gene expression (GSE24080), 
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the top 200 patients with the highest enrichment of progression signature were defined 

as high-risk group, while those with the lowest enrichment were defined as low-risk 

group. Statistical comparison was performed by log-rank test. (E) Pathway enrichment 

analysis of differentially expressed genes in MM.1S model. R package was used to 

assess significance of KEGG pathways. Top repressed or activated pathways were 

shown in green or red, respectively. The full list of significant pathways can be found 

in Supplemental Table 5. 

 

Figure 4. Identification of potential upstream master regulators (MRs) that drive 

MM progression in PrEDiCT model. (A) Prediction of MRs. A total of 28 MRs were 

predicted to be significant (FDR < 5%), including 15 activated and 13 repressed ones. 

Examples of significant MRs were labeled. The full list of significant MRs was shown 

in Supplemental Table 3. (B) Achilles CRISPR dependency scores of all significant 

MRs including activated (red) and repressed regulated (blue) MRs. (C) Example of 

known and novel MRs in MM. Out of activated MRs, MYC and CDKN2A rank in top 

and were known to be involved in MM progression. HMGA1, PA2G4 and TRIM28 

were selected for further experimental validation. (D) Validation of selected MRs by in 

vivo targeted CRISPR screen. Late timepoint BM samples from 8 mice were compared 

to matched primary tumor samples, using MAGeCK. The resulting log2 fold-changes 

for each sgRNA were summarized by their targeting gene.   

 

Figure 5. Elevated expression levels of validated MRs in human MM. Log2 fold 

change analysis showing expression levels of HMGA1 (left) and PA2G4 (right) in 

healthy negative control (NC), MGUS, smoldering MM (SmMM), newly diagnosed 

MM (NewMM) and relapsed MM (ReMM) patients in GSE6477 dataset. Statistical 

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/doi/10.1182/blood.2020005885/1789074/blood.2020005885.pdf by FR

AN
C

IS A C
O

U
N

TW
AY (H

arvard U
niv) user on 08 D

ecem
ber 2020



 26 

comparison was performed by one-sided rank rum test comparing to NCs. *p<0.05, 

**p<0.01, ***p<0.001. 

 
Figure 6. Loss of HMGA1 and PA2G4 inhibited proliferation, migration and 

adhesion potential of MM cells in vitro. (A) MM.1S cells infected with non-targeting 

control sgRNAs, HMGA1, PA2G4 and MYC targeting sgRNAs were cultured with and 

without BMSCs from relapsed/refractory MM patients for 48 hrs. Proliferation rates 

were normalized to control sgRNA infected cells cultured without BMSCs, and cells 

with loss of HMGA1, PA2G4 or MYC exhibited significantly reduced proliferation. 

(B) BMSCs were seeded one day ahead in the lower chamber of 96-transwell plate. 

MM.1S cells transduced as described in (A) were seeded in the upper chamber for 4hrs. 

Percentage of cells that migrated to the lower chamber were normalized to control cells 

without BMSCs, and cells with loss of HMGA1, PA2G4 or MYC exhibited 

significantly reduced migration towards BMSCs. (C) MM.1S cells transduced as 

described in (A) were prelabeled with Calcein-AM were cocultured with pre-seeded 

BMSCs for 2hrs. Percentage of cells that adhered to BMSCs were normalized to control 

sgRNA infected cells, and loss of HMGA1, PA2G4 or MYC compromised the adhesion 

rates significantly. Two experiments from two independent infections were performed 

and one representative result was shown. Error bars indicate SD. *p<0.05, **p<0.01, 

***p<0.001. 
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