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Abstract

Recent debate has concentrated on the contribution of bad
luck to cancer development. The tight correlation between the
number of tissue-specific stem cell divisions and cancer risk of
the same tissue suggests that bad luck has an important role to
play in tumor development, but the full extent of this contri-
bution remains an open question. Improved understanding of
the interplay between extrinsic and intrinsic factors at the
molecular level is one promising route to identifying the limits
on extrinsic control of tumor initiation, which is highly relevant
to cancer prevention. Here, we use a simple mathematical

model to show that recent data on the variation in numbers
of breast epithelial cells with progenitor features due to preg-
nancy are sufficient to explain the known protective effect of
full-term pregnancy in early adulthood for estrogen receptor–
positive (ERþ) breast cancer later in life. Our work provides a
mechanism for this previously ill-understood effect and illumi-
nates the complex influence of extrinsic factors at the molecular
level in breast cancer. These findings represent an important
contribution to the ongoing research into the role of bad luck in
human tumorigenesis. Cancer Res; 77(11); 2800–9. �2017 AACR.

Introduction
A recent study (1) by Tomasetti and Vogelstein analyzed the

relationship between the number of stem cell divisions and
cancer risk across tissues to investigate the role of "bad luck" in
carcinogenesis. The authors demonstrated that the logarithm of
lifetime cancer incidence in a tissue is correlated with the
logarithm of the cumulative number of stem cell divisions in

the same tissue (R2 ¼ 0.64). As a result, the authors claimed that
the majority of the variance in cancer risk among tissues is due
to bad luck (Fig. 1A).

In the reporting of the study and ensuing debate, some com-
mentators drew broader conclusions from the correlation found
by Tomasetti and Vogelstein. While the initial study claimed that
two thirds of the variation in cancer risk between tissues is due to
bad luck, an accompanying commentary suggested that two thirds
of all cancers, rather than two thirds of the variation, are due to
randommutations in healthy cells (2). Subsequent analyses have
shown that the initial correlation is not sufficient to imply a lower
bound on the proportion of all cancers that are due to bad luck at
64%. Todraw this conclusion from the studywould require strong
assumptions about the possible effects of controllable factors in
the data set considered (3).

Importantly, the regression analysis used by Tomasetti and
Vogelstein cannot quantify the possible effects of extrinsic factors
that do not already vary within the data set used, which notably
did not include breast cancer (4). Therefore, the regression cannot
be used to draw conclusions about unavoidable bad luck, taking
into account the variation of all possible extrinsic factors. To
illustrate this point, consider the (perhaps unlikely) possibility
that it is possible to safely alter the fitness advantage of mutations
that can lead to cancer. The correlation analysis presented cannot
tell us about the impact such variation could have on cancer risk.

The insufficiency of the current evidence to draw conclusions
about the contribution of unavoidable bad luck to cancer demon-
strates the important potential role of mechanistic models in
determining the contribution of controllable factors to different
cancer types, andwhether these factors canbeharnessed for cancer
prevention. The changes that lead to cancer are thought to develop
in a complex molecular setting, which defies simple characteri-
zation. In this setting, variation of any number of parameters may
affect lifetime risk of cancer; these include but are not limited to
the number of cells susceptible to transformation, the mutation
rate of cells, and the fitness advantage conferred by those muta-
tions when they occur (Fig. 1B).
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Major Findings
A mathematical model demonstrates that the pregnancy-

associated reduction in Ki67þ and p27þ cell numbers in the
human breast can explain the protective effect of pregnancy
against ERþ breast cancer.
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Full-term pregnancy in young adulthood is a well-documented
natural protective factor for breast cancer (5, 6). Estimates suggest
that risk increases by 5% for every 5-year increase in the age at first
birth for women with one birth (6). The specific effects of parity
vary by hormone-receptor status of the resulting tumors (7).
Analysis of the Nurses Health Study (NHS) cohort showed that
the risk for ERþ breast cancer decreases with the number of
premenopausal years accumulated since first birth (7). Hence,
early first birth confers the greatest protective effect; a womanwith
four births at age 20, 23, 26, and 29 years old has an estimated
29% reduced risk of ERþ/progesterone receptor–positive (PRþ)
breast cancer between the ages of 30 and 70, compared with a
nulliparous woman during the same time period. The same study
found thatfirst birth causes a one-off increase in risk for PR– cancer
compared with nulliparous women, with an effect size that

increases with age at first birth. As a result, women with a first
birth over the age of 35 can be at an increased risk of breast cancer.

In the absence of high-resolution single-cell data, which are
nearly impossible to obtain in large cohorts of humans, mathe-
matical models have demonstrated the plausibility of general
molecular explanations for the protective effects of pregnancy. An
important study by Moolgavkar and colleagues explored a frame-
work where breast cancer is caused by two cellular transitions
occurring in normal cells (8). In this model, pregnancy increases
the rate of differentiation of normal and partially transformed
cells, decreasing the pool of cells susceptible to the cellular
transitions leading to cancer. The study leads to a good fit to the
data of MacMahon and colleagues. (5). The model of Pike and
colleagues (9) uses a concept of breast tissue age: breast cancer
incidence is modeled as a linear function of the logarithm of

Quick Guide to Equations and Assumptions
Cellular dynamics of the stem cell and proliferative progenitor cell populations

There are N stem cells per terminal end duct. The stem cells follow a stochastic process known as the Moran model. One cell
division occurs during each time step of length tcycle/N. In each time step, a single stemcell is randomly chosen to divideproportional
to the fitness of the cell, with the two daughter cells replacing the divided cell and another randomly chosen cell.

With probability P, stem cell divisions are asymmetric, giving rise to one stem cell that replaces the divided cell and one progenitor
cell that forms the founder in a new cascade of progenitors. All cells in a progenitor cascade divide during every time step. In
nonpregnant women, wild-type progenitor cells can divide a total of z times before becoming terminally differentiated (see below
for the effects of mutations and effects of pregnancy). Cells that are terminally differentiated exit the simulation.

Cancer initiation
During each cell division, one of the two daughter cells in a division attains a new (epi)genetic mutation with probability m.

In stem cells, mutations increase the relative fitness of the cell by a factor of fmut. In progenitor cells, mutations increase the number
of levels in the differentiation hierarchy by zmut levels. Thus, a stem cell with n mutations has relative fitness in the Moran
model given by Equation A, and a progenitor cell with n mutations is able to divide a total number of times given by Equation B
before terminal differentiation:

fmutð Þn ðAÞ

zþ n � zmut ðBÞ

In addition, progenitor cells must acquire the ability to self-renew to become cancer cells. We assumed that the probability of a
progenitor cell at differentiation level 0 � i � z þ n � zmut attaining self-renewal is given by Equation C:

g ¼ gbase � i � gbaseð Þ=ð2 � zÞ ðCÞ

We assumed that cancer initiation occurs when a cell has accumulated a total of nmutmutations and either retained (through being a
stem cell) or attained (through a self-renewal event) the ability to self-renew.

Effect of pregnancy
Our model simulates an entire life-course over ttotal years. The model takes into account possible changes to cellular dynamics

during pregnancy, after pregnancy, and after menopause. During pregnancy, we assumed that the stem cell cycle length decreases to
tcycle,preg, whereas the number of levels in the differentiation hierarchy of progenitor cells increases by zpreg levels. After menopause,
the stem cell cycle length increases to tcycle,menopause.

In parous scenarios, after the first birth, the probability of asymmetric stem cell division changes by amultiplicative factor ppost,init
(0 < ppost,init<1). After the secondbirth and subsequent births, the probability of asymmetric stem cell division changes by a factor of
ppost,subs (ppost,init < ppost,subs < 1).

Mammary Progenitors and Breast Cancer Risk
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breast tissue age, and risk factors for breast cancer alter the rate of
breast tissue aging. First full-term pregnancy causes a one-off
increase in breast tissue age, but decreases its subsequent rate of
increase. This study also demonstrated a good fit to the Mool-
gavkar and colleagues (8) data. Rosner and Colditz then adapted
and extended the model developed by Pike and colleagues. (9),
including changes to further improve the fit and accommodate
multiple births, and applied the adapted model to data from the
NHS cohort (7, 10, 11). The fit of these models to epidemiologic
data provides support for the theory that pregnancy alters the
number of cells that are at risk for accumulating changes leading to
breast cancer. However, they do not identify the molecular
mechanisms responsible, nor do they accommodate the effects
of a cellular hierarchy of stem and progenitor cells.

Recently, single-cell technology has made it possible to collect
quantitative data on changes in individual mammary subpopula-
tions, presenting the possibility to quantitatively assess themolec-
ular-level changes, as well as the epidemiologic incidence curves,
associated with pregnancy. Studies in mice and humans provide
evidence that p27þ mammary epithelial cells with progenitor
features decrease in number with pregnancy and are present in
high numbers in BRCA1 and BRCA2 germline mutation carriers
(12, 13). Evidence was presented that a subset of p27þ cells with
progenitor features are hormone-responsive quiescent luminal
progenitors with proliferative potential, and that their variation
could relate to breast cancer risk (12). Here, we use a simple
mathematical model to test whether, given a role for p27þ

progenitor cells as proliferative progenitors, which can accumu-
late changes leading tobreast cancer, theobserved reduction in the
populations of p27þ progenitor cells with pregnancy is sufficient
to explain the protective effect of pregnancy.

Materials and Methods
We aimed to test the hypothesis that a decreasing cell number

and proliferative capacity of luminal progenitor cells after preg-
nancy can result in aprotective effect against breast cancer and that
the effect decreases with increasing age of pregnancy. To this end,
we designed a mathematical model of the dynamics of prolifer-
ating cells in the breast tissue that can accumulate the changes
leading to cancer initiation. We considered two types of cells: a
self-renewing population of stem cells and a population of
proliferating luminal progenitor cells that result from differenti-
ationof these stem cells and respond tohormonal stimuli.Wefirst

tested whether we could identify a biologically plausible param-
eter setting in our model, under which the variation in progenitor
cell numbers results in a risk decrease that fits the quantitative risk
decreases observedwith pregnancy.We then tested the robustness
of the fit of our model in the surrounding parameter space.

We first studied the dynamics of stem cells in the breast ductal
system. Given the population structure inherent to breast ducts,
we considered the stem cells in each duct to act independently. As
such, we investigated the dynamics of a single duct within the
breast since the total probability of cancer initiation is given by the
probability per niche times thenumber of niches; thus, the relative
likelihood of cancer initiation is not altered by considering only
one niche. The overall number of stem cells in the breast is
estimated to be on the order of 5 to 10 cells per duct (14, 15),
and we denoted this number by N, although there is some
uncertainty in these estimates. We defined a fundamental time
unit of our system to be dictated by the division time of stem cells,
tcycle, which varies during pregnancy. In in vivo experiments, the
mean cell-cycle length of benign breast cancer cells was approx-
imately 162 hours per cell (16). We assumed that even precan-
cerous cells divide faster than stem cells; thus, using tcycle ¼ 162
hours as the average premenopausal stem cell cycle length when
not pregnantmay be an overestimation of the number of stem cell
divisions that occur in the normal breast, and we verified that our
results were unaffected at higher stem cell cycle lengths. Further,
previous data by our lab (12) and several others (17–22) suggest
that the percentage of cells in normal breast that stain positive for
Ki67 are approximately 3% and 12% in the follicular and luteal
phases of the menstrual cycle, respectively. Assuming that the
duration of these twomenstrual cycle phases is roughly the same,
at 2 weeks per cycle, leads to an average Ki67 value of 7.5%.
Considering that Ki67 is detectable for 24 hours during the active
phases of the cell cycle (23, 24), this translates to an estimate of
320 hours (24/0.075) for the average cell-cycle length, which is
also within the range tested (162 hours to 324 hours). Other
studies have shown a broadly consistent range of Ki67/KiS5
values (20) or lower values consistent with still longer cell cycle
times (18, 19).

Experimental data suggest that proliferation decreases 4- to 5-
fold after menopause, irrespective of parity (12, 25). To take this
effect into account, we assumed that the cell-cycle length increases
by a factor of amenopause ¼ 4 after menopause. In our model, a
single stem cell in each duct is randomly chosen to divide during
each time step, proportional to the fitness of the cell, following a

Figure 1.

Multiple factors can affect cancer risk
in a complex setting. A, An analysis by
Tomasetti and Vogelstein (1)
demonstrated a close correlation
between the log of lifetime cancer
incidence in a tissue and the
cumulative number of stem cell
divisions in the same tissue. Plot shown
is a schematic using simulated data. B,
Variation in multiple molecular factors
may affect cancer risk when they
change from the homeostatic state
(top left), including the number of
progenitor cells (top right), the
mutation rate (bottom left), and the
fitness effect conferred by mutations
(bottom right).
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stochastic process known as the Moran model (26). According to
thismodel, the divided cell is replaced by one of the daughter cells
of the division, whereas the other daughter replaces another stem
cell that was randomly selected from the population to die. The
use of this model ensures preservation of homeostasis in the
normal breast epithelial cell population. Because the specific
dynamics of stem cells in the breast are not known, we chose the
Moran model as it has been used to model stem cell populations
in other tissues (27–29). For each cell division, we allowed for a
single mutation to arise in one of the two daughter cells of the
division with a certain probability.

In the mature breast, stem cells divide primarily to maintain
cellular integrity. However, differentiating events do occur,
although rarely (30–32). In our model, with probability P, we
allowed the cell division in the current time step to be asym-
metric, producing one daughter stem cell to maintain the stem
cell population and one progenitor daughter. Because the exact
rate of differentiation is unknown, we tested P ¼ 10–1 to 10–3.
With the remaining 1 – P probability, the stem cell division is

symmetric and follows the usual Moran division dynamics. In
each time step thereafter, all cells resulting from the progenitor
daughter divide and differentiate further until a total of z cell
divisions are accumulated. The number of luminal epithelial
progenitors in humans is unknown. As a result, we set z ¼ 10 to
fit data from mouse mammary fat pad transplantation experi-
ments (33) and tested a wide range of alternate values for this
parameter. After z divisions, we considered the cells differenti-
ated, and at this point, they are no longer considered in our
mathematical model. Thus, in the wild-type system, there are N
stem cells per duct and 2zþ1 � 1 progenitor cells per differen-
tiation cascade. Because the dynamics of progenitor cells in the
human breast are not known, we have adopted the assumption
that progenitor cells undergo a limited number of divisions,
similar to what has been observed for transit-amplifying cells in
the colon and other tissues. Figure 2A describes the temporal
dynamics of the system.

During each cell division, genetic alterations contributing to
cancer initiation may arise with a small probability. We

Figure 2.

Schematic representation of the mathematical model. A, Initially, there are N wild-type stem cells (blue), which give rise to a differentiation cascade
of 2zþ1 � 1 wild-type luminal progenitor cells (purple). At each time step, all progenitor cells as well as one randomly selected stem cell divide. With
probability 1 – P, the stem cell divides symmetrically and one daughter cell replaces another randomly chosen stem cell. With probability P, the stem cell
divides asymmetrically, and one daughter cell remains a stem cell, whereas the other daughter cell becomes committed to the progenitor population (light pink).
Regardless of the dividing stem cell's fate, all existing progenitor cells divide symmetrically for a total of z times to give rise to successively more
differentiated cells (progressively darker shades of purple) before becoming terminally differentiated. In the figure, the darkening purple gradations refer to
successively more differentiated cells and serve to clarify a single time step of the stochastic process. B, The acquisition of mutations leading to breast
cancer initiation all result in an increased relative fitness (i.e., growth rate) fmut in stem cells (red) as compared with wild-type cells (blue), and an additional
number of divisions zmut that progenitor cells can undergo before terminally differentiating. C, During pregnancy, progenitor cells experience an expansion in
proliferative capacity through an additional number of divisions zpreg in order to form terminally differentiated milk-producing cells (dotted triangle) and a
decrease in cell-cycle length.
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considered a number nmut of mutations that, when combined,
result in a single cell leading to cancer initiation. These mutations
could each be any of the many mutations commonly found in
breast cancer with initiation potential. As a simplifying assump-
tion, we considered a mutation rate on the order of 10�5 muta-
tions per oncogenic mutation per cell division to limit the
required number of simulations for detection to a reasonable
number.

The baselinemutation rate is roughly 5� 10�9 per base pair per
cell division (34, 35). It is estimated that there are roughly 34,000
possible driver base pairs in the genome (36), thus it may be
reasonable to assume that there are on the order of 10,000
possible ways to achieve each oncogenic mutation, which would
lead to the above rates on the order of 10�5 mutations per
oncogenic mutation. However, it is important to note that not
all driver loci are relevant in breast cancer, and in particular, the
exact combinations of driver loci that could causebreast cancer are
unknown, thus the 10�5

figure can only be a broad approxima-
tion. For this reason, we also tested our model at other mutation
rates and found that our main conclusions were also consistent at
lower mutation rates.

We studied the followingmutational effects for eachmutation:
under the default assumptions in stem cells, mutant cells had a
relativefitness of fmut¼1.1, i.e., afitness increase of 10%, resulting
in an increased probability of dividing, while mutant progenitor
cells divided an additional zmut ¼ 1 times (Fig. 2B). Because the
number of stem cells per duct is small, the fitness ofmutant alleles
has little effect on cancer initiation probabilities, as the fixation
time of mutations is much smaller than the mutation accumu-
lation time (27); we also tested our results at other values of fmut

and zmut. In addition, progenitor cells must accumulate some
propensity toward self-renewal:wedefined aparameter g ¼ gbase–

(i � gbase)/(2 � z) as the probability of a progenitor cell at
differentiation level 0 � i � z þ n � zmut to acquire self-renewal.
We chose this functional form to capture a decrease in the
probability of attaining self-renewal as progenitor cells differen-
tiate, and explored different values of gbase within this framework.
We defined cancer initiation as a single cell that accumulated all
required mutations and either retained or acquired the ability to
self-renew, either through being a stem cell or through acquiring a
genetic or epigenetic self-renewal event.

As we were interested in the effects of the timing of pregnancy,
we considered the phenotypic alterations that occur in the breast
during pregnancy and as a result of pregnancy. For the purposes of
this simulation, we considered the 280-day period of time for the
pregnancy itself as the time period during which parameters are
altered by pregnancy. Evidence suggests that pregnancy results in
the differentiation of mammary epithelial cells (37, 38) as well as
their increased proliferation (19, 39). To model these effects, we
allowed further differentiation of progenitor cells during preg-
nancyby an additional zpreg differentiation levels and adecrease in
the cell-cycle length of stem cells (Fig. 2C). There is a 4.5- to 8.5-
fold increase in the number of Ki67þ cells during pregnancy (19,
39). Thus, we allowed a 4-fold to 8-fold increase in progenitor
cells during pregnancy, corresponding to zpreg ¼ 2 to 3. The
remaining approximately 1.1-fold increase in proliferation was
modeled as a decrease in stem cell cycle length, specifically a
change by a factor of apreg ¼ (1/1.1). Importantly, we considered
that pregnancy reduces the progenitor population in our model.
We simulated this change in population structure by decreasing
the rate of asymmetric division of stem cells giving rise to

progenitor cells by a factor of ppost,init after an initial pregnancy.
Our experiments suggested a 2- to 3-fold drop in p27þ expressing
progenitor cells, which suggests a value of ppost,init ¼ 0.5 (12).

We also modeled the effects of later pregnancies. In runs of the
model with more than one birth, we considered the effect of the
period of subsequent pregnancies to be the same as for the first
birth. That is, the number of levels in the differentiation hierarchy
of progenitor cells increases by zpreg levels, and the cell-cycle
length of stem cells decreases to tcycle,preg ¼ 147 hours. Regarding
the lasting effects of pregnancy on the structure of the breast
epithelium, we allowed for the possibility of a smaller decrease in
the probability of asymmetric stem cell division after later births
compared with the decrease after the first birth, and defined a
separate parameter, ppost,subs, for the decrease in asymmetric
divisions after subsequent births.

Our simulation spanned from menarche to death or initiation
of cancer within the duct. Our total simulation time was calcu-
lated from the average woman's life expectancy in the United
States, which was 81.2 years in 2014 (40), and the average age of
menarche, which ranged between 12.2 and 12.8 years of age for
different ethnic groups in 2007 (41). We used the mean age of
menarche between the groups, which was 12.5 years, and thus
resulted in a total of 68.7 years of simulation time.

The parameters in Supplementary Table S1 were set at fixed
values from the literature. Theparameters in Supplementary Table
S2 were set at values that fit to epidemiologic data, as described
below. We tested the robustness of the fit by varying each of these
parameters individually.

Results
We first investigated whether our model could quantitatively

match the epidemiologic data available on the protective effect of
early pregnancy on breast cancer risk, within the space of biolog-
ically plausible parameters. From the literature, a woman with
onebirth at age20has a cumulative relative risk of ERþ/PRþbreast
cancer of 0.88 [confidence interval (CI), 0.81–0.96] between the
ages of 30 and 70, compared with a nulliparous woman, whereas
a woman with four births at ages 20, 23, 26, and 29 has a
cumulative relative risk of 0.71 (CI, 0.60–0.84) over the same
age range (7). Tomatch these rates,we varied theprobability that a
progenitor cell acquires the ability to self-renew, gbase, and the
reduction of the size of the p27þ progenitor cell population after
the second pregnancy and later pregnancies, ppost,subs. We found
that with g ¼ 3.2 � 10�3 and ppost,subs ¼ ppost,init ¼ 0.5, the
modeled relative risks were within the CIs reported in the liter-
ature for these two data points, at 0.86 and 0.73, respectively (Fig.
3A). Due to binning ofmodeled incidence into annual groups, we
considered risk during the 40-year period from ages 30.5 to 70.5.
Note that there are likely other parameter settings that couldfit the
data, in addition to those that we used; the ones presented here
serve as an example of how ourmodel can explain the data, rather
than as an exact parameter estimation approach.

Using the fitted model, we first tested the effects of varying
model parameters in the nulliparous simulations to test the
behavior of the model. As expected, we found that the rate of
cancer initiation per duct was increased by increasing the
number of stem and progenitor cells per duct, the rate of
asymmetric stem cell division, the mutation rate, the proba-
bility of progenitor cells attaining self-renewal capacity, and the
fitness advantage of mutated progenitor cells compared with
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wild-type cells. By contrast, the rate of cancer initiation per duct
was increased by decreasing the number of mutations required
for cancer initiation. Also, as expected, changes in the prolif-
erative capacity of progenitor cells during pregnancy, and the
effects of subsequent pregnancies, have no effect in the nul-
liparous state (Fig. 3B and C).

We then tested the robustness of the fit of our model to the
result that early pregnancy protects against breast cancer in the
surrounding parameter space. We compared the relative likeli-
hood of cancer initiation with pregnancy occurring at 5-year

intervals during a woman's childbearing years as compared with
the nulliparous simulations. We tested for the effects of preg-
nancy occurring from the age of menarche until immediately
before menopause at the average age of 51.3 in 1998 (42). We
tested the effects of varying the simulation parameters indepen-
dently for each pregnancy age tpreg. All fixed value parameters are
listed in Supplementary Table S1, whereas Supplementary Table
S2 lists the values of all other parameters. We found that the
probability of cancer initiation in a duct increases as the age of
first pregnancy increases within the range of all simulated

Figure 3.

Model fitting and effect of parameter variation on cancer initiation in nulliparous simulations. A, Evolution of initiation-free ducts with age under the default
parameter settings for three birth scenarios (nulliparous, a single birth at age 20, and four births at ages 20, 23, 26, and 29). B, Effects of varying individual
parameters of the model on nulliparous cancer initiation. C, Evolution of initiation-free ducts with age under the nulliparous scenario for different settings
of the probability of asymmetric division (top), the mutation rate (middle), and the effect of mutation in progenitor cells (bottom). Default values were tcycle ¼ 162,
N ¼ 8, z ¼ 10, P ¼ 10�2, m ¼ 2 � 10�5, fmut ¼ 1.1, zmut ¼ 1, nmut ¼ 2, zpreg ¼ 2, rpost,subs ¼ 0.5.
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parameters (Fig. 4A). In addition, the average probability of
cancer initiation across birth ageswas lower than the nulliparous
risk for all parameter settings. Both of these effects were less
marked under parameter settings in which most of the cancers
resulted from the stem cells under the nulliparous scenario
(P ¼ < 4 � 10�4 Spearman's rank correlation coefficient, in
both cases). Indeed, the z¼ 6 setting had the highest proportion
of stem cell cancers under the nulliparous setting.

We also investigated the effects ofmultiple births on cancer risk.
We tested model runs with one, two, three, and four total births.

For each of these cases, we investigated varying the age atfirst birth
in 5-year intervals as above from the age ofmenarche to the age of
menopause, assuming that all subsequent births were distributed
evenly across the intervening years between the first birth and the
age of menopause. For all numbers of total births, risk increased
with increasing age atfirst birth. In addition, as expected, scenarios
with a larger total number of births were at a lower risk compared
with scenarios with fewer births (Fig. 4B).

We also tested for robustness of the quantitative fit to the two
data points considered. As expected, we found that for some

Figure 4.

Relative probability of cancer initiation per duct as compared with nulliparous simulations. A, Variation in cancer initiation relative to nulliparous for different
ages at first birth under default parameter settings (green lines), and when varying individual model parameters upward (red lines) or downward (blue lines).
Left to right from top left, effects of varying stem cell cycle time, number of stem cells, number of progenitors, probabilities of stem cell differentiation,
mutation rate, probability of progenitor cells attaining ability to self-renew, fitness effects of mutations, number of mutations required for cancer initiation,
and additional pregnancy divisions are shown. B, Variation in cancer initiation relative to nulliparous for different ages at first birth and different numbers of
total births.
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parameters, the decrease in risk in the two modeled scenarios
remained within the bounds of the CIs for all settings tested,
whereas for other parameters, there were some settings where
the risk decrease did not match the literature values (Supple-
mentary Fig. S1). In particular, the quantitative fit to both data
points was robust to changes in the cell-cycle time of stem cells,
the number of stem cells per duct, the fitness effects of muta-
tions in stem cells, the number of additional progenitor cell
divisions during pregnancy, and the reduction in numbers of
progenitors with subsequent births, within the range of values
tested. The quantitative fit was also robust to decrease in the
mutation rate in the range of values tested. Thus, our analysis
demonstrates that the hypothesis can explain these two
observed quantitative decreases in breast cancer risk, under
some, but not all, plausible biological settings. Our hypothesis
is thus one possible explanation for the observed protective
effect of parity. However, we cannot rule out other possible
explanations for the relatively limited amount of available data
on the quantitative risk reduction.

Another interesting result is the specificity of the effect of the
decrease in theprogenitor poolwithpregnancy todecrease the risk
of cancers initiating from the progenitor compartment. We noted
that the risk of cancers initiating from the progenitor cell com-
partment increased with age at first birth, whereas the risk of
cancers where the final mutation occurs in the stem cell compart-
ment showed a (smaller) decrease (P < 4 � 10�5 in both cases
under linear regression). Similarly, under the default parameter
settings, whereas the risk of cancers initiated from the progenitor
compartment was lower under all parous scenarios compared
with the nulliparous scenarios, the risk of cancers initiated from
the stem compartment was slightly higher under all parous
scenarios.

This result raises one possible explanation for the specificity of
the protective effect of early pregnancy to ERþ/PRþ cancer (7).
Mounting experimental evidence suggests that the typical cell of
origin of breast carcinomas is a stem or progenitor cell (43). The
specificity of the protective effects in ourmodel to a single cellular
compartment poses the question of whether other breast cancer
molecular subtypesmayhave adifferent cell of origin as a possible
explanation for the observed specificity of protective effects.
Relatedly it is also possible that changes during carcinogenesis
render other breast cancer subtypes insensitive tohormone-driven
growthor that someof themolecular parameters considered differ
between breast cancer subtypes. By the same token, our model is
agnostic on whether the pregnancy should protect against other
histologic breast cancer types, such as lobular cancers. Whether or
not protective effects would be expected for these subtypes
depend on the extent to which the etiology of these cancer types,
in terms of cell of origin and other molecular parameters, corre-
sponds to ERþ cancers.

As a further test of our framework, we investigated whether our
model reproduced the known effect that breast cancer risk is
increased for a short period immediately following pregnancy
(6). For these purposes, we investigated an extended model
including a variable delay between initiation of cancer within
the duct and clinical presentation. We investigated two scenarios,
first birth at age 20, and first birth at age 40, and calculated the
relative risk comparedwith nulliparouswomen ofmatched age in
the years following pregnancy for varying averagewaiting times to
clinical presentationbetween0 and5 years.We found thatwith an
average waiting time of 1 year, relative risk in both parous

scenarios was greater than one during the 2 years following the
pregnancy (Supplementary Fig. S2)

Discussion

Here, we investigated whether variation in the size of the
progenitor cell population is sufficient to explain the protective
effects of pregnancy.We used a simplemathematicalmodel of the
steps leading to cancer initiation, which included both stem cells
and progenitor cells. We found that within the range of biolog-
ically plausible parameters, our model matches the observed
decrease in ERþ/PRþ cancer risk for a woman with a birth at age
20 and a woman with four births in her 20s compared with a
nulliparous woman. Using these parameter settings, we found
that the risk of cancer in our model decreased with increasing age
of first birth in scenarios with one birth. Moreover, the risk of
cancerwas lower in all scenarioswithonebirth comparedwith the
nulliparous case. This behavior was robust to variation in key
model parameters. The ability of our model to robustly recreate
the effect on cancer risk when varying the progenitor population
sizewith pregnancy is striking given themodeled assumption that
progenitor cells terminally differentiate after a finite number of
divisions, so thatmutations arising in progenitor cells are liable to
leave the population without any functional impact. Taken
together, these results support the hypothesis that a subset of
p27þ cells represents quiescent hormone-responsive luminal
progenitor cells with proliferative potential.

Our mathematical modeling approach for breast cancer can
be useful in understanding the contribution of unavoidable
bad luck to cancer risk. We have presented evidence that, in the
setting of breast cancer, the size of a sub-population of
progenitor cells may vary safely over the course of a life to
alter breast cancer risk, independent of the probability of
mutations. Although it is possible that the mechanisms
explored here are specific to the breast cancer setting, our
results highlight the possibility that extrinsic factors can inter-
act with molecular parameters to affect cancer risk in ways that
are not yet fully mapped out. These results therefore further
motivate the use of complementary approaches to assess the
contribution of bad luck to cancer risk that do not rely on
strong assumptions about the effects of extrinsic factors, which
may still be subject to revision. The modeling approach
developed here is one such possible complementary approach.
Therefore, the main implications of our study are support for a
mechanism in the breast cancer setting, with potential impli-
cations for other cancers with an important role for hormone-
driven growth, including endometrial and ovarian cancers.
And, in addition, the current approach may be usefully applied
in a range of cancer types.

In conclusion, our results demonstrate that variation in the size
of the pool of progenitor cells with proliferative potential is
capable of explaining the protective effect of early pregnancy
against breast cancer. We obtained good agreement between our
simple model's predictions and specific epidemiological data
points within the range of plausible parameters. Intense recent
debate, prompted by the work of Tomasetti and Vogelstein (1),
has indicated the limits of regression techniques for determining
the ultimate contribution of bad luck to cancer incidence. Con-
tinuing improvements in our mechanistic understanding of the
etiology of different cancers can help elucidate the contribution of
bad luck to cancer risk and the limits of cancer prevention
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strategies. Given the complexity of the molecular setting in which
cancer develops, mathematical models can be a useful tool in
developing such a mechanistic understanding. Our work has
developed this approach for the case of breast cancer to provide
evidence for a possiblemechanism for the protective effect of early
pregnancy against the disease.
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