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Abstract
The appearance of metastases is an ominous sign in the natural history of any 

malignant tumor. Their presence implies a high tumor burden and greatly decreases the 
probability of a cure. Metastasis development requires the evolution of tumor cells that 
can survive in an environment that is normally not supportive to their growth and such 
cells must leave the tumor to establish tumor niches elsewhere. The interactions between 
the appearance of cells with metastatic ability in the primary tumor and their exit from 
the tumor lead to complex dynamics that can be either beneficial or detrimental to the 
tumor. We develop a simple mathematical model to illustrate how the interplay between 
mutation rate and export probability affects the intratumoral dynamics of metastasis‑ 
enabled cells and the rate of metastases formation.

Introduction
Cancer is a leading cause of morbidity and mortality in many countries. With the 

exception of most hematopoietic neoplasms that are by definition diffuse diseases from 
the time of diagnosis, solid tumors in general start at one particular site (primary tumor). 
The tumor can cause symptoms due to localized growth but often it is clinically silent and 
discovered due to metastatic spread. With the development of metastases, the potential for 
cure, with rare exceptions (e.g., germ cell tumors, ref. 1), is greatly diminished and most 
patients die relatively rapidly from progressive disease.2 Even in the absence of clinically 
or pathologically overt metastases at diagnosis, patients often develop metastatic disease, 
leading to the concept of micro‑metastases that are too small to be detected by current 
diagnostic technologies.3,4 Therefore, patients are often given adjuvant therapy after cura-
tive surgery to minimize the risk of loco-regional recurrence as well as metastatic disease. 
The efficacy of this approach has been well documented with breast,5 colon6 and lung 
carcinoma.7

Although there is a trend for a higher risk of metastases as the size of the primary tumor 
increases, this is not always the case. Indeed, the concept of unknown primary in the  
presence of diffuse metastases is well known.8,9 Moreover, the kinetics of the development 
of metastatic disease is highly variable.10,11 Various theories have been proposed to explain 
this behavior including tumor cell dormancy,12 inhibition of angiogenesis13 and interactions 
with the immune system.14

Mathematical models have enhanced our understanding of tumor dynamics and 
metastases formation and suggest ways to optimize therapy. The fractal heterogeneity of 
blood flow has been implicated as a determining factor in the distribution of metastases.15 
In breast cancer, modeling of the number of involved axillary lymph nodes can estimate 
the risk of metastases and prognosis.16,17 The interaction between tumor cells and their 
surrounding stroma describes four broad behaviors observed in tumors, namely latency, 
complete regression, indefinite growth and metastases formation.18 A model of prostate 
cancer suggests that the presence of diffuse metastases is related to an aggressive primary 
tumor more than to the infiltration of loco-regional lymph node at the time of diagnosis, 
implying that aggressive local control could decrease the incidence of metastases.19 These 
reports are part of an increasing body of literature that addresses the quantitative and 
kinetic aspects of carcinogenesis.20‑32

Cells that undergo mitosis acquire novel mutations, some of which may lead to the 
acquisition of the metastatic phenotype.33 Such a phenotype is a property of a given 
tumor cell, but the tumor is composed of a heterogeneous population of cells,33 and 
the evolution of the whole population has to be studied. Indeed, the tumor need not be 
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homogenous for metastatic cells to leave the primary site and seed 
additional niches.33 In this report, we explore mathematical models 
of metastasis development that consider coupling between acquisi-
tion of the metastatic phenotype with a finite probability that the 
daughter cell will exit the primary tumor. Tumor cells with metastatic 
potential leave the primary tumor at a rapid rate but form viable 
metastases inefficiently.34 Our models include a mechanism for cells 
to leave the primary tumor site and attempt to form metastasis else-
where. For the sake of simplicity, we initially assume that the tumor 
cell population tends to remain constant. This scenario describes 
situations where tumor cells have reached a constant abundance 
and need to accumulate further mutations to initiate the next wave 
of clonal expansion. Subsequently, we explore models where the 
tumor cell population grows exponentially. We obtain rich dynamics 
resulting from the interplay between the rate of cell replication and 
the probability of tumor cells to leave the tumor after acquiring the 
metastatic phenotype. This paper represents an extension of earlier 
work on the dynamics of metastasis‑enabled cells in a population of 
constant size.35,36

Materials and Methods
Models. Consider a population of N tumor cells proliferating 

according to a stochastic process. Tumor cells have a given fitness 
rT (without loss of generality, we set rT = 1). A cell mutated with 
respect to the metastasis‑enabling gene has fitness r and we assume 
that initially all tumor cells are wild type ‑ they have not yet evolved 
metastatic ability. At each elementary time step, one tumor cell is 
randomly chosen for replication proportional to its fitness, producing 
a daughter cell (birth event). At every replication, a cell undergoes a 
mutation with probability m;33,37 this mutation enables it to metas-
tasize and confers to it a relative fitness r. If r = 1, the mutation is 
neutral and the mutant cell has the same net reproductive rate as 
nonmutated cells. When r > 1, the mutant has a fitness advantage 
and if r < 1, the mutant is at a disadvantage compared to nonmutated 
cells. Simultaneously, a cell may be chosen for death with uniform 

probability (death event). When this happens, the population 
remains constant. In these models we neglect back‑mutation.

After N replication/death events, the population has undergone 
a typical generation, which is (inversely) proportional to the rate of 
cell replication. This naturally sets the time scale of our evolutionary 
dynamics: we measure the time in generations. Furthermore, tumor 
cells which have acquired the metastatic phenotype via mutation 
may leave the tumor to form metastases elsewhere. We model this 
as a stochastic process, attributing to this cell type a probability q 
to leave the tumor (export event), once selected for replication. We 
discuss two different models, which describe tumor dynamics at 
different levels of complexity, via the interplay between birth, death 
and export events.

Model A—Constant tumor size. This model combines birth, 
death and export events while maintaining the total tumor popula-
tion size at N = constant. At a given time t, there are M < N mutated 
cells. Then, the probability of choosing a mutated cell for reproduc-
tion is given by

 
whereas the probability to select a normal cell for replication is pN 
= 1 ‑ pM. The stochastic dynamics always starts with a birth event, 
leading to the replication of the chosen cell. If the chosen cell is a 
normal tumor cell, with probability m the daughter cell acquires 
a metastasis enabling mutation. If the chosen cell is a metastasis 
enabled cell, a new daughter cell of the same type is produced, and 
two scenarios are possible (Fig. 1): with probability q the daughter 
cell is exported such that it attempts to establish a metastasis else-
where and, with probability (1 ‑ q), the daughter cell stays within the 

1Since the mutation probability m is much smaller than one, this model leads to the same 
results as a model in which the export event is not linked to the birth event, but instead, 
is integrated in the death event. In such a case, cells should not be selected for death 
with uniform probability; instead, a metastasis enabled cell should be chosen for death 
with probability pd = (1 + q)M/[(1 ‑ q)M + 1(N ‑ M)], being subsequently exported 
with probability q.

Figure 1. Model A: Stochastic model of tumor cell dynamics. At any given time, we consider two types of cells in the tumor: normal tumor cells (circles) and 
tumor cells which acquired metastatic ability via mutation (hexagons). The mutation probability is m per replication event. Normal tumor cells have relative 
fitness 1, while metastases enabled cells have fitness r. At each step, a cell is chosen for replication proportional to fitness. If the chosen cell is of normal 
type, it will produce offspring which will replace a randomly chosen cell that dies. If the chosen cell is of mutated type, then with probability q one cell will 
leave the tumor to form metastases elsewhere whereas with probability (1 ‑ q) it will remain in the tumor. In the latter case, it replaces a randomly chosen 
cell that dies. The total number of cells in the tumor remains strictly constant at all times.
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tumor. If no export takes place, then a death event follows, such that 
the overall population size remains strictly constant.1

Model B—A growing tumor. Tumor development is associated 
with an increase in the number of tumor cells. We model this process 
by introducing exponential expansion of the primary tumor in the 
previous model, calling this model B. At every step, a birth event 
takes place with probability b and a cell death event with probability 
d. The same birth and death events as in model A are used but since 
their occurrence is stochastic with b > d, the number of cells is not 
conserved and the tumor grows. Since the dynamics are intrinsi-
cally stochastic, extinction of the tumor is possible during the initial 
stages of tumor growth. (For the purposes of the model, we discard 
the results associated with stochastic extinction, and carry out 1000 
simulations for each set of parameters. We maintain the mutation 
rate at m = 10‑3, and study the evolution of the tumor population up 
to a threshold value of Nthreshold = 107.

Results
Model A—Stationary tumor. Whenever q = 0, model A maps 

into the branching process studied by Michor et al.35 In such a case, 
cells that acquire metastatic capacity will always contribute to increase  
the fraction of mutated cells in the primary tumor population,  

facilitating their subsequent growth.35 For  
positive q, however, cells may leave the tumor 
and thus reduce the fraction of mutated cells 
in the tumor. As a result, there is a reduction 
in their growth efficiency compared to the q = 
0 limit. We tested different tumor population 
sizes, and for N ≥ 103 we find that the dynam-
ical behavior of the model becomes qualitatively 
independent of N. In the following, we present 
results for a population size of N = 104. For 
this population size, a mutation probability of 
m = 10‑3 per replication leads to a dynamical 
evolution which converges to a stationary 
regime in a number of generations which is of 
the order of the population size. This muta-
tion probability is considered in the context 
of genomic instability, that is normally present 
with advanced tumors.38 A lower mutation 
probability slows the process, whereas a higher 
mutation probability will increase the rate of 
approach to the stationary state (see below). 
In Figure 2, we plot the fraction of metastasis 
enabled cells which remain in the tumor as a 
function of time. We compute this fraction for 
two values of the export probability q: q = 0.0 
(dashed line) and q = 0.01 (solid line). With 
this set of parameters, we have values similar to 
those estimated for the B16F1 melanoma cell 
line which induces metastases at a rate of 5 x 
10‑5/cell replication.39

The results presented provide novel insight 
into the role played by the relative fitness r on 
the overall dynamics of metastasis formation. 
For the selected values of N, m and q a nonzero 
export probability has the highest impact for 
neutral mutations, where the expansion of 
mutated cells is clearly hindered and reaches a 

stationary value at approximately 10%, compared to the q = 0 limit 
where fixation of mutated cells occurs.

The results shown in Figure 2 suggest that, for a given relative 
fitness, there is a critical value of the export probability (qcritical) 
above which the fraction of mutated cells inside the tumor no longer 
increases. For export probabilities satisfying q > qcritical, the tumor 
population does not evolve anymore into the only absorbing state of 
this model, where metastasis enabled cells invade the entire tumor. 
Instead, it may become “trapped” (in the sense of spending an  
arbitrarily long amount of time) in a quasi‑stationary regime, where 
the probability to increase the number of mutated cells by selection 
and replication is balanced by the probability of exporting that 
same type of cells. In the appendix we develop an analytical model 
to characterize the quasi‑stationary regime. In particular, we obtain 
qcritical = 1‑(1‑m)/r such that, whenever q > qcritical, the fraction m of 
metastasis‑enabled cells is given by m = m/[1 ‑ r(1 ‑ q)]. As a result, 
metastasis enabling mutations associated with large export probabili-
ties may be detrimental to the expansion of these cells in the tumor, 
and inhibit the metastatic efficiency of the tumor. Note that for m << 
1, we have qcritical << 1 ‑ 1/r, which is independent of population size 
and mutation probability.

The previous results demonstrate that metastatic cells with a  
fitness advantage do not necessarily lead to a homogeneous tumor 

Figure 2. Model A: The fraction of metastasis enabled cells in the primary tumor is plotted as a func‑
tion of evolutionary time in generations (one generation is the time required for N cells to replicate 
‑ in other words, 1 generation is the inverse of cell replication rate). In each panel two lines are 
drawn: the dashed line corresponds to the limit q = 0 whereas the solid line corresponds to the case 
when q = 0.01. The left panel illustrates the evolutionary regime whenever metastasis enabled cells 
are disadvantageous mutants with relative fitness r = 0.8. The central panel displays the dynamics 
for neutral mutants (r = 1.0) whereas the right panel shows the dynamics for advantageous mutants 
(r = 1.2). Population size is N = 104 and mutation probability is m = 10‑3 per replication. The effect 
of a finite export probability is most pronounced for neutral mutations, where the fraction of mutated 
cells is clearly hindered reaching a quasi‑stationary regime at approximately 10%, as opposed to 
the q = 0 limit where fixation of mutated cells occurs. For mutations conferring a fitness advantage 
to the metastatic cells, the results indicate that the dynamics are not significantly altered (cf. main 
text for details).
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population constantly exporting metastasis‑ 
enabled cells. On the contrary, if the export prob-
ability is sufficiently high, the tumor will be able 
to export metastatic cells at a rate which ulti-
mately reflects more the intrinsic mutation rate 
than the intrinsic fitness advantage of the mutated 
tumor cells. This is shown in Figure 3, where we 
plot both the fraction of mutated cells and the 
rate of cell export as a function of q (cf. appendix). 
Since m << 1, for r < 1 we have qcritical = 0, whereas 
for r = 1, qcritical = m, such that only for r > 1 does 
qcritical deviate significantly from 0. Clearly, for r > 
1 the behavior changes dramatically for values of 
q below and above qcritical. In particular, the export 
rate reaches a maximum at qcritical, followed by a 
sharp decline, which clearly illustrates the detri-
mental effect of high export probabilities on the 
overall efficiency of tumor metastasis formation. 
For r = 1 the stationary fraction of mutated cells 
rapidly declines with increasing m, whereas for r < 
1 both the stationary fraction and the export rate 
remain small for any nonzero value of q.

Model B—Growing tumor. The dynamics 
of a growing tumor is characterized by an expo-
nential increase in the total number of cells. 
Export of cells becomes possible once the first 
mutation takes place. If we compute the frac-
tion of mutated cells, m = M/N, as a function of 
time, different individual simulations may exhibit 
distinct patterns mainly due to the stochas-
ticity of occurrence of mutations. Nonetheless, even when the 
population is growing, a dynamic quasi‑stationary distribution 
is reached for given values of m and q. This happens if stochastic  
fluctuations are small, an expected feature when the total number of 
cells is already large. As discussed in detail in the appendix, the frac-
tion m of metastasis‑enabled cells in this quasi‑stationary regime is 
given by the same equation of model A: m = m/[1‑r(1‑q)] whenever 

q > qcritical, where qcritical is again given by qcritical << 1‑1/r (m << 1, cf. 
appendix). Note, however, that in this case the absolute numbers of 
both mutated and nonmutated cells are growing over time. In Figures 
4–6, we show the results for scenarios where the relative fitness ranges 
from r = 0.8 to 1.2. Contrary to (Fig. 2), we now choose export 
probabilities satisfying q > qcritical in all cases (q = 0.1 for r = 0.8 
and 1.0 and q = 0.2 for r = 1.2). Because we use a logarithmic scale 

Figure 3. Model A: Upper panel: The fraction of 
metastasis enabled cells in the primary tumor is plot‑
ted as a function of the export probability q after 
the quasi‑stationary regime defined in the main text 
has been reached. Lower panel: the rate of export of 
metastasis‑enabled cells originating from the main tumor 
is plotted as a function of q after the quasi‑stationary 
regime has been reached. Since m << 1, qcritical = 0 
for r < 1, qcritical ~~ m (r = 1) and qcritical << 1 ‑ 1 / r for  
r > 1. The three lines shown in each panel correspond 
to three different values of r: r = 0.8 (dotted red lines), 
r = 1 (dashed black lines) and r = 1.2 (solid blue lines). 
When r = 1.2 the behavior changes dramatically 
between q values below and above qcritical. Below qcriti-
cal, metastasis enabled cells invade the entire tumor and 
the export rate grows linearly with q. Above qcritical, a 
sharp decline with q is observed for both quantities. 
For r = 1 the stationary fraction of mutated cells rapidly 
declines with increasing m, whereas for r < 1 both the 
stationary fraction and the export rate remain small for 
any nonzero value of q.

Figure 4. Model B: Dynamics of metastasis formation for a growing tumor, for r = 0.8, starting 
from a single nonmutated cell (mutation rate m = 0.001). We plot, on a logarithmic scale, the 
total number of nonmutated tumor cells (orange solid circles), mutated cells (red solid squares), 
their sum (blue open squares) and the total number of exported cells (green stars). Tumor growth 
is stopped when Ntheshold = 107 is reached, and the figure shows the last 75 generations of tumor 
growth, where the exponential growth is associated with straight lines. Most cells in the tumor are 
nonmutated tumor cells, and an export probability of q = 0.1 mostly contributes to depleting the 
tumor from mutated cells. Parameter values are b = 0.7 and d = 0.5, and results correspond to 
an average over 1000 simulations for each set of parameters.
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for the number of cells, straight lines indicate exponential growth. 
The results correspond to an average over 1000 simulations carried 
out for each combination of parameters. Tumor growth is stopped 
when Nthreshold = 107 tumor cells are reached and the plots show the 
dynamics associated with the last 75 generations. For r = 0.8 (Fig. 4), 
the tumor is mainly composed of nonmutated cells, and an export 
probability of q = 0.1 serves to deplete the tumor of mutated cells. 
For r = 1.0 (Fig. 5), a value of q = 0.1 leads to the quasi‑stationary 
regime predicted by the analytical model, which means that the 
straight lines associated with total and mutated cells are parallel. 

An interesting dynamics occurs for r =1.2 and q 
= 0.2 (cf. Fig. 6): clearly, mutated cells quickly 
invade most of the tumor in the initial phase. As 
Nthreshold is reached, the number of mutated cells 
starts approaching the predicted quasi‑stationary 
regime of m = 0.025. Again, for q > qcritical the 
export probability is detrimental to the expan-
sion of metastasis‑enabled cells inside the original 
tumor. Note that, in spite of the similarity in the 
characterization of the quasi‑stationary regimes 
in both static and growing tumors, the detailed 
dynamics are very different, as well as the overall 
number of exported cells. Indeed, growing tumors 
have a much higher potential of inducing dire 
consequences in the patient.

Discussion
The development of tumor metastases is a 

complex biological process and both tumor and 
host‑specific genetic factors play a determining role 
in their origins.40-42 Acquisition of the ‘metastatic 
phenotype’ implies that tumor cells must detach 
from the local tumor extracellular matrix and avoid 
anoikis, enter into either draining lymphatic chan-
nels or veins, and after surviving the trip leave the 
circulation to establish a niche in an environment 
that normally does not support their growth.40,42 
Recently, this process has been shown to require 
the recruitment of bone marrow derived cells that 
establish the new niche for tumor cells to develop a 
metastasis.43 Tumors shed cells in the circulation at 
a rapid rate but metastases formation is inefficient 
due to the complex interplay of factors necessary 
for the establishment of the metastastic niche.34,44 
Although carcinogenesis is a multi‑step process 
that requires the interaction of many mutations, 
isolated mutations activating MYC or RAS45 allow 
cells to develop metastases in experimental models. 
In addition, inactivation of an ever increasing list 
of “metastases suppressor genes” (MSG) also facili-
tates this process.46‑48 The rate of tumor growth 

is related to both the proliferation and death rate of cells and the 
probability of cells to leave the primary tumor site. The interplay of 
these parameters determines the phenotypic behavior of tumors and 
explains the wide heterogeneity that is seen within tumors of the 
same tissue origin in different patients.

In this report, we studied the intra‑tumor evolution of cells that 
acquire the ability to metastasize due to mutation coupled with a 
finite probability for mutated cells to be exported.34 In the context of 
either a stationary tumor population or tumor growth, export proba-
bility and relative fitness of the mutated cells both play a determining 

Figure 5. Model B: Dynamics of metastasis formation 
for a growing tumor, for r = 1.0, starting from a single 
nonmutated cell (mutation rate m = 0.001). We use same 
notation and parameter values as in Figure 4. For r = 
1.0, a value of q = 0.1 leads to the quasi‑stationary 
regime predicted by the analytical model, which means 
that the straight lines associated with total and mutated 
cells are parallel.

Figure 6. Model B: Dynamics of metastasis formation for a growing tumor, for r = 1.2, starting 
from a single nonmutated cell (mutation rate m = 0.001). We use same notation and parameter 
values as in Figure 4. The most interesting dynamics occurs for r = 1.2 and q = 0.2: Clearly, 
mutated cells quickly invade most of the tumor. However, because q > qcritical, normal cells 
ultimately take over most of the tumor. Note the upward turning of both mutated and exported 
cells, indicating an approach to the predicted quasi‑stationary regime.
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role in the evolutionary trajectory of the mutated cell population 
within the tumor. A key determinant of the outcome is the relative 
fitness, r, of mutated cells compared to nonmutated tumor cells. 
Although neutral mutants (r = 1) may ultimately dominate the tumor 
population, fixation is unlikely for mutants with reduced fitness  
(r ≤ 1) and at any time, the mutant cells represent a small fraction of 
the whole population.35 A nonzero export probability (q > 0) in the 
absence of tumor growth decreases even further the small size of the 
mutated population. This also has a negative impact on the absolute 
number of cells exported from the tumor since their generation 
is mainly due to mutation and not expansion within the primary 
tumor. However, when the tumor grows exponentially, the popula-
tion of mutated cells will increase despite both a fitness disadvantage 
and a nonzero export probability. As expected, any mutation that 
increases the fitness of cells, even in the presence of a nonzero export 
probability, results in population growth with an increase in absolute 
cell export. If the export probability is sufficiently high, this process 
may ultimately prove detrimental for the expansion of mutated cells 
in the primary tumor. As shown in Figures 4–6, the negative effect 
of a high export probability can be offset by a higher fitness of the 
mutants since they will be selected for replication more often. If 
the probability for initiation of metastases elsewhere is small, then 
a high q may decrease the net development of metastases unless the 
primary tumor is growing. In such a scenario, the mutation rate also 
becomes important and for a given fitness, a higher mutation rate 
is of benefit to the tumor since it increases the rate of generation of 
cells with the metastatic phenotype although at the potential cost of 
accumulating deleterious mutations. Current thinking assumes that 
most tumors are composed of a homogenous population of cells.49 
This concept may be true in the presence of mutants that have either 
neutral fitness or a higher fitness compared to the rest of the tumor 
since the mutants will ultimately take over the population. However, 
in the presence of a nonzero export probability, clonal dominance by 
the mutants need not occur, favoring more heterogeneous tumor cell 
populations in agreement with other observations.10,50 Our model 
is also compatible with observations from colorectal and urothelial 
cancer.51,52 In both types of tumor, it has been shown that metastases 
enabled cells are part of a subclone within the primary tumor and 
support our model whereby cells that acquire metastatic ability can 
expand within the primary tumor or exit to form metastases.

Our modeling suggests that tumors can be divided into two broad 
categories: (i) In some tumors, almost all the cells have acquired 
the metastatic phenotype and are able to leave the primary site 
and develop metastases elsewhere. These tumors have mutations in 
genes such as c‑myc or ras that give mutant cells both a proliferative 
advantage in the primary tumor (r > 1) and the ability to form metas-
tases.45 (ii) Other tumors only have a small population of cells with 
metastatic ability. These tumor cells have mutations in MSG that do 
not give the cells a selective advantage within the environment of the 
primary tumor.47 The population of cells with mutations in MSG 
are very sensitive to the export probability since they have a small 
qcritical whereas tumor cells with mutations in genes such as myc and 
ras will have a higher qcritical due to their selective advantage within 
the primary tumor itself.

In our previous model, where net cell export was not considered 
at par with the tumor stochastic dynamics, the presence of a higher 
fitness would ultimately lead to fixation of the mutant population 
within the primary tumor.35 However, when mutated cells have a 
nonzero probability of leaving the tumor, and this feature is included 
simultaneously with tumor evolutionary dynamics, the trajectory of 

the mutated cells need not always lead to fixation, even when they 
have a higher fitness. Indeed, a high export probability may deplete 
the primary tumor of cells with the metastatic phenotype and so 
lower the probability of metastasis formation compared to a tumor 
with a lower q.

The rich plethora of scenarios emerging from the detailed inter-
play between r, m and q in our current model can explain the presence 
of diffuse metastatic disease in the absence of a firm diagnosis of a 
primary tumor. Indeed, the primary tumor may be sufficiently small 
to evade detection with available technologies and at autopsy. In a 
tumor with a low net intrinsic growth rate but high mutation rate, 
the probability of the acquisition of the metastatic phenotype can be 
high. For such a tumor, a high export probability may lead to a small, 
perhaps undetectable, primary tumor but with many metastases. An 
open and challenging problem relies on incorporating the stochastic 
dynamics of metastatic niche formation.

In summary, the dynamic interactions between mutation rate, 
relative fitness of mutants and export probability all contribute 
to determine the rate of metastases formation in cancer. For any 
tumor, there is an optimal combination where the potential for the 
emergence of metastases is highest. Although a very high export 
probability may increase the rate of metastases formation originating 
from a tumor of constant size, such a high rate may be detrimental 
even for a tumor exhibiting exponential growth, since it will deplete 
the tumor of cells that otherwise would be selected to divide and 
contribute to the growth of the tumor. Our model implies that there 
is a nonlinear relationship between mutation rate, metastatic pheno-
type, export probability and tumor growth rate. These interactions 
explain the wide biological heterogeneity seen within tumors even 
when arising within the same tissue.
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Appendix

Model A. Let us consider a constant population of N tumor cells, 
in which M ≤ N cells exhibit the metastatic phenotype. We describe 
the state of the system in terms of the number of mutated cells, M. 
According to the model, the probability p+

M that M increases can be 
written as

 
where

is the probability to select a mutated cell proportional to fitness. 
Probability p+

M is the sum of two terms: the first term corresponds 
to the probability of selecting a mutated cell, times the probability 
that this cell is not exported (1 ‑ q), times the probability that the cell 
chosen for death is a normal cell. The second term corresponds to 
the probability that a normal cell is selected for replication, times the 
probability it mutates, times the probability that (again) a normal cell 
is selected for death. These are the only two processes which lead to 
an increase from M to M + 1 mutated cells.

The probability p-
M that the number of mutated cell decreases by 

one is given by

Indeed, this is simply the product of the probability that a normal 
cell is chosen for replication times the probability that it does not 
mutate, times the probability that a mutated cell is chosen for 
death.

The state in which all cells are finally mutated is the only absorbing 
state of this Markov process. However, for large N, it is possible 
that the system gets trapped into a quasi‑stationary state (which is 
different from the absorbing state), in the sense that the system may 
spend an extremely long time in the vicinity of this state (in fact, it 
can be shown that this time increases roughly exponentially with the 
population size).53 In other words, the system may behave as if it has 
reached a stationary state. This state is characterized by both prob-
abilities p+

M and p-
M being equal. Whenever p+

M = p-
M we obtain 

the fraction of mutants m = M / N in the population characterizing 
this quasi‑stationary regime
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where qcritical = 1 ‑ (1 ‑ m)/ r. From these expressions we can also 
calculate another threshold value of the export probability, q½ = 1 
‑ (1 ‑ 2m)/r above which the number of mutated cells stops exceeding 
that of normal cells.

We can also determine the rate of export of mutated cells from 
the system. Initially, there is a (short) transient state until the popula-
tion reaches the quasi‑stationary regime. Subsequently, the number 
of mutated cells exported, Nq, is proportional to time: Nq = NRMt, 
where RM is the export rate of mutated cells and t is measured in 
generations. Since the probability that a mutant leaves the system in 
one elementary time step is qpM, from the quasi stationary density m 
we arrive at the following expression for RM

The rate is maximal at q = qcritical. The behavior of both m and RM 
is shown in (Fig. 3).

Model B. Model B assumes tumor growth. Birth events occur 
with a probability b whereas death events occur with a probability 
d, and when b > d the tumor grows. Starting from a single cell, the 
stochastic nature of the dynamics may lead to extinction of the tumor. 
Discarding these events and when the total number of cells N (now 
a function of time) becomes sufficiently large, we may approximate 
the stochastic dynamics by deterministic dynamics. The continuous 
equations determining the dynamics of the expected values of normal 
and mutated cells are given by

The rate of change is the balance between a growing term propor-
tional to b and a decreasing term proportional to d. The growing 
term has exactly the same form as model A except for the (N ‑ M) / 
N term associated (in model A) with the death of normal cells. The 
decreasing term reflects the death of mutated cells, which is propor-
tional (with uniform probability) to the fraction of mutated cells in 
the population at time t.

The second equation similarly governs the net growth of the 
population size, N, as a balance between growth of normal cells 
(proportional to b), the decrease due to cell death (proportional to 
d) and the decrease due to the export of mutated cells, once selected 
for replication during a birth event. The N factor in both equations 
renders the time in generations.

The equation governing the dynamics of the density of mutated 
cells m = M / N as a function of time is given by

Note that the equation above does not depend on the death rate, 
as death events do not discriminate between normal and mutant 
cells. The equation above shows that, if mutants invade the entire 
tumor (m = 1), then the absorbing state has been reached in which 
all tumor cells are metastasis enabled. Also when m = 0, the density of 
mutants will grow: dm / dt = bm/N > 0. Similar to the case discussed 
in model A, there is a stable fixed point m at which dm / dt = 0, that 

is, the density will remain constant (at this level of approximation). 
This point is precisely given by the same equation for m derived 
before, for a critical export probability qcritical satisfying also the same 
equation as in model A. Note however, that unlike in model A, the 
population is growing in model B: At the fixed point the ratio M / 
N remains (approximately) constant, although both numbers grow 
in absolute value.
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