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SUMMARY
To understand the relationships between the non-GCIMP glioblastoma (GBM) subgroups, we performed
mathematical modeling to predict the temporal sequence of driver events during tumorigenesis. The most
common order of evolutionary events is 1) chromosome (chr) 7 gain and chr10 loss, followed by 2) CDKN2A
loss and/or TP53mutation, and 3) alterations canonical for specific subtypes. We then developed a compu-
tational methodology to identify drivers of broad copy number changes, identifying PDGFA (chr7) and PTEN
(chr10) as driving initial nondisjunction events. These predictions were validated using mouse modeling,
showing that PDGFA is sufficient to induce proneural-like gliomas and that additional NF1 loss converts pro-
neural to the mesenchymal subtype. Our findings suggest that most non-GCIMP mesenchymal GBMs arise
as, and evolve from, a proneural-like precursor.
INTRODUCTION

Glioblastomas (GBMs) are the most common and malignant

CNS neoplasms and arise initially as grade 4 tumors (primary

GBM) or evolve from lower-grade gliomas (secondary GBM).

Deep molecular analyses of primary GBMs have divided them

into four classes: proneural (PN), mesenchymal (MES), classical

(CL), and neural (NL) (Brennan et al., 2009; Phillips et al., 2006;

Verhaak et al., 2010). However, in some cases, the division is

blurred in that a sample might show patterns of more than one

subtype (Brennan et al., 2009; Phillips et al., 2006; Sottoriva

et al., 2013; Verhaak et al., 2010). These subclasses can be asso-
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ciated with canonical mutations such as PDGFRA amplification

in PN GBM, loss of NF1 in MES GBM, and amplification of

EGFR in CL GBM. In the case of NL GBMs, particular molecular

abnormalities remain unidentified.

One of the best-studied GBM subclasses is PN GBM, some

of which carrying mutant IDH1 or IDH2 and have the

methylator phenotype denoted by glioma-CpG island methyl-

ator phenotype (GCIMP) (Noushmehr et al., 2010). Although

the transcriptomal patterns for GCIMP tumors resemble those

of the other PN GBMs (non-GCIMP), their biology is sig-

nificantly different in that the GCIMP GBMs display global hy-

permethylation of CpG islands, characteristic copy number
four classes, but the relationship between these subtypes is
al analyses of human GBM data with mouse modeling and
ic alterations driven partly by increased PDGFA expression
that is lethal and proneural in character. The acquisition of
DGFRA amplification or NF1 loss is achieved late in GBM
ry of GBMs and therapeutic strategies targeting these late
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alterations, and prolonged patient survival, suggesting that

these tumors represent high-grade versions of grade 2 and 3

diffuse gliomas, which are commonly GCIMP and, thus, repre-

sent secondary GBMs (Noushmehr et al., 2010; Ohgaki and

Kleihues, 2013).

The existence of different GBM subtypes raises questions

regarding their natural history and the temporal sequence in

which individual alterations arise (Bhat et al., 2013; Phillips

et al., 2006; Sottoriva et al., 2013). Furthermore, it is unclear

whether these subgroups are fundamentally different tumors

from their inception or whether they evolve from a common gli-

oma precursor. Given the evidence of spontaneous conversion

of human PN to MES tumors and observed subtype mosaicism

within the same tumor (Phillips et al., 2006; Sottoriva et al.,

2013), the GBM subtypes might be directionally variable from

one subtype to another. Finally, it remains unclear whether the

existence of subgroups has therapeutic implications (Bhat

et al., 2013). For example, the subtype-defining mutations may

be promising therapeutic targets if they represent initiating ge-

netic events in glioma evolution, but their inhibition would likely

not provide a lasting therapeutic benefit if they represent late

events.

Chromosome instability is common in human cancers. It is

characterized by widespread chromosome (chr) copy number

changes, such as gain or loss of whole chr or fractions thereof

(Lengauer et al., 1998). Gain of chr7 as well as loss of chr10

and parts of chr9 are very frequent in gliomas. Alteration of

chr7 frequently includes focal amplification of the EGFR locus

(The Cancer Genome Atlas Research Network, 2008). Neverthe-

less, forced expression of the wild-type epidermal growth factor

receptor (EGFR) or the constitutively active EGFRvIII mutant

alone does not form gliomas in mice (Holland et al., 1998; Zhu

et al., 2009), suggesting that EGFR might not be an initiator of

this tumor type.

Genome-wide high throughput sequencing efforts have led to

the identification of many genomic alterations in cancer ge-

nomes, but it remains a challenge to identify genuine driver

genes from the many genes located within a large chromosomal

event. Here we utilized a combined computational and experi-

mental approach to investigate the natural history of human

non-GCIMP GBMs.

RESULTS

We first utilized genomic data from The Cancer Genome Atlas

(TCGA) to investigate the frequencies and types of genomic

alterations in GBM (The Cancer Genome Atlas Research

Network, 2008). The overall pattern of broad gains and losses

in the GCIMP tumors showed some similarities to that in the

non-GCIMP PN GBM (Noushmehr et al., 2010) but were strik-

ingly similar between the non-GCIMP PN GBM and other non-

GCIMP subtypes (Figure 1A; Table S1 available online). These

patterns suggest that all non-GCIMP GBMs are very similar

with respect to genomic alterations acquired during their evolu-

tion and distinct from the GCIMP tumors. We then performed a

phylogenetic analysis of copy number, mRNA expression, so-

matic mutations, and promoter methylation data of the non-

GCIMP subgroups and found that PN GBMs located separately

on the phylogenetic trees generated by each of these data types,
suggesting that they are distinct from other non-GCIMP sub-

types (Figure 1B).

Gain of several copies of chr7 and loss of one copy of

chr10 were the most frequent events in non-GCIMP GBMs,

with frequencies of 86% and 90%, respectively (Figures 1A

and 1C). GCIMP tumors almost never lose the entire chr10

but show similar frequencies of loss (26%) and amplification

(24%) of 10p (Figures 1A and 1C). Note that gain of chr7

refers to the gain of a few copies of the whole chr7, which is

different from amplification of any specific gene on chr7,

and loss of chr10 refers to the loss of a whole copy of chr10

but leaving the other copy intact, which is not synonymous

with focal deletion of any gene on chr10. These events are

distinct from the commonly reported high-level amplification

and deletion of specific genes in GBMs, such as PDGFRA,

EGFR, or MET (The Cancer Genome Atlas Research Network,

2008).

When investigating 7p and 7q separately for all GBM sub-

types, we found that 7p gain ranged from 81% for PN GBMs

to 95% for MES GBMs, whereas 7q gain ranged from 79% for

PN GBMs to 93% for MES GBMs (Figure 1C). In general, 7p

and 7q gain were balanced (Figure 1D), with the exception of

GCIMP tumors, in which 7q gain occurred in 24% of tumors

and 7p gain in 15%. These data imply that, for non-GCIMP

GBMs, chr7 is gained as the entire chromosome. Balanced

chr7 gain is present in 82% of all non-GCIMP GBM samples

and represents the most common chromosomal abnormality in

these tumors. Non-GCIMP cases with a normal copy number

of both chr7 and chr10 were rare (2%) (Figure S1A; Tables S2

and S3) and had a similar age and survival distribution as GCIMP

tumors (Figures S1B and S1C), suggesting that some of these

non-GCIMP cases are potentially misclassified GCIMP tumors

(Figure S1D).

Mathematical Modeling Suggests Gain of Chr7 and Loss
of Chr10 as First Events in All Non-GCIMP
GBM Subtypes
The high prevalence and even distribution of chr7 gain and chr10

loss in all non-GCIMPGBMsubtypes raises the question of when

these events occur during GBM development. Therefore, we uti-

lized a computational methodology, Retracing Evolutionary

Steps in Cancer (RESIC), to determine the temporal sequence

of genetic alterations during tumorigenesis from cross-sectional

genomic data of a population of tumors at their fully transformed

stage (see also Supplemental Experimental Procedures) (Attolini

et al., 2010; Cheng et al., 2012). Applying RESIC to TCGA data

(The Cancer Genome Atlas Research Network, 2008) to examine

the temporal order of the known subtype-specific alterations

EGFR (CL GBM),NF1 (MESGBM), and PDGFRA (PN GBM) (Ver-

haak et al., 2010), together with gain of chr7 and loss of chr10, we

identified chr7 gain togetherwith chr10 loss as the first event in all

subtypes of GBM (Figure 2A; Figures S2A and S2B). Loss of

CDKN2A was another early event in all subtypes. Further ana-

lyses based on samples with mutational information only (n =

85 for non-GCIMP samples) revealed that TP53mutations arose

afterCDKN2A loss (Figure 2B; Figure S2C). Finally, when consid-

ering all frequent chromosome arm-level events, we found that

chr7 gain and chr10 loss arise before any other broad gains or

losses (Figure 2C; Figure S2D). An almost identical ordering of
Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc. 289



Figure 1. Somatic Copy Number Alterations and Their Frequencies in GBM

(A) Genome plot visualizing frequencies of copy number gains (red) and losses (blue) along the genome in GCIMP tumors and the four non-GCIMP subtypes

(proneural, neural, mesenchymal, and classical GBM).

(B) Phylogenetic analysis in all GBM samples determining the putative evolutional order in GBM subtypes using all data types (copy number, mRNA expression,

somatic mutation, and methylation) and the Neighbor Joining algorithm. Artificial samples with exactly two copies in the whole genome serve as a normal copy

number control. For the DNA methylation analysis, the HM27 and HM450 platforms are shown.

(C) Histograms showing the frequencies of whole arm gains and losses of both chr7 and chr10 in each subtype separately. Homozyg., homozygous; Amp.,

amplification.

(D) Copy numbers of the p and q arms of chr7 and chr10 for all TCGA samples stratified by GBM subtype.

See also Figure S1 and Tables S1, S2, and S3.
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these events was inferred using a different method (Beerenwin-

kel and Sullivant, 2009) (Figure S2E).

To delineate the clinical implications of these arm-level events,

we investigated the association between chr7 gain or chr10 loss

and GBM patient survival. Copy numbers of chr7 and chr10

correlate negatively and positively, respectively, with survival

(Figures 3A and 3B). This finding arises primarily because these

events do not occur as frequently in GCIMP tumors and because

patients with these tumors survive longer, on average, than

patients with non-GCIMP GBMs (Noushmehr et al., 2010). How-

ever, even in the non-GCIMP GBMs, chr7 gain correlates with

poor survival of patients, but only in the case of PN GBM (Fig-

ure 3A). These data suggest that a gene or several genes on

chr7 drive the gain of copy number early in GBM evolution and

promote the aggressive character in PN GBM. By contrast, the

lack of association of chr10 loss with overall survival might be

due to haplosufficiency of genes on chr10 (Figure 3B).
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Computational Analysis Suggests PDGFA and PTEN as
Major Drivers of Nondisjunction Events
We aimed to identify the genes on chr7 and chr10 that drive the

acquisition of these arm-level events, lead to the poor survival of

patients, and are potential targets for therapies. We designed a

computational algorithm consisting of two steps. The first step

ranks genes based on the extent of correlation between their

copy number and expression levels. Genes are first sorted by

the fold change of expression between tumors that do and

do not harbor the arm-level event. Genes with anticorrelation

of copy number and mRNA levels are excluded. In the second

step, the resulting gene list is filtered further by the degree of

correlation between a gene’s expression level and patient

survival.

When applying the first step to genes on chr7 for all non-

GCIMPGBM samples, we identified a set of genes with the high-

est expression response to increased copy number predicted to



A B C Figure 2. Temporal Sequence of Events in

Glioma Development

(A) Order of events for subtype-specific copy

number alterations per subtype.

(B) Order of events for all GBM samples for which

TP53 point mutation data was available (n = 85).

(C) Order of chromosome level copy number

alterations. Black ovals represent distinct muta-

tional events. Arrows represent an ordering of

events detected by RESIC. Rectangles containing

events represent sets of eventswhereRESICcould

not distinguish an order of events. Black denotes

orderings that are shared across subtypes. Red,

yellow, green and blue denotes classical, mesen-

chymal, neural, and proneural subtype-specific

orderings, respectively. Orderings shared by mul-

tiple subtypes, but not all subtypes, are denoted by

multicolored arrows and rectangles.

See also Figure S2.
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occur with gain of chr7 (Table S4). Note that EGFR was not

selected in this first filtering because a low-level gain of EGFR,

as foundwith whole chr7 gain, is not correlated with its increased

expression (p = 0.19, Student’s t test, EGFR normal versus gain,

Figure S3A). High-level amplification of EGFR is predicted by

RESIC to be a late event (Figure 2A), and such focal amplification

of EGFR correlates significantly with its expression level (p <

0.001, Student’s t test, EGFR gain versus focal amplification,

Figure S3A). Almost all identified point mutations in EGFR as

well as in EGFRvIII were found in samples with high-level focal

gene amplification (Figure S3A; Table S1). These data further

support the hypothesis that EGFR may not be a driver of initial

oncogenic events in this tumor type but, rather, contributes to

tumor progression or maintenance through high expression

driven by focal amplification arising at later stages of tumor

formation.

The second step then showed that a direct correlation be-

tween expression levels and survival was uninformative because

many genes on chr7 displayed a correlation between their copy

number and expression. Thus, their expression also correlates

with survival in PN GBM (Table S4). Therefore, we investigated

the correlation between survival and the expression levels of

pathways downstream of genes on chr7. When applying this fil-

ter to chr7, we found that, of the 190 genes whose expression

fold change between cases of normal and gained chr7 copy

number was at least 1.25, 13 genes displayed a correlation

with survival in PN GBMs of p < 0.05 (Table S5). Figure 3C sum-

marizes the two filters applied to chr7. This combined ranking

approach identified PDGFA as the highest-ranking gene on

chr7 (Figure S3B; Tables S5 and S6), i.e., expression of PDGFA

downstream genes was associated with overall survival, and

chr7 gain increased PDGFA mRNA levels significantly. There-

fore, PDGFA most likely is the gene providing the strongest se-

lective advantage to gaining extra copies of chr7.

We then sought to identify potential drivers of chr10 loss.

The application of the two steps outlined above is only appro-

priate for chromosomal gains because the correlation between

expression levels and patient outcomes necessitates a degree

of variability in copy number across patients. Chr7 gain meets

this requirement because patients may harbor three, four, or
more copies of chr7. By contrast, chr10 loss results in a single

remaining copy of chr10 in almost all cases (Figures 1C and 1D),

therefore necessitating an alternative strategy. Because loss of

chr10 and gain of chr7 almost always co-occur (p = 0.001,

Fisher’s exact test, Figures 1A and 1C), we hypothesized that

the phenotypic effect of a main driver of chr10 loss might

amplify the effects of the driver of chr7 gain and vice versa,

therefore likely activating the same pathways and resultant

changes in gene expression. We also ranked the genes on

chr10 by the association of the expression levels of their down-

stream genes with survival (Tables S4 and S5). The tumor sup-

pressor PTEN displayed a highly significant survival association

between the expression levels of its downstream genes and

survival (false discovery rate [FDR] < 0.02) (Figure 3D; Fig-

ure S3C; Table S5) and also a large overlap of downstream

genes of PDGFA (Figure 3E), suggesting that it may be a signif-

icant driver of chr10 loss in these tumors. In non-GCIMP GBM

subtypes other than PN GBMs, we did not identify any such

strong pathway enrichments of chr7 and chr10, consistent

with the lack of correlation of chr7 gain with survival in these

GBM subtypes (Figure 3A). Our computational approach there-

fore suggests PDGFA and PTEN as primary drivers of the chr7

and chr10 nondisjunction events, respectively. Note that this

analysis does not suggest that these genes alone are sufficient

for driving these events.

Mouse Modeling Suggests that the Predicted First
Events in Glioma Evolution Are Sufficient to
Induce Gliomagenesis
Our computational analyses predict that elevated expression

of PDGFA represents the strongest initial driving event in glioma

evolution. This is noteworthy because of the well described role

of PDGF signaling in GBM, especially in PN GBM (Brennan et al.,

2009; The Cancer Genome Atlas Research Network, 2008; Ver-

haak et al., 2010). Note that the elevated expression of PDGFA

as a likely driver is not the same as the frequently reported

high-level focal amplification of PDGFRA found primarily in PN

GBM. The PDGF signaling network is transmitted by four ligands

(A, B, C, and D isoforms) and two protein tyrosine kinase recep-

tors (a and b). Overexpression of PDGFB generates PDGFB
Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc. 291
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Figure 3. Drivers of Chr7 and Chr10 Alter-

ations in the Proneural Subtype

(A and B) Forest plots showing the hazard ratios

(HR, squares) of chr7 gain (A) and chr10 loss (B)

and their confidence intervals. HRs significantly

larger than 1 (A) or lower than 1 (B) signify a copy

number change associated with a poor prognosis.

The square size is proportional to the sample size.

(C and D) Genes on chr7 (C) and chr10 (D) ranked

by association of downstream genes with overall

survival, with the corresponding p values shown

on the y axis. Genes were considered with a fold

change (x axis) in expression of larger than 1.25

(averaged over both Affymetrix and Agilent plat-

forms) when comparing patients with normal and

altered chr7 and chr10 copy numbers. The top-

ranking hits are shown in blue.

(E) The overlap in downstream genes of PDGFA in

the Kyoto Encyclopedia of Genes and Genomes

pathway database with the top-ranking genes on

chr10 (x axis).

See also Figure S3 and Tables S4, S5, and S6.
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homodimers (BB dimers) that activate both PDGFRa and b,

whereas overexpression of PDGFA only activates PDGFRa (An-

drae et al., 2008; Heldin and Westermark, 1999). In animal

modeling systems, signaling driven by PDGFB alone is sufficient

to form GBMs, and additional loss of Tp53, Cdkn2a (Ink4a-Arf),

or Pten accelerates tumor formation (Dai et al., 2001; Fom-

chenko et al., 2011; Hu et al., 2005; Shih et al., 2004; Squatrito

et al., 2010). Although the PDGFB protein level is elevated in

many PN GBMs, it does not correlate with the PDGFB mRNA

level in these tumors (Brennan et al., 2009). Moreover, the alter-

ation ofPDGFB is rare inGBMs (Verhaak et al., 2010), suggesting

that other PDGFs, such as PDGFA, could potentially drive onco-

genesis in this GBM subtype. However, it remains to be deter-

mined whether elevated PDGFA is sufficient to initiate gliomas,

either alone or in combination with other early events such as

CDKN2A, TP53, or PTEN loss (Figures 2A and 2B; Figures S3C

and S3D) (Jackson et al., 2006; Nazarenko et al., 2011).

Therefore, we tested the ability of genes predicted to drive hu-

man GBM evolution to induce gliomas in vivo using the replica-

tion-competent avian sarcoma-leukosis virus long terminal

repeat with splice acceptor/tumor virus a (RCAS/tv-a) system

that allows postnatal cell type-specific gene transfer (Holland

et al., 1998; Holland and Varmus, 1998). To determine whether

PDGFA alone is sufficient for glioma formation, we infected

neonatal N/tv-a mice (Nestin-expressing cell of origin, n = 11)

and G/tv-a mice (GFAP-expressing cell of origin, n = 14) with

an RCAS retroviral vector expressing human PDGFA (RCAS-

PDGFA) (Figures S4A and S4B). All N/tv-a mice were sacrificed

at 4 months of age, when the first mice developed symptoms

of intracranial pathology. Eight of eleven mice harbored brain

tumors of various sizes demonstrating histological features of

grade 2 human oligodendrogliomas, including round nuclei, peri-

nuclear halos, and strong Olig2 and lower GFAP expression (Fig-
292 Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc.
ure 4A and data not shown). All G/tv-a

mice formed tumors ranging from 159–

323 days postinjection. Many developed

high-grade gliomas with histologic fea-
tures of human oligodendroglioma (Figure 4B; Figure S4C).

These data indicate that elevated PDGFA expression is sufficient

to initiate gliomagenesis in vivo.

Pten Loss Shortens Survival of Mice with PDGFA-
Induced Gliomas but Is Not Sufficient to Induce
Gliomas Alone
RESIC analysis predicted that combined loss of chr10 and gain

of chr7 are the earliest events in non-GCIMP GBM subtypes.

Previous results using the RCAS/tv-a system have shown that

loss of Pten alone is insufficient for glioma formation in mice

(Hu et al., 2005), suggesting that loss of Pten might play a

supportive role in PDGFA-responsive cells rather than serving

as the tumor initiator. To confirm the supportive role of Pten

loss in this context, we created an RCAS vector expressing

mRFP and a short hairpin designed to knock down Pten expres-

sion (RCAS-shPten) (Figures S4A, S4D, and S4E). Infection of

both wild-type N/tv-a (n = 3) and G/tv-a (n = 11) mice with this

vector alone did not result in brain tumors by approximately

4months of age. However, consistent with the RESIC prediction,

simultaneous Pten loss significantly shortened the survival of

mice with PDGFA-induced gliomas and elevated the grade of

the tumors (Figures 4A and 4B; Figures S4F–S4H). These fea-

tures were also observed in a cre-mediated Pten deletion model

(Figure 4B; Figure S4F).

PDGFA-Induced Tumors Resemble PN GBMs, but
PDGFB-Induced Tumors Display a More MES
GBM-like Character
RESIC analysis also predicted that loss of CDKN2A occurs after

gain of chr7 (elevation of PDGFA expression) in these tumors.

Therefore, we injected neonatal N/tv-a;Cdkn2a(Ink4a-Arf)�/�

mice with RCAS-PDGFA (n = 25) (Figure 4C). Tumors occurred
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Figure 4. PDGFA Induces Gliomas with Similar Expression Patterns as Human Proneural GBMs in Mice
(A–C) Kaplan-Meier survival curves showing symptom-free survival of PDGFA- or PDGFB-induced gliomas in Nestin (N)/tv-a (A), GFAP (G)/tv-a, orG/tv-a;Ptenfl/fl

(B) and N/tv-a;Cdkn2a�/�;Ptenfl/fl mice (C). Tumors were generated by the injection of the indicated RCAS virus into neonatal brains. *p < 0.05, **p < 0.005,

***p < 0.001, ****p < 0.0001. ns, not significant; ND, not determined.

(D) Representative H&E and immunohistochemical analysis of the PDGFA- and PDGFB-induced gliomas in N/tv-a;Cdkn2a�/�;Ptenfl/fl mice. Boxes denote the

enlarged region. Scale bars, 100 mm.

(E) GSEA of the RCAS-PDGFA- and RCAS-PDGFB-induced gliomas in N/tv-a;Cdkn2a�/�;Ptenfl/fl mice. Gene expression profiles were compared between the

PDGFA-induced (n = 7) and PDGFB-induced (n = 5) gliomas based on the TCGA subtype signatures (Verhaak et al., 2010). Bar plots visualize enrichment p values

(y axis) of the four subtype signatures in the ranking of genes by differential expression (PDGFA versus PDGFB). A low p value indicates consistent expressionwith

the subtype, i.e., many genes known to be upregulated in the subtype are up, and downregulated genes are down.

(F) GSEA of the RCAS-PDGFA/shp53- and RCAS-shNf1/shp53-induced gliomas in N/tv-a and G/tv-a mice.

See also Figure S4 and Table S7.
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in these mice with 100% penetrance and a median survival of

65 days. These tumors demonstrated histological features of

human oligodendroglioma and displayed a high-grade histology

with uniformly abundant pseudopalisading necrosis, hypervas-

cularity, and brisk microvascular formation throughout the tumor

(Figures 4C and 4D; Figure S4I). Interestingly, additional loss of

Pten in a Cdkn2a�/� background did not shorten tumor latency

further (Figure 4C).

We then compared gliomas induced by PDGFA and PDGFB

in newborn and adult N/tv-a;Cdkn2a�/� mice. We found that
PDGFA generated tumors with a longer latency than PDGFB

and that gliomas induced by either ligand arose in newborn

mice faster than in adults (Figure 4C; Figure S4J) (Squatrito

et al., 2010). The histology of tumors induced by PDGFA and

PDGFB was generally similar. However, the vasculature and

stroma were notably different (Figure 4D; Figure S4K). PDGFB-

induced gliomas showed a spindled vasculature and atypical

stroma (PDGFB activates both a receptors in the tumor cells as

well as b receptors in the perivascular stroma), whereas tumors

generated by PDGFA (which activates only the a receptor)
Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc. 293
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showed glomeruloid microvascular proliferation more similar to

that seen in human GBM (Figure 4D; Figure S4K) (Helmy et al.,

2012; Hermansson et al., 1988).

Subsequently, we profiled these tumors by gene expression

analysis to determine which human GBM subtype they resem-

bled most closely and found that PDGFA-induced gliomas

in the mouse more closely resembled PN GBMs in humans,

whereas the PDGFB-induced tumors shifted toward MES

GBMs (Figure 4E). The Olig2-expressing tumor cells from

PDGFB-induced gliomas, which constitute the bulk of the tumor

(Figure 4D), show a strongly proneural expression profile

(Dougherty et al., 2012). Therefore, the MES character of the

PDGFB-induced gliomas possibly reflects the abundant atypical

perivascular stroma and other nontumor stromal cell types found

in these tumors (Figures 4D and 4E; Figure S4K).

Loss of TP53 as well as PTEN or CDKN2A in
PDGFA-Induced Gliomas Results in a Highly Lethal
Disease in Mice
CDKN2A loss occurs frequently in human PN GBMs, but

this GBM subgroup also commonly harbors mutations in TP53

(Verhaak et al., 2010). Therefore, we determined whether loss

of Tp53 would cooperate with PDGFA-induced gliomas in a

similar way as Cdkn2a loss. We generated an RCAS vector

expressing both mRFP and a short hairpin designed to knock

down Tp53 expression (RCAS-shp53) (Figures S4A and S4L–

S4P). Infecting mice with this vector alone did not generate

gliomas by approximately 1 year of age. However, when com-

bined with RCAS-PDGFA, high-grade gliomas formed in 100%

of mice with a median survival of 69.5 days in wild-type N/tv-a

mice (n = 18) and 56 days in wild-typeG/tv-amice (n = 31), similar

to PDGFA in a Cdkn2a�/� background (Figures 4A�4C). The

tumors demonstrated histological features of human oligoden-

droglioma and displayed a high-grade histology similar to

PDGFA-induced tumors with Cdkn2a loss (Figure S4Q). Further-

more, the gene expression profiles of the gliomas induced by

PDGFA with loss of Tp53 showed a significant enrichment of

PN GBM genes (Figure 4F) as well as downstream orthologs of

human PDGFA identified in the abovementioned computational

analysis (Figure 3C; Figure S4R; Table S6). These observations

suggest that loss of the tumor suppressor genes PTEN,

CDKN2A, or TP53 is sufficient to enhance PDGFA-induced gli-

omas, resulting in highly lethal gliomas.

Simultaneous Loss ofNf1 and Tp53 InducesMESGBM in
the RCAS/tv-a Model
RESIC analysis predicts that the same early events in PN GBM

also occur in MES GBM but that NF1 loss occurs late in the

evolution of these tumors. In MES GBMs (as well as all non-

GCIMP GBMs), NF1 loss is associated with TP53 mutations

and, less commonly, with CDKN2A loss (Figure S5A) (Verhaak

et al., 2010). Furthermore, published mouse GBMmodels result-

ing from germline homozygous deletions ofNf1 and Tp53 show a

median survival of approximately 150–200 days (Reilly et al.,

2000; Zhu et al., 2005), but they do not recapitulate a human

MES GBM expression pattern (Liu et al., 2011). Other groups

recently generated an H-RasV12-shp53 glioma model

mimicking Nf1;Tp53 loss and reported H-RasV12-shp53-driven

GBMs to show MES gene expression (Friedmann-Morvinski
294 Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc.
et al., 2012). However, there is no mouse model with Nf1;Tp53

loss reported to create a GBM with MES gene expression.

More importantly, all of these GBM models were generated

using technologies different from what we used, making it diffi-

cult to compare them. Therefore, to allow direct comparison of

our PDGFA models and mouse models of MES GBM, we engi-

neered the RCAS/tv-a system to generate MES GBM from

normal cells. We then set out to initially reproduce the published

effect of combined loss of Nf1 and Tp53.

We created an RCAS vector expressing GFP and a short

hairpin designed to knock down Nf1 expression (RCAS-shNf1)

(Figures S4A, S4L, S4N, S4O, S5B, and S5C). Infection of both

wild-type N/tv-a (n = 20) and G/tv-a (n = 12) mice with this vector

alone did not generate tumors by approximately 1 year of age.

However, infection with the combination of RCAS-shNf1 and

RCAS-shp53 led to the formation of gliomas in 100% of mice,

with a median survival of 146 days for G/tv-a (n = 52) and

221 days for N/tv-a (n = 32) mice (Figures 5A and 5B; Figures

S4O and S5D–S5G). These latencies are similar to those pub-

lished for gliomas formed by germline models of combined Nf1

and p53 loss (Reilly et al., 2000; Zhu et al., 2005). Histologic

analysis of theG/tv-aandN/tv-a tumors showedstronger expres-

sion of theMESmarkers vimentin andCD44, and theMESmaster

regulatorspSTAT3andC/EBPb in theG/tv-a tumors than in theN/

tv-a tumors (Figure 5B and data not shown) (Carro et al., 2010).

Gene expression profiling of these tumors (G/tv-a, n = 7; N/tv-a,

n = 11) demonstrated that they were more MES-like than those

driven by PDGFA (Figure 4F) and that gliomas arising in G/tv-a

mice had a more MES-like expression pattern than those arising

inN/tv-amice (Figure 5C). Collectively, these data suggest that it

is possible to generate MES gliomas from normal cells in post-

natal micewith a similar latency to that seen with germline strate-

gies that delete both genes (Reilly et al., 2000; Zhu et al., 2005).

While Nf1 loss in N/tv-a;Cdkn2a�/�;Ptenfl/fl mice was consider-

ably less efficient than loss of Tp53 for the formation of gliomas,

as supported by the fact that NF1 loss is associated with TP53

mutations and, less commonly, CDKN2A loss (Figures S5A and

S5E; Table S7) (Verhaak et al., 2010).

Additional Loss of NF1 Converts the PDGFA-Induced PN
Phenotype to a MES Gene Expression Pattern
The tumor latency for PDGFA-induced gliomas versus those

induced by Nf1 loss is striking. In the mouse model, the loss of

both Nf1 and Tp53 occurs simultaneously, whereas in humans,

there would be multiple separate mutational events in a normal

cell that would lead to loss of function of both alleles of NF1

and mutation of TP53. Such an evolutionary pathway to MES

GBMs formation, although possible, might be much slower

than that for PN GBMs, which requires elevated expression

from a single gene, such as PDGFA. Moreover, the importance

of the chronological order of mutations in MES glioma formation

is underscored by the fact that, in mice, loss of Nf1 is less effi-

cient at enhancing gliomas than loss of Tp53 in the context of

forced PDGFA expression (Figure 4B). Finally, global copy num-

ber and RESIC analysis predicts that MES GBMs initially arise

from tumors with the same alterations as PN GBMs and that

they lose NF1 later (Figure 2).

Therefore, we sought to determine whether NF1 loss in PN-

GBM could induce a PN-to-MES GBM transition. We obtained
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Figure 5. Simultaneous Loss of Nf1 and Tp53 Induces MES Gliomas in the RCAS/tv-a Model

(A) Kaplan-Meier survival curves showing symptom-free survival and relative tumor grade of the RCAS-shNf1/shp53-induced gliomas in N/tv-a and G/tv-amice.

The percentage of tumors exhibiting WHO grade II (G2), III (G3), and IV (GBM) histological features are shown for each genotype.

(B) Representative H&E and immunohistochemical analysis for the indicated protein of the RCAS-shNf1/shp53-induced glioma in G/tv-amice. The box denotes

the enlarged region. Scale bars, 100 mm.

(C) GSEA of the RCAS-shNf1/shp53-induced gliomas in G/tv-a and N/tv-a mice.

See also Figure S5.
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two PN GBM cell lines that contain an amplification of PDGFRA,

and, by expression profiling, fit the criteria for the PN subtype

(Figures 6A and 6B; Figures S6A and S6B) (Ozawa et al., 2010).

Expression profiling of the lines before and afterNF1 knockdown

showed that the original PN expression pattern was shifted

toward a MES or CL pattern in both cases (Figure 6B; Figures

S6B and S6C). Moreover, knockdown of Tp53 or Nf1 alone was

sufficient to induce PN and MES gene enrichment in murine

neurosphere culture, respectively (Figure 6C; Figure S6D). These

results suggest that NF1 function regulates transcriptional

pathways necessary for mesenchymal conversion. To examine

whether NF1 directly regulates the expression of mesenchymal

transcriptional factors (TFs), we performed a TF enrichment anal-

ysis in murine neurosphere (Figure S6E), murine glioma (Fig-

ure S6F), and TCGA (Figure S6G) data sets. We identified 14 TF

gene sets (MSigDB 4.0) corresponding to 9 different TFs, that

were significantly (FDR < 0.05) associated with NF1 loss in the

three data sets (Figure 6D; Figures S6E–S6G). Some of these
14 TF gene sets associated with NF1 loss presented a high sim-

ilarity to eachother (Figure 6D) anddisplayeda significant overlap

with recently reportedmesenchymal TF target genes (Carro et al.,

2010) (Figure 6E). Notably,NF1 loss was associated significantly

with two main mesenchymal TFs, C/EBPb and RUNX1 (Fig-

ure 6F). By contrast, perturbations of STAT3 andC/EBPb expres-

sion did not affect NF1 expression in human GBM cells and

mouse stem cells (Figures S6H and S6I), implying that these

MES-associated TFs are downstream of NF1 loss. ShNf1-

induced tumors showed a statistically significant association be-

tween loss of NF1 and gene expression changes related to the

mammalian target of rapamycin (mTOR) pathway (Figure S6J).

Furthermore, loss of NF1 did not appreciably elevate Erk or Akt

phosphorylation (p) but did elevate pS6RP, suggesting that NF1

loss may affect mTOR activity in an Akt-independent manner

(Figure 6A). Therefore, we treated the two NF1 knockdown cell

lines with the mTOR inhibitor rapamycin (Figure S6K) and

observed a marked but variable shift from MES/CL toward PN
Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc. 295
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Figure 6. Additional NF1 Loss Induces Proneural-to-Mesenchymal Conversion In Vitro and In Vivo

(A) Western blot analysis of two humanGBM cell lines (TS543 and TS667) expressing control shRNA (Ctrl-sh) or NF1 shRNAs (target sequence #2 and #5) with the

indicated antibodies.

(B) GSEA of humanGBMcell lines. Gene expression profiles were compared between untreated cells, 0.1%DMSO- or 1nM rapamycin-treated cells for 5 hr in two

different cell lines (TS543 and TS667) expressing control or NF1 shRNA. Each sample was analyzed in triplicate. Control shRNA samples of the TS543 and TS667

cells also have technical duplicate samples.

(C) GSEA of murine neurosphere lines. The gene expression profiles were analyzed in betweenN/tv-a neurosphere lines expressing RCAS-shGL2, RCAS-shNf1,

RCAS-shp53, or RCAS-shNf1/shp53. The subtype gene signature enrichment was determined by comparing the control shRNA sample (shGL2) with each

shRNA sample. Each sample was analyzed in triplicate.

(D) The overlap index of the 14 significant gene sets corresponding to 9 different TFs. High overlaps are shown in dark blue.

(E) Cytoscape visualization of the overlap of the 14 significant TF gene sets and the GBM mesenchymal gene signature (Carro et al., 2010). Diamond-shaped

nodes represent the 14 TF gene sets. Circular nodes represent TF target genes in both the mesenchymal gene signature and the 14 TF gene sets. TFs and target

genes are connected by blue edges. The p value for the overlap of the mesenchymal gene signature and the 14 TFs was 0.005 (hypergeometric distribution).

(F) Correlation of MES-TF expression with NF1 expression in the TCGA Agilent data. p values for anticorrelation with NF1 expression were less than 0.001 for

C/EBPb, RUNX1, STAT5A, STAT6, and IRF1.

See also Figure S6.
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expression, suggesting that blockade of mTOR rescues the

effect of NF1 loss in PN GBM lines (Figure 6B).

Finally, we determined whether NF1 loss could convert PN

GBMs to MES GBMs in mice. To test sequential loss, we initially

generated PDGFA/shp53 tumors by concurrent stereotactic in-

jection of the two vectors and then secondary infection with
296 Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc.
the GFP-shNf1 vector into the tumors using the same stereotac-

tic coordinates 2–4weeks later. The RCAS-GFP-shNf1 virus was

incorporated regionally in 15 of 20 mouse gliomas (Table S7).

Many of the GFP-positive regions were detected in low PDGFA

expression areas and/or the tumor periphery. Higher expression

for MES-related markers, such as CD44, pSTAT3, and C/EBPb,
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Figure 7. Additional Nf1 Loss Induces Proneural-to-Mesenchymal Conversion In Vivo

(A) Representative H&E and immunohistochemical analysis for the indicated protein of the RCAS-PDGFA/shp53-induced glioma secondarily incorporating the

RCAS-GFP-shNf1 virus in G/tv-a mice. Circles 1 and 2 represent mesenchymal and proneural tumor lesions, respectively. Scale bars, 100 mm.

(B) Kaplan-Meier survival curves showing symptom-free survival of PDGFA/shp53- or PDGFA/shp53/shNf1-induced gliomas inN/tv-a (left panel) andG/tv-a (right

panel) mice. Tumors were generated by simultaneous injection of the relevant RCAS virus into neonatal pup brains. Survival curves of the RCAS-PDGFA/shp53-

induced tumors from Figures 4A and 4B are also shown for comparison. ***p = 0.0004, ****p < 0.0001.

(C) GSEA of the RCAS-PDGFA/shp53- and RCAS-PDGFA/shp53/shNf1-induced gliomas in N/tv-a and G/tv-a mice.
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was associated preferably with GFP-positive regions (i.e., NF1

knockdown) and/or adjacent areas (Figure 7A). For simultaneous

loss of NF1, we compared the GBMs generated by the double

combination of RCAS-PDGFA and RCAS-shp53 (G/tv-a, n =

31; N/tv-a, n = 18; see above) to the triple combination of

RCAS-PDGFA, RCAS-shp53, and RCAS-shNf1 (G/tv-a, n =

26,;N/tv-a, n = 18). The additional loss ofNf1 in the triply infected

mice resulted in gliomas occurring significantly faster than the

doubly infected mice, both from the G/tv-a (Figure 7B, right

panel) and the N/tv-a (Figure 7B, left panel) cell of origin. The

expression patterns for the two populations showed that the

doubly infected mice generated gliomas with a PN gene expres-

sion pattern (Figures 4F and 7C), whereas the gliomas from the

triply infected mice shifted toward MES (Figure 7C).

DISCUSSION

There has been much discussion about the implications of the

molecular subgroups of GBM. The data presented here connect

the GBM subtypes in an evolutionary framework where the pri-

mordial tumors are PN in character, with the other subgroups

evolving from them. Amplification of PDGFRA occurs primarily

in tumors that remain PN. Mathematical modeling suggests

that chr7 gain and chr10 loss are very common early genetic
events in all subtypes of non-GCIMP GBM. Further, we found

that the selective advantage for additional copies of chr7 is pri-

marily, but potentially not exclusively, driven by elevated expres-

sion of PDGFA and that a primary driver for loss of chr10 is

reduced expression of PTEN. These predictions were supported

by mouse modeling data indicating that overexpression of

PDGFA was sufficient to induce gliomas that were enhanced

by PTEN loss to give rise to GBM with a PN character. Note

that chr7 encodes many other genes with elevated copy number

by the gain of chr7, which may contribute to oncogenesis and

therapeutic resistance. Similarly, there could be genes on

chr10 additional to PTEN whose loss enhances oncogenesis or

alters the therapeutic response early in GBM evolution.

Loss of chr10, which occurs in nearly all non-GCIMP GBMs, is

represented by one copy loss. Therefore, it is intriguing to know

whether loss of function of the remaining allele is essential in

non-GCIMP GBM formation. A nonsilent somatic point mutation

in the remaining PTEN allele is found in 37.9% of all cases with a

single copy of chr10, and homozygous deletion was identified in

10% of non-GCIMP GBMs. Given that PTEN expression is also

regulated by promotermethylation andmicroRNA, the remaining

PTEN allele might be also inactivated by alternative mechanisms

in non-GCIMP GBMs (Baeza et al., 2003; Huse et al., 2009;

Wiencke et al., 2007). Furthermore, the level of PTEN mRNA
Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc. 297
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expression decreased from diploid to hemi- and homozygous

loss in non-GCIMP GBMs. In mice, heterozygous loss of Pten

was sufficient to induce gliomas in combination with Tp53 loss,

with or without Nf1 loss, and the homozygous loss increased

the aggressiveness of tumors (Kwon et al., 2008; Zheng et al.,

2008). Therefore, heterozygous loss of PTEN appears to be

enough for initiating an abrogation of gene function in GBM

patients.

Mouse models can demonstrate that specific cell types, gene

combinations, and sequences of events are sufficient to form tu-

mors, but they alone do not prove that human tumors form that

way. The mathematical analysis of human GBM data presented

here indicates that a specific set and order of gene abnormalities

represent the major evolutionary pathway toward non-GCIMP

GBM. The mouse modeling shows that this specific predicted

series of events is sufficient to form PN-like GBM in mice and

that this character can be shifted to a MES one with subsequent

loss of Nf1, predicted to be a late event in the evolution of MES

GBM in humans. Further, given the highly similar copy number

patterns for most non-GCIMP GBM subtypes, it is likely that

most non-GCIMP GBM subtypes arise similarly.

Our studies suggest that cells harboring both chr7 gain and

chr10 loss are themost likely cells of origin for gliomas. However,

given the existence of a few cases of GBM in the TCGA data set

without copy number alterations of both chromosomes, there

clearly are exceptions. Indeed, as shown by our Nf1/Tp53 loss

model, it is possible that MES GBMs could arise de novo via a

different cell of origin and evolutionary pathway. Furthermore,

the relatively rare patients without chr10 loss have significantly

more whole chromosome 12 gains (FDR < 0.01), and patients

without chr7 gain have significantly higher odds of a PDGFRA

somatic mutation (p = 0.05, Fisher’s exact test). This might

also indicate that pathways affected by chr7 gain and chr10

loss can be interrupted with similar consequences by alterations

on other chromosomes. Nonetheless, the majority of non-

GCIMP GBMs are abnormal for chr7 and chr10 and most likely

arise from a PN-like precursor lesion.

This series of molecular events early in the development of

GBM is different from that seen in other cancer types induced

by point mutations or translocations with the generation of a sin-

gle oncogene in an otherwise normal background, such as

chronicmyeloid leukemia (Hehlmannet al., 2007). Theacquisition

of multiple pro-oncogenic alterations by copy number gain and

loss at the outset of tumor formation would reduce the likelihood

of success for targeted therapy against any specific signaling tar-

gets, especially those acquired late in the tumor’s evolution. The

data argue that PDGFA is the gene on chr7 that most likely pro-

vides the strongest selection for initial gain of chr7 at the begin-

ning of non-GCIMP GBM formation. However, other genes on

chr7, such as CUL1, CBLL1, ASNS, ARPC1A, and GLI3, might

have similar but less robust effects and could collectively trump

PDGFA expression later in GBM evolution. It remains to be eluci-

dated how our findings relate to other tumor types that also show

gains of large portions of chr7 and loss of chr10.

The chromosomal abnormalities early during GBM evolution

are interesting in light of the observation that aneuploidy for at

least one chromosome occurs in as many as 10% of all cells in

the normal adult brain (Iourov et al., 2006; Iourov et al., 2009)

and is even higher during development, reaching 30%–35%
298 Cancer Cell 26, 288–300, August 11, 2014 ª2014 Elsevier Inc.
(Bushman and Chun, 2013; Yurov et al., 2007). This higher prev-

alence in the brain compared with other organs has been sug-

gested to contribute to neuronal diversity (Bushman and Chun,

2013). However, from this diverse set of errors in chromosomal

number throughout the normal brain, only cells with loss of one

copy of chr10 and gain of variable numbers of chr7 give rise to

non-GCIMP GBMs. Given the prevalence of aneuploid cells in

the normal brain, it is likely that many cells with both gain of

chr7 and loss of chr10 exist in each individual. Therefore, other

mechanisms may contribute to the fact that GBMs are not

more prevalent. If aneuploidy in the CNS functions to generate

neuronal diversity, wemight speculate that the risk of developing

GBM may be the price paid for complex CNS function.

EXPERIMENTAL PROCEDURES

Data Sets of Human GBM Samples

We obtained segmented copy number data, raw and normalized mRNA

expression data, methylation data, and somatic mutation data from the

TCGA (The Cancer Genome Atlas Research Network, 2008). All analyses

were done in R/Bioconductor (Gentleman et al., 2004). The details of all

bioinformatic analyses are described in the Supplemental Experimental

Procedures.

Phylogenetic Analysis

To examine the relationship between GBM subgroups, we applied the

Neighbor-Joining algorithm (Saitou and Nei, 1987) independently to the

TCGA GBM Agilent expression, SNP copy number, promoter methylation,

and somatic mutation data, as described previously (Riester et al., 2010).

RESIC Analysis

To determine the temporal sequence of genetic alterations, two whole

chromosome events, chr7 non-disjunction and chr10 loss, as well as sub-

type-defining events (focal EGFR gain and amplification, PDGFRA gain and

amplification, and NF1 loss), we applied the RESIC algorithm to the GBM

data set, as described previously (Attolini et al., 2010; Cheng et al., 2012).

Pathway Analysis

To prioritize genes in large copy number alterations, we developed a compu-

tational method. The algorithm identifies genes fromdisease-related pathways

for which copy number gain has a profound impact on mRNA levels.

Transcription Factor Analysis

To examine whether NF1 loss had an impact on expression of certain TFs, a

gene set enrichment analysis (GSEA) was performed with MSigDB 4.0, which

provides 615 putative TF/target gene sets (c3 category) (Subramanian et al.,

2005).

Gene Expression Analysis for Murine Brain Tumors and

Neurosphere and Human GBM Cell Lines

Total RNAs were labeled by the Illumina protocol, followed by hybridization to

the BeadChip (Illumina). Raw data were processed at the Genomics Core

Laboratory of Memorial Sloan-Kettering Cancer Center (MSKCC) and then

normalized with the lumi R package (Du et al., 2008). For the GSEA, the Ver-

haak et al. subtype signatures were used (Verhaak et al., 2010).

Vector Constructs

The humanPDGFA cDNAwas purchased fromOriGene Technologies andwas

subcloned into the RCAS-Y vector (Dunn et al., 2000). For the generation of

the RCAS-shRNA vector, shRNAs were initially assembled in the pSUPER.re-

tro.puro vector (OligoEngine) or the pENTR-mRFP-H1 vector. The shRNAs

containing the H1 promoter were PCR-amplified and then inserted into the

RCAS-Y vector. For the pENTR-mRFP-H1 vector, LR recombination was

used to transfer the shRNAcontainingH1andmRFP into theRCAS-Destination

vector (Loftus et al., 2001) (see also Supplemental Experimental Procedures).
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Generation of Murine Brain Tumors

All animal experiments were done in accordance with protocols approved by

the Institutional Animal Care and Use Committees of MSKCC and Fred Hutch-

inson Cancer Research Center and followed NIH guidelines for animal welfare.

The RCAS/tv-a system used in this work has been described previously

(Holland et al., 1998, 2000; Holland and Varmus, 1998; Hu et al., 2005; Uhrbom

et al., 2004). GFAP (G)/tv-a, G/tv-a;Ptenfl/fl, G/tv-a+/�;Tg-Ef luc, Nestin (N)/tv-a

(agouti), or N/tv-a;Cdkn2a(Ink4a-Arf)�/�;Ptenfl/fl mice were used for the RCAS-

mediated gliomagenesis in this study. After injection of the relevant RCASvirus,

micewereobserveduntil theydevelopedbrain tumor-related symptomsunless

there was a particular note (see also Supplemental Experimental Procedures).

Hematoxylin and Eosin Staining and Immunohistochemistry

Mouse brains were prepared for paraffin and sectioning and stained with

hematoxylin and eosin as described previously (Hambardzumyan et al.,

2009; Holland et al., 2000). Briefly, immunohistochemical staining was per-

formed with an automated staining processor (Hambardzumyan et al.,

2008). The antibodies used in this study are described in the Supplemental

Experimental Procedures. The histological diagnosis and tumor grade was es-

tablished based on the World Health Organization (WHO) criteria (Huse et al.,

2009; Louis et al., 2007).

Western Blot Analysis

Cells were cultured, lysed with NF1 lysis buffer (Yunoue et al., 2003), and

processed for Western blotting by standard methods. The antibodies used

in this study are described in the Supplemental Experimental Procedures.
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