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SUMMARY
Members of the KDM5 histone H3 lysine 4 demethylase family are associated with therapeutic resistance,
including endocrine resistance in breast cancer, but the underlying mechanism is poorly defined. Here
we show that genetic deletion of KDM5A/B or inhibition of KDM5 activity increases sensitivity to anti-
estrogens by modulating estrogen receptor (ER) signaling and by decreasing cellular transcriptomic
heterogeneity. Higher KDM5B expression levels are associated with higher transcriptomic heterogeneity
and poor prognosis in ER+ breast tumors. Single-cell RNA sequencing, cellular barcoding, and mathe-
matical modeling demonstrate that endocrine resistance is due to selection for pre-existing genetically
distinct cells, while KDM5 inhibitor resistance is acquired. Our findings highlight the importance of
cellular phenotypic heterogeneity in therapeutic resistance and identify KDM5A/B as key regulators of
this process.
Significance

Cellular heterogeneity for phenotypic features is a key mecha
tance, yet its regulation is poorly understood at the molecula
is associated with higher transcriptomic heterogeneity and pro
tomic heterogeneity bymodulating the activity of epigenetic en
responses to treatment. We also present conclusive evidence
itors is mechanistically distinct; although both involve gain of
that epigenetic agentsmay improve the efficacy of cancer thera
activity as single agents.

Can
nism underlying disease progression and therapeutic resis-
r level. Our findings demonstrate that endocrine resistance
vide proof of principle for how decreasing cellular transcrip-
zymes, such as KDM5 familymembers, can lead to improved
that acquired resistance to anti-estrogens and KDM5 inhib-
estrogen-independent growth. These observations suggest
pies when used in combination, evenwhen they have limited
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INTRODUCTION

Modulationof chromatin structuredue topost-translationalmodi-

fication of histones plays a key role in establishing cell-type-spe-

cific gene expression patterns, and alterations of this process are

involved in tumorigenesis (Flavahan et al., 2017). Frequent muta-

tions of genes encoding for chromatin-modifying enzymes and

histones in multiple human cancer types further emphasize the

role of perturbed epigenetic programs in tumor evolution (Fein-

berg et al., 2016). However, the functional consequences of these

mutations remain relatively poorly characterized.

In breast cancer, epigenetic regulators and transcription fac-

tors are among the most frequently mutated genes, especially

in luminal tumors (Cancer Genome Atlas Network, 2012). More

recent sequencing of endocrine-resistant metastatic breast

tumors has identified alterations previously not detected in

primary tumors, such as ESR1 mutations in a subset of cases

(Jeselsohn et al., 2015). Most of these ESR1 mutations occur

in the ligand-binding domain (e.g., ESR1Y537S) and confer

decreased sensitivity to anti-estrogens such as fulvestrant and

tamoxifen. The majority (�70%) of breast cancer patients are

diagnosed with estrogen receptor-positive (ER+) hormone-

dependent tumors and many progress to treatment-resistant

metastatic disease. Therefore, a better understanding of the

mechanisms of endocrine resistance and identification of strate-

gies to decrease or prevent it would have high clinical impact.

We previously reported that KDM5B, encoding a histone H3

lysine 4 (H3K4) demethylase, is an oncogene in luminal ER+

breast cancer due to its frequent amplification and overexpres-

sion, and its higher activity being associated with shorter

disease-free survival in breast cancer patients treatedwith endo-

crine therapy (Yamamoto et al., 2014). KDM5B was also identi-

fied as a gene required for tumor maintenance in melanoma

(Roesch et al., 2010), and its increased expression is associated

with resistance to BRAF inhibitors and chemotherapy (Roesch

et al., 2013). Other KDM5 family members such as KDM5A

have also been implicated in therapeutic resistance in lung and

other cancer types (Sharma et al., 2010), triggering an interest

in developing KDM5 inhibitors (KDM5i) for cancer treatment

(Horton et al., 2016; Johansson et al., 2016; Vinogradova et al.,

2016). However, the mechanisms by which the KDM5 family of

histone demethylases (HDMs) contribute to tumorigenesis and

therapy resistance remains poorly defined.

RESULTS

The Effect of KDM5B and KDM5A on Sensitivity to
Endocrine Therapies
To explore the function of KDM5B and KDM5A in response and

resistance to endocrine therapies in breast cancer, we deleted
Figure 1. The Role of KDM5B and KDM5A in Endocrine Therapies

(A) Cellular viability after fulvestrant treatment of parental MCF7, KDM5B-KO, an

(B) Cellular viability after fulvestrant treatment of a panel of breast cancer cell lin

(C) Graph depicting percent change in tumor volume from baseline in control, fu

decrease in volume, which is commonly used as a cutoff to define response in c

(D) Representative MRI images of tumors before and after treatment in vehicle a

(E) Representative immunofluorescence analysis of the indicated markers in tum

(F) Graphs depicting quantification of immunofluorescence images.

In (A) and (B), Error bars represent SD, n = 6. See also Figure S1 and Table S1.
KDM5B and KDM5A in the MCF7 ER+ estrogen-dependent

luminal breast cancer cell line using CRISPR-Cas9. Both

KDM5B-knockout (KO) and KDM5A-KO cells demonstrated

increased sensitivity to fulvestrant compared with parental

MCF7 cells (Figure 1A). KDM5B-KO cells and KDM5A-KO cells

also showed decreased cell proliferation (Figure S1A) and

increased H3K4me3 levels (Figure S1B) at early passage; how-

ever, at later passages these phenotypic differences disap-

peared (Figure S1A) likely due to selection for cells that can

compensate for the loss. Hence, to be able to inhibit all KDM5

activity in a dynamic manner, we utilized two recently developed

small-molecule inhibitors of the KDM5 family of enzymes KDM5-

C49 (C49) and its cell-permeable ethyl ester derivative KDM5-

C70 (C70) (Johansson et al., 2016) to further characterize the

link between KDM5 activity and endocrine therapies.

We confirmed the specificity of these inhibitors by mass spec-

trometry analysis of histone modifications (Creech et al., 2015)

and by testing their effects on KDM5A/B-KO cells. We found

that among all histone modifications analyzed, only H3K4me3

showed a significant increase after C70 and C49 treatment (Fig-

ure S1C). Similarly, while both KDM5i effectively decreased the

growth of parental MCF7 cells, deletion of KDM5B or KDM5A

diminished this effect (Figures S1D and S1E). These results imply

that KDM5B and KDM5A are key mediators of KDM5i-mediated

growth suppression in these cells. Immunoblot analysis also

demonstrated increased H3K4me3 levels after KDM5i treatment

in parental MCF7 but not in KDM5B-KO cells (Figure S1F). In line

with our previous studies demonstrating that KDM5B is more

relevant in luminal breast cancer cells (Yamamoto et al., 2014),

we confirmed higher KDM5B expression levels in luminal

compared with basal-like breast cancer cells (Figures S1G and

S1H) and that ER+ primary tumors with higher KDM5B expres-

sion levels were more likely to develop local and distant metas-

tatic recurrence in tamoxifen-treated breast cancer patients

(Figure S1I). We also observed significant growth inhibition in

luminal but not in non-luminal breast cancer cell lines following

KDM5i treatment, even though increased H3K4me3 was de-

tected in all lines tested (Figures S1J and S1K). Gene expression

profiling of MCF7 cells at different time points following C70

treatment demonstrated progressive gene expression changes

(Table S1) and upregulated genes showed enrichment in trans-

forming growth factor b signaling (Figure S1L), which is in agree-

ment with our prior data using siKDM5B (Yamamoto et al., 2014).

Based on these experiments, we conclude that C49 and C70

appear to mimic the loss of KDM5B or KDM5A in breast cancer

cells.

To investigate whether decreasing KDM5 activity would

enhance sensitivity to endocrine therapies, we pre-treated ER+

breast cancer cell lines (MCF7, ZR-75-1, BT-474, andT-47D), ful-

vestrant-resistant (FULVR), and ESR1Y537S mutant-expressing
d KDM5A-KO cells.

es pre-treated with DMSO or KDM5i.

lvestrant (FULV), C48, and combined treatment groups. Black line marks 30%

linical studies.

nd combined C48 + FULV group.

ors of the four treatment groups. Scale bars, 100 mm.
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derivatives with KDM5i followed by combined treatment with ful-

vestrant. We found that inhibition of KDM5 increased cellular

sensitivity to fulvestrant in all cell lines tested except in T-47D

cells (Figure 1B). To validate these findings in vivo, we performed

xenograft assays usingMCF7 cells andC48, a KDM5i suitable for

in vivo use (Liang et al., 2016). We first confirmed that C48 also

increased cellular sensitivity to fulvestrant in cell culture (Fig-

ure S1M). Next, we treated pre-established MCF7 xenografts

with fulvestrant, C48, and their combination. Combined treat-

ment led to a significant decrease in tumor volume, while neither

compound by itself had the same effect (Figures 1C and 1D). Tu-

mor histologywas not affected by any of the treatments based on

analysis of H&E-stained slides (Figure S1N). However, assess-

ment of cell proliferation and apoptosis by immunofluorescence

for phospho-histone H3 and cleaved caspase-3, respectively,

demonstrated a significant increase in apoptosis in all treatment

groups and decreased proliferation after fulvestrant and com-

bined treatment (Figures 1E and 1F). Immunofluorescence for

H3K4me3 and ER also confirmed significantly increased

H3K4me3afterC48anddecreasedERafter fulvestrant treatment

(Figures 1E and 1F), which we also confirmed in cell culture and

by immunoblot (Figures S1O and S1P). These findings suggest

that KDM5 HDMs regulate sensitivity to endocrine therapy in

both hormone-sensitive and endocrine-resistant cells both

in vitro and in vivo.

KDM5 Activity, H3K4me3 Broadness, and Variability in
Gene Expression
Recent studies have shown that genes marked by the broadest

H3K4me3 promoter domains exhibit enhanced transcriptional

consistency (Benayoun et al., 2014), implying that regulators of

H3K4me3 peak broadness, such as KDM5, may regulate cellular

transcriptomic heterogeneity. To test this hypothesis, we inves-

tigated changes in H3K4me3 chromatin patterns following

KDM5 inhibition by performing chromatin immunoprecipitation

sequencing (ChIP-seq) for H3K4me3 and H3K4me2 in a panel

of breast cancer cell lines. Because our prior data demonstrated

that KDM5B histone demethylase activity may be modulated by

CTCF (higher HDM activity at KDM5B-CTCF overlapping peaks)

(Yamamoto et al., 2014), we also performed ChIP-seq for CTCF.

C70 treatment globally increased the broadness of promoter

H3K4me3 peaks over time without increasing peak height, while

H3K4me2 peak heights were slightly decreased (Figures 2A and

S2A). Increased H3K4me3 peak broadness was also confirmed

in both KDM5B-KO and KDM5A-KO cells (Figure S2B). The cor-

relation between promoter H3K4me3 peak width and transcript

levels remained constant during C70 treatment (Figure S2C),

although an increase in broadness led to an increase in gene

expression (Figure S2D). The increase in H3K4me3 peak broad-

ness was significantly higher at KDM5B-CTCF overlapping

versus non-overlapping sites (Figure S2E) in line with our previ-

ous findings demonstrating significant differences in H3K4me3

levels between KDM5B-CTCF overlapping versus non-overlap-

ping sites (Yamamoto et al., 2014). The top 500 genes with

H3K4me3 peak broadness increase were also associated with

enriched binding of transcriptional elongation mark H3K79me2

after C70 treatment (Figure S2F), implying that changes in

H3K4me3 peak broadness may influence transcriptional elonga-

tion. At loci with the most significant increase in H3K4me3 peak
942 Cancer Cell 34, 939–953, December 10, 2018
broadness, such as in ZMYND8 encoding for a KDM5D co-

repressor (Li et al., 2016), KDM5B and H3K4me3 peaks showed

a clear overlap, suggesting that the decrease in KDM5B activity

is directly linked to increased H3K4me3 broadness (Figure 2B).

To assess whether these dynamic changes in H3K4me3 peak

broadness alter cell-to-cell variability in gene expression, we

performed inDrop single-cell RNA sequencing (scRNA-seq)

(Zilionis et al., 2017) to characterize the expression profiles of

500–2,000 individual cells in parental and C70-treated cells.

We found that an increase in H3K4me3 broadness was signifi-

cantly associated with an increase in the fraction of cells ex-

pressing the associated genes, with ZMYND8 being the top

upregulated gene (Figures 2C and 2D). Limiting the analysis to

genes without expression changes in bulk samples provided

similar results (Figure 2C), thus excluding the bias from changes

in gene expression on fraction of expressing cells. These results

suggest that changes in H3K4me3 peak broadness following

KDM5 inhibition lead to more uniform cellular gene expression

patterns.

KDM5 Activity and Cellular Transcriptomic
Heterogeneity
Cellular heterogeneity of phenotypic features is a key mecha-

nism underlying disease progression and therapeutic resistance

(Huang, 2013), yet its regulation at the molecular level is poorly

understood. We hypothesized that modulating KDM5 activity

might affect cell-to-cell transcriptomic heterogeneity and impact

therapeutic resistance via this mechanism. To test this hypothe-

sis, we analyzed scRNA-seq data of breast cancer cell lines

before and after treatment with C70 or FULV (Figure S3A), and

investigated the cell-to-cell variability for the expression of

selected genes using the Gini coefficient (Jiang et al., 2016),

where a higher Gini coefficient value indicates more heteroge-

neous expression. We also generated and analyzed derivatives

of MCF7 cells that acquired resistance to C70 during prolonged

culture (C70R) to gain insights into the relationship between

acquired resistance to KDM5i and cellular transcriptomic hetero-

geneity. The majority of genes detected had a relatively high Gini

index (Figure 3A), suggesting that most genes were expressed

heterogeneously, although confounding due to technical issues

of scRNA-seq cannot be excluded. Thus, we also performed

CyTOF using a panel of markers corresponding to cellular states

and activity of signaling pathways and confirmed that the Gini

indices calculated based on inDrop and CyTOF data were corre-

lated (Figure S3B). The Gini indices of both KDM5B and KDM5A

were >0.5, suggesting relatively heterogeneous expression of

these genes (Figures 3A and S3C). Consistent with the increase

in the fraction of cells expressing ZMYND8 after C70 treatment,

ZMYND8 had a lower Gini index in C70-treated cells compa-

red with untreated control (Figures 3A and 3B). The Gini indices

of luminal lineage-specific genes (e.g., GATA3 and FOXA1)

were <0.5 in luminal but >0.9 in mesenchymal SUM159 cells,

while mesenchymal-lineage-specific genes (e.g., VIM) showed

the opposite pattern (Figures 3A and S3C). The observed differ-

ences are not likely to be due to differences in cell proliferation as

there was no significant difference in the distribution of cells in

different phases of cell cycle among samples (Figure S3D).

To assess the effects of KDM5 activity on cellular transcrip-

tomic heterogeneity, we determined the cell-to-cell distance



Figure 2. H3K4me3 Peak Broadness and Transcriptomic Variability

(A) H3K4me3 and H3K4me2 peak width plotted against peak height before and at different time points (day 0–14) after treatment with C70 inhibitor. Mean values

are shown as dotted lines. Shaded areas indicate interquartile range (IQR).

(B) Gene tracks depicting KDM5B and H3K4me3 signal at selected genomic loci. The x axis shows position along the chromosome with gene structures drawn

below, whereas the y axis shows genomic occupancy in units of reads per million reads (RPM).

(C) Correlation between promoter H3K4me3 peak broadness changes and changes in percent of cells expressing the corresponding gene in C70-treated

cells. Enrichment analysis of H3K4me3 width increase in C70 is performed against the genes with increased percent of expressing cells in C70 for all genes or

genes without expression change. H3K4me3 width changes are calculated as the average width changes across all six cell lines. ***False discovery rate

(FDR) < 0.001; **FDR < 0.01; *FDR < 0.25.

(D) Plot depicting percentage of cells expressing ZMYND8 in MCF7 andC70-treatedMCF7 cells. All single cells are ranked and grouped into ten groups based on

their sequence depth to avoid variability due to this. The percent of expressing cells is calculated for each group, and a weighted t test is performed to access the

significance of the difference between two samples. The box indicates the IQR, the line inside the box shows themedian andwhiskers show the locations of either

1.5 3 IQR above the third quartile or 1.5 3 IQR below the first quartile. See also Figure S2.
among cells based on scRNA-seq data. Interestingly, KDM5i

treatment decreased cell-to-cell transcriptomic heterogeneity

of luminal ER+ breast cancer cells, with the exception of

T-47D cells, and increased it in the SUM159 mesenchymal

cell line (Figure 3C). In contrast to short-term C70-treated cells,

the cell-to-cell transcriptomic heterogeneity of KDM5i-resistant

C70R cells was similar to parental MCF7 cells. Fulvestrant-

treated MCF7 cells had higher heterogeneity than parental

MCF7 cells and this was further increased in the FULVR popu-

lation, but decreased after KDM5i treatment (Figure 3C). Anal-

ysis of changes in the Gini index also demonstrated a decrease

for the majority of genes after C70 treatment in luminal ER+, but

not in the SUM159 mesenchymal breast cancer cell line, further

suggesting that KDM5 inhibition decreases transcriptomic

heterogeneity especially in hormone-sensitive and endocrine-

resistant cells (Figure 3D). The observation that C70 treatment
does not decrease cellular transcriptomic heterogeneity in

T-47D cells (Figure 3C), and does not sensitize these cells

to fulvestrant (Figure 1B), further supports our hypothesis

that KDM5 inhibition decreases therapeutic resistance by

decreasing cell population heterogeneity. Metacore analysis

of genes with a decreased Gini index after C70 treatment

demonstrated enrichment for proliferation and survival-related

pathways including insulin growth factor and ESR1/AP-1

signaling (Figure 3E), which may contribute to the enhanced

responsiveness of C70-treated cells to fulvestrant. These

results provide strong experimental data to support our hypoth-

esis that KDM5 HDMs are key regulators of cellular transcrip-

tomic heterogeneity and can decrease therapeutic resistance

via this function. Furthermore, they also demonstrate that

endocrine resistance is associated with increased cellular tran-

scriptomic heterogeneity.
Cancer Cell 34, 939–953, December 10, 2018 943
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To validate these findings in human primary breast tumor sam-

ples, we calculated the Shannon’s equitability of transcriptomic

heterogeneity of breast tumors in three different ways (based on

the gene, exon, and exon-junction levels) in the TCGA breast

cancer patient cohort (Cancer Genome Atlas Network, 2012)

and analyzed potential associations of the extent of heterogene-

ity with KDM5BmRNA levels. The KDM5BmRNA level showed a

statistically significant association with Shannon’s equitability

when analyzing all or only ER+ breast tumors, but this association

was not or much less significant in ER� tumors depending on

how transcriptional heterogeneity was calculated (Figures 3F

and S3E). KDM5B mRNA levels also showed significant associ-

ation with Shannon’s equitability in treatment-resistant distant

metastases of ER+ breast cancer (Figure 3G), implying that

KDM5Bmay play a role in both disease progression and therapy

resistance. To assess if this observation is unique to KDM5B, we

also analyzed possible associations between transcriptomic

heterogeneity and the expression of each of the 18 known

HDMs and 12 housekeeping genes in the TCGA data (Fig-

ure S3F). We found that higher expressions of multiple histone

demethylases correlated with higher transcriptomic heterogene-

ity, but only KDM5B, KDM5C, and KDM6B, showed significant

correlation only in luminal ER+ but not in ER� breast tumors. In

contrast, housekeeping genes showed the opposite pattern

and their lower expression was correlated with higher transcrip-

tomic heterogeneity. These data imply that histone demethy-

lases in general may play a role in regulating transcriptomic

heterogeneity within tumors, but only KDM5B, KDM5C, and

KDM6B are specific mediators of this heterogeneity in ER+

breast cancers.

To investigate if transcriptomic heterogeneity is simply a

reflection of genetic heterogeneity, we also analyzed associa-

tions between subclonal mutation fraction and KDM5B mRNA

levels in the TCGA cohort. KDM5BmRNA levels were negatively

correlated with subclonal mutation fraction in ER� tumors but it

was not significant in ER+ tumors (Figure S3G). Similarly, the

percent of subclonal mutations in KDM5i- and endocrine-resis-

tant MCF7 cells did not correlate with transcriptomic heter-

ogeneity (Figure S3H). To investigate the clinical relevance of

transcriptomic heterogeneity in breast cancer, we analyzed mo-

lecular data from 1,093 invasive breast carcinomas in the TCGA.
Figure 3. KDM5 Activity and Transcriptomic Heterogeneity

(A) Gini index of single-cell inDrop data. The distribution of Gini coefficients of all

basal/mesenchymal (red), KDM5i-induced (green), and housekeeping (black) ge

(B) Violin plot showing distribution of normalized expression of ZMYND8 based o

cells. The ‘‘–’’ and ‘‘+’’ inside the violin indicate the median and mean values, res

(C) Graphs depicting cell-to-cell distance in the indicated cell populations. Wilco

between all single cells generates a large number of data points, which makes t

(shown on the right side) and box profiles. The box indicates the IQR, the line

1.5 3 IQR above the third quartile or 1.5 3 IQR below the first quartile.

(D) Plot depicting the number of genes with changes in Gini index after C70 trea

(E) Top signaling pathways enriched among genes with decreasing Gini index af

(F) Shannon’s equitability showing a correlation between KDM5B gene expressio

dataset. All tumors are stratified into four groups with identical sample size base

(G) Shannon’s equitability showing a correlation betweenKDM5B gene expression

cancer in the Metastatic Breast Cancer Project dataset. Patient stratification is t

(H) Patient survival between high and low transcriptome heterogeneity in all (n =

patients are stratified into two groups with identical sample size based on the tra

In (F) and (G), the outer violin indicates the entire distribution, the inner violin in whit

value, respectively. See also Figure S3.
Patients with high transcriptomic heterogeneity ER+ tumors had

shorter overall survival than patients with low transcriptomic

heterogeneity tumors (Figure 3H). High transcriptomic heteroge-

neity had a hazard ratio of 1.85 (95% confidence interval: 1.11–

3.08, p = 0.0169) in ER+ tumors compared with low transcrip-

tomic heterogeneity. Thus, our results suggest that cellular

phenotypic but not genetic heterogeneity may underlie resis-

tance to endocrine therapies in ER+ breast tumors and that this

trait is regulated by KDM5 HDM activity.

Mechanism of Acquired KDM5i Resistance
KDM5i are potential therapeutic agents in breast and other

cancer types (Johansson et al., 2016). However, inherent or

acquired resistance to targeted therapies inevitably occurs

during cancer treatment (Gerlinger et al., 2014). Characterizing

mechanisms of resistance can aid in the identification of key

downstream targets of drugs that mediate their tumor-

suppressive effects. Thus, we generated and analyzed deriva-

tives of MCF7 cells that acquired resistance to C70 (C70R) and

C49 (C49R) during prolonged culture. The half maximal inhibi-

tory concentration (IC50) of KDM5i-resistant (KDM5IR) cells

significantly increased compared with the parental line, and

each cell line was resistant to both KDM5i (Figure 4A) and

displayed morphology changes characterized by tighter

epithelial clusters (Figure 4B). Consistent with this enhanced

epithelial morphology, gene expression profiling demonstrated

a decrease in EMT-related genes (Figure S4A; Table S2). C70R

and C49R cells showed largely overlapping gene expression

differences compared with parental MCF7 cells (Figure S4B),

which was also reflected in the commonality of signaling path-

ways enriched in differentially expressed genes (Figure S4A).

Interestingly, the top 500 genes upregulated in C70R

compared with MCF7 cells showed enrichment in genes highly

expressed in FULVR and tamoxifen-resistant (TAMR) cells,

while the opposite was observed for downregulated genes

(Figure 4C; Table S3), implying that resistance to endocrine

therapies and KDM5i may have common underlying mecha-

nisms. Indeed, FULVR-, TAMR-, and ESR1Y537S-expressing

MCF7 cells were also more resistant to KDM5i than parental

MCF7 cells (Figure 4D), although KDM5IR cells retained sensi-

tivity to endocrine therapies (Figure S4C).
genes in each sample is shown as a gray density plot. Selected luminal (blue),

nes are highlighted.

n scRNA-seq data. Dots within violin represent the transcript counts in single

pectively.

xon rank-sum test p values are shown. Note the analysis of pairwise distances

he p value less informative than the relative differences between mean values

inside the box shows the median, and whiskers show the locations of either

tment.

ter C70 treatment in MCF7 and FULVR cells.

n and transcriptomic heterogeneity in ER+ (n = 808) breast tumors in the TCGA

d on KDM5B expression levels from low (1) to high (4).

and transcriptomic heterogeneity in ER+ (n = 108) distant metastases of breast

he same as in (F).

1,093), ER+ (n = 808), and ER� (n = 237) breast tumors in the TCGA data. All

nscriptome heterogeneity.

e indicates the IQR, the ‘‘.’’ and ‘‘+’’ inside the violin show themedian andmean
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We then sought to further explore the potential relatedness of

endocrine and KDM5i resistance in ER+ breast cancer cells.

Pathway analysis of genes upregulated in KDM5IR cells

compared with KDM5i-treated parental MCF7 cells showed

enrichment in ER and androgen receptor signaling (Figure S4D),

implying a gain of hormonal responsiveness. Similarly, we

confirmed that ER protein levels decreased after short-term

C70 treatment in most cell lines, but was close to parental

MCF7 levels in C70R and C49R cells (Figures S4E and S4F). In

line with this finding, we found that KDM5IR cells can proliferate

without estrogen (Figure 4E) and showed higher levels of phos-

phorylated ER after estradiol (E2) treatment compared with

MCF7 cells (Figure 4F). To assess whether these observations

are due to alterations in ER chromatin binding in KDM5IR cells,

we performed ER ChIP-seq before and after E2 stimulation.

MCF7 cells cultured in estrogen-depleted conditions had very

few ER binding peaks with a dramatic increase 45 min after E2

stimulation (Figure 4G), which is consistent with previous studies

(Figure S4G), although, as expected, some variability was

observed among different batches of MCF7 cells (Ben-David

et al., 2018). In contrast, in KDM5IR cells a subset of ER binding

peaks (cluster 1) was present even in estrogen-depleted condi-

tions and increased to a much higher level after E2 treatment

than what was observed in parental cells (Figure 4G). The

increased ER binding was functionally relevant as we detected

more pronounced upregulation of associated genes following

E2 treatment in KDM5IR compared with parental MCF7 cells,

especially for cluster 1 genes (Figure 4H; Table S4). Cluster 1

genes also showed significant enrichment for genes highly ex-

pressed in KDM5IR cells (Figure S4H) implying that the increased

ER binding may contribute to the upregulation of the associated

genes. Pathway analysis showed that cluster 1 genes were en-

riched for glucocorticoid receptor signaling and metabolic pro-

cesses (Figure S4I), and, thus, their higher basal level and

enhanced upregulation following E2 treatment in KDM5i-resis-

tant cells may explain the E2 independence and faster growth

of these cells.

To explore other potential changes in the epigenetic landscape

of KDM5IR cells in further detail, we performed mass spectrom-

etry analysis of histonemodifications.Wedetected an increase in

multiple histone modifications (Figure S4J), which was also

confirmed by immunoblotting (Figure S4K). Among all modifica-

tions analyzed, only H3K27me3- and H3K27me2-containing
Figure 4. Characterization of Acquired KDM5i Resistance

(A) Cellular viability of MCF7, C70R, and C49R cells after treatment with C70 or

(B) Morphology of MCF7, C70R, and C49R cells. Scale bars, 100 mm.

(C) Gene set enrichment analysis (GSEA) plots depicting the relationship between

by the statistical significance of differential expression analysis between MCF7 a

endocrine-resistant cells on the left side. The enrichment score of top 500 up or

curves, respectively.

(D) Cellular viability after treatment with C70 or C49 in FULVR, TAMR, and MCF7

(E) Colony growth of MCF7- and KDM5i-resistant cells in charcoal-stripped med

(F) Immunoblot for the indicated proteins following E2 treatment.

(G) ER chromatin binding peaks (±500 bp peak summit) in MCF7, C49R, and C70R

ER binding peaks responding to E2 treatment in MCF7 cells are shown.

(H) Integrated analysis of associations between gene expression changes at dif

indicated clusters and cell lines. The box indicates the IQR, the line inside the box

the third quartile or 1.5 3 IQR below the first quartile.

In (A) and (D), Error bars represent SD, n = 6. See also Figure S4 and Tables S2,
peptidesweremore abundant in bothC70RandC49Rcompared

with parental MCF7 cells. Investigating the expression of

enzymes that regulate H3K27 methylation in our RNA-seq data

revealed a significant (1.53 fold change, q = 1.53 10�6) increase

of SUZ12, a component of the PRC2 complex that also contains

the EZH2 H3K27 methyltransferase (Schuettengruber et al.,

2017), which we verified by immunoblot analysis (Figure S4K).

To evaluate the role of H3K27me3 upregulation in KDM5i resis-

tance, we then tested the effect of the EZH2 inhibitor GSK126

(McCabe et al., 2012) on sensitivity to KDM5i. We found that

treatment with GSK126 decreased global H3K27me3 levels

and rendered both C70R and C49R cells more sensitive to

KDM5i (Figures S4L and S4M). These results suggest that the

increased PRC2 activity and H3K27me3 in KDM5IR cells led to

the acquisition of a less-differentiated more basal/stem cell-like

epigenetic state (Laugesen and Helin, 2014) associated with

decreased sensitivity toKDM5 inhibition. These results also imply

that KDM5i resistance is likely due to epigenetic mechanisms.

Single-Cell Profiling of Drug-Resistant Cells
We then explored our scRNA-seq data to determine whether we

could detect rare cells with gene expression signatures of drug-

resistant cells prior to treatment and whether drug-resistant and

drug-treated cells show similar gene expression profiles. Thus,

we selected genes differentially expressed between parental

MCF7 and FULVR or fulvestrant-treated cells based on bulk

RNA-seq data (Figure S5A, Table S5) and investigated if single

cells could be classified into one of these three transcriptionally

distinct groups (i.e., parental MCF7, FULVR, and MCF7+FULV).

While almost all single cells in FULVR population were classified

as FULVR, very few such cells were present in parental MCF7

and in fulvestrant-treated cell populations (Figure 5A), implying

that drug-resistant clones were selected from a mixed popula-

tion during treatment. The majority of FULV-treated cells were

classified as ‘‘MCF7+FULV’’ and FULVR cells lacked such a

cell population, further suggesting that FULVR cells represent

a distinct subpopulation (Figure 5A). Similarly, we defined the

transcriptional signatures of C70-treated and C70R cells (Fig-

ure S5B) and classified single cells into one of the three states

(i.e., parental MCF7, C70R, and MCF7+C70). In contrast to

FULVR cells, cells classified as ‘‘MCF7+C70’’ were present in

the C70R cell population, although the majority of C70R cells

had a C70R signature (Figure 5B). In parental MCF7 cells the
C49.

genes in C70R cells and genes in endocrine-resistant cells. Genes are ranked

nd endocrine-resistant cells (FULVR and TAMR) on the x axis, with up genes in

down genes in C70R compared with MCF7 cells are plotted as red and blue

-ESR1Y537S cells.

ium.

cells after estrogen deprivation (0 min) and 45 min after E2 treatment. Only the

ferent time points (0–6 hr) after E2 treatment and ER chromatin binding in the

shows the median, and whiskers show the locations of either 1.53 IQR above

S3, and S4.

Cancer Cell 34, 939–953, December 10, 2018 947



Figure 5. Single-Cell Profiling of Drug-Resistant Cells

(A) Hexagonal plots depicting the bootstrap classification of single cells in populations ofMCF7, fulvestrant-treated (MCF7+FULV), and FULVR cells. Each point is

one single cell and is positioned along axes according to its bootstrapping classification score for the indicated cell identity. Black, green, and blue cells are

classified as MCF7, MCF7+FULV, and FULVR cells, and gray cells are unclassified. A few cells are classified as combination of two cell identities and are

represented by mixed color of the two, and positioned at the edges of 2, 6, and 10 o’clock.

(B) Hexagonal plots depicting the bootstrap classification of single cells in populations of MCF7, C70-treated MCF7 (MCF7+C70), and C70R cells. Each point is

one single cell and is positioned along axes according to its bootstrapping classification score for the indicated cell identity. Black, light blue, and red cells are

classified as MCF7, MCF7+C70, and C70R cells, and gray cells are unclassified. A few cells are classified as combination of two cell identities and are repre-

sented by mixed color of the two, and positioned at the edges of 2, 6, and 10 o’clock.

(C) Projection of SPADE tree for each cell line. Colors and size of the node correspond to the percentage of cells that belongs to a given cluster. Light gray dots

mark cells with low marker expression in all channels.

(D) Relative proportions of cells in FULVR population with MCF7, MCF7+C70, and C70R gene signature.

(E) Relative proportions of cells in C70R population with MCF7, MCF7+FULV, and FULVR gene signature.

See also Figure S5 and Table S5.
majority of single cells were classified as ‘‘parental’’ with a few

cells representing C70R and MCF7+C70 states, while the

parental state was rarely detected in C70R cells (Figure 5B).

CyTOF experiments also confirmed that FULVR cells represent

a very distinct cell population, while fulvestrant- and C70-

treated, and C70R cells are more related to parental MCF7 cells

(Figure 5C). Thus, two different types of single-cell analysis

methods suggested that resistance to fulvestrant is due to selec-

tion for a distinct cell population, while resistance to C70 inhibitor

treatment is not due to selection for such a cell population but

rather attributable to changes in the epigenetic state such as

upregulation of H3K27me3 (Figures S4L and S4M).
948 Cancer Cell 34, 939–953, December 10, 2018
Lastly, we explored our inDrop data for potential overlaps be-

tween endocrine- and KDM5i-resistant cell populations. In line

with our observation that FULVR cells are also resistant to

KDM5i, we detected an increase in the percent of cells with

C70R signature in the FULVR population (Figure 5D). In contrast,

the FULVR signature was present in the same fraction of C70R

cells as in parental MCF7 population (Figure 5E). Analysis of

the cellular expression pattern of selected estrogen-regulated

genes (e.g., TFF1 and CDKN1A) and genes related to endocrine

(e.g., SPDEF) and KDM5i (e.g., ZMYND8 and PARP16) resis-

tance were consistent with these findings (Figure S5C). These

molecular data provide a mechanistic explanation for our



(legend on next page)
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functional data on the relatedness of responses and resistance

to anti-estrogens and KDM5i.

Modes of Resistance to Anti-estrogens and KDM5i
To investigate whether there is a pre-existing resistant popula-

tion selected during treatment or a de novo acquisition of this

phenotype, we labeled MCF7 cells with the ClonTracer barcode

library (Bhang et al., 2015), which enables the high-resolution

tracking of more than one million cancer cells during drug treat-

ment (Figure S6A). To distinguish pre-existing clones from

acquired alterations, four replicates of barcoded cells with com-

parable starting barcode representations were subjected to

long-term inhibitor treatment until resistance was achieved as

confirmed by a significant (p < 0.001) shift in the IC50 curves (Fig-

ure 6A). FULVR cells became ER independent as downregulation

of ER did not affect their viability (Figures S6B and S6C). If resis-

tance is driven by newly acquired alterations, distinct barcoded

populations would emerge in independent replicates, while if

pre-existing clones were the major source of resistance, there

should be selective enrichment for the same sets of barcodes

in multiple replicates. The treatment with FULV or TAM signifi-

cantly reduced the barcode complexity (Figures 6B,6C, and

S6D) and more than 90% of the barcodes were shared by all

four replicates (Figures 6D and S6E). These findings strongly

indicate that the vast majority of fulvestrant- and TAMR-resistant

clones were pre-existing in the parental MCF7 cell population

and were highly selected during treatment. Moreover, the barc-

odes found in FULVR clones appeared to be largely overlapping

with the barcodes found in TAMR clones (Figure 6E), indicating

that these two different endocrine therapies select for the

same pre-existing cell population. In contrast, there wasminimal

selection during C70 and C49 treatment since the barcode pool

of the KDM5i-resistant population was not appreciably different

from parental MCF7 cells at the same passage (Figures 6F,6G,

S6D, and S6E), suggesting that resistance to KDM5i is not due

to selection for pre-existing resistant cells.

We then performed mathematical modeling of the barcode

data in order to estimate the fraction of pre-existing barcodes

in the FULVR, TAMR, C70R, and C49R cells. We utilized a sto-

chastic population dynamics model (Bhang et al., 2015; McDo-

nald and Michor, 2017) parameterized using the growth kinetics

of parental as well as endocrine and KDM5IR cells (Figure 6H).

For each experimental condition, we performed ten independent

runs of the stochastic simulations (see the STAR Methods) and
Figure 6. Resistance to Anti-estrogens and KDM5i in MCF7 Cells

(A) Cellular viability after treatment with C70 and C49, fulvestrant, or tamoxifen in

represent SD, n = 6.

(B) Bar graph depicting percentage of unique barcodes in FULVR and TAMR rela

(C) Pie chart depicting percentage of barcodes overlapping between MCF7 and

(D) Bar graph depicting percentage of total barcodes shared among all replicate

(E) Pie chart depicting percentage of barcodes overlapping between FULVR and

(F) Bar graph depicting percentage of unique barcodes in C70R and C49R relati

(G) Pie chart depicting percentage of barcodes overlapping between MCF7 and

(H) Panels show model-predicted percentages of total barcodes shared by qua

fractions of pre-existing resistant barcodes (r) in the treatment with the indica

(horizontal line). The growth rates in simulations were based on experimental da

(I) Mutated genes detected in resistant but not in MCF7 cells. Colors and stars

corresponding resistant cell lines, respectively. The significance of downstream G

in up-/downregulated genes in the corresponding resistant cell lines. See also F
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estimated the fraction of pre-existing barcodes for each condi-

tion and for different estimates of the rates per cell division that

generate a resistant cell type from the parental population. Given

the experimentally observed high fraction of resistant barcodes

shared by replicates relative to parental cells (FULV:MCF7 ratio =

23.94) (Figure S6F), we found that expected rates of generating

resistant cell types (mutation probability) were less than 10�5 per

cell division in FULV treatment (Figure S6G), which is in agree-

ment with experimental findings showing the selection of pre-ex-

isting resistant clones. At this mutation probability, we identified

the fraction of pre-existing barcodes between 0.5% and 1.0%

for FULVR (Figure S6G) based on the horizontal line showing

the proportion of pre-existing resistant barcodes identified in

the experiment (Figure 6H). Similarly, we identified the pre-exist-

ing proportion of barcodes as around 1.0% for TAMR popula-

tions at a similar mutation probability. In C70R and C49R cells,

we found that the larger mutation rate (0.05%–0.1% mutations

per cell division) fits to the horizontal line (Figure 6H) to recapitu-

late the observed proportion of about 4%. Finally, to determine if

the resistant cell populations were genetically distinct, we per-

formed exome sequencing of resistant and parental MCF7 cells

and also sequenced the lentiviral integration sites. We found

numerous genetic variants present in both fulvestrant- and

TAMR-resistant cells, and gene set enrichment analysis showed

that the expression of genes downstream of some of the genetic

variants were significantly altered (Figure 6I; Table S6). Several of

the genetic variants found in both FULVR and TAMR cells were

related to glutamate metabolism (e.g., HIF1A, PCDHGA12,

TMX4, and TNR) and almost all of them were also detected in

metastatic lesions of breast cancer patients resistant to endo-

crine therapies (Cohen et al., 2017) confirming their physiologic

relevance.

DISCUSSION

Hormone-dependent ER+ luminal tumors constitute the most

common subtype representing�70%of all breast cancer cases.

Although endocrine therapies are effective for the treatment of

both early and advanced-stage disease, inherent and acquired

resistance is a major clinical challenge (Osborne and Schiff,

2011). Numerous mechanisms have been proposed to explain

endocrine resistance including changes in ER regulators and

growth factor signaling pathways (Musgrove and Sutherland,

2009; Osborne and Schiff, 2011). Exome sequencing of
parental and cells with acquired resistance to the indicated agents. Error bars

tive to parental MCF7 cells at same passage.

FULVR/TAMR cells.

s in each of the indicated cell populations.

TAMR.

ve to MCF7 cells at same passage.

C70R/C49R cells.

druplicates after simulation for different mutation probabilities (m) and seeded

ted inhibitors compared with the same statistic from the experimental data

ta.

indicate the type of mutations and significance of downstream GSEA in the

SEA represents the downstream genes of mutations are significantly enriched

igure S6 and Table S6.



metastatic lesions in endocrine-resistant disease identified

ESR1 mutations, implying that genetic alterations are likely to

be responsible for resistance in a subset of cases (Jeselsohn

et al., 2017). We have previously shown that a high KDM5B

PARADIGM (Vaske et al., 2010) activity score is associated

with shorter disease-specific survival in endocrine therapy-

treated ER+ breast cancer patients, implicating KDM5B in endo-

crine resistance (Yamamoto et al., 2014). Here we describe a

comprehensive characterization of mechanisms of response

and resistance to KDM5 inhibitors and their relevance for endo-

crine sensitivity. We found that inhibition of KDM5B and KDM5A

increases sensitivity to fulvestrant in both hormone-sensitive and

endocrine-resistant cells. Single-cell analysis of drug-sensitive

and resistant populations using inDrop and CyTOF as well as

lentiviral barcoding confirmed that endocrine resistance is due

to the selection for a pre-existing distinct cell population.

Despite the importance of intratumor phenotypic heterogene-

ity for tumor progression and therapy resistance (Marusyk et al.,

2012; Marusyk and Polyak, 2010), our understanding of regula-

tors of this process and our ability to modulate them are very

limited. Recent advances in genomic sequencing and single-

cell technologies have enabled the detailed characterization of

tumors at the single-cell level (Macaulay et al., 2017). Although

most of the single-cell studies thus far have focused on defining

individual cell types (Tirosh et al., 2016), scRNA-seq has also

been used to characterize cell-to-cell variability in immune cells

in aging (Martinez-Jimenez et al., 2017). Epigenetic regulators

such as histone modifying enzymes are critical for the establish-

ment of cell-type-specific gene expression patterns, and, thus,

they are also likely to play a role in modulating cell-to-cell vari-

ability in transcription, but this has been mostly investigated in

lower-level organisms during aging (Booth and Brunet, 2016).

We have previously shown that neoplastic and stem cell-like

mammary epithelial cells have higher transcriptomic diversity

than normal and more differentiated cells based on the analysis

of bulk gene expression data (Wu et al., 2010). Here we

describe that KDM5 histone demethylase is a regulator of

cellular transcriptomic heterogeneity in ER+ luminal breast can-

cer, and its higher expression in ER+ breast tumors is associ-

ated with higher transcriptomic, but not genetic, heterogeneity

and shorter overall survival. Higher cell-to-cell variability in-

creases the probability of therapeutic resistance (Chisholm

et al., 2016). Most studies analyzing intratumor heterogeneity

have focused on genetic alterations and in many cases thera-

peutic resistance is due to mutations in genes and pathways

targeted by the treatment (McGranahan and Swanton, 2017).

However, non-genetic variability such as epigenetic heteroge-

neity also contributes to therapeutic resistance by multiple

different mechanisms (Brock et al., 2009). One possibility is

that the distinct epigenetic state of the cells could determine

cellular response to treatment (Shibue and Weinberg, 2017).

Another option is that subpopulations of phenotypically

different cells (e.g., persisters) provide a temporary pool for se-

lection during treatment and facilitate the outgrowth of drug-

resistant mutants as demonstrated by the emergence of

EGFR(T790M)-positive clones from drug-tolerant subpopula-

tions of lung cancer cells (Hata et al., 2016). Because KDM5

activity regulates both differentiated luminal epithelial epige-

netic states and cellular transcriptomic diversity, KDM5i could
decrease the probability of therapeutic resistance in different

ways in multiple different cancer types including ER+ luminal

breast cancers.

In summary, our data highlight the importance of cellular

phenotypic heterogeneity in therapeutic responses and identifies

members of the KDM5 HDM family as key epigenetic regulators

of this process suggesting that inhibiting KDM5 activity could

decrease resistance to cancer therapies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-KDM5B Sigma-Aldrich Cat# HPA027179; RRID: AB_1851987

Rabbit polyclonal anti-KDM5B Novus Cat# 22260002; RRID: AB_10004656

Mouse monoclonal anti-H3K4me3 Abcam Cat# ab1012; RRID: AB_442796

Rabbit polyclonal anti-H3K4me2 Millipore Cat# 07-030; RRID: AB_10099880

Rabbit polyclonal anti-H3K4me1 Abcam Cat# ab8895; RRID: AB_306847

Rabbit polyclonal anti-Histone H3 Abcam Cat# ab1791; RRID: AB_302613

Mouse monoclonal anti-beta-Actin Sigma-Aldrich Cat# A2228; RRID: AB_476697

Rabbit polyclonal anti-H3K27Ac Abcam Cat# ab4729; RRID: AB_2118291

Mouse monoclonal anti-H3K27me3 Abcam Cat# ab6002; RRID: AB_305237

Rabbit polyclonal anti-H3K27me2 Abcam Cat# ab24684; RRID: AB_448222

Rabbit polyclonal anti-H3K36me2 Abcam Cat# ab9049; RRID: AB_1280939

Rabbit polyclonal anti-H3K9Ac Abcam Cat# ab4441; RRID: AB_2118292

Rabbit polyclonal anti-H3K79me2 Abcam Cat# ab3594; RRID: AB_303937

Rabbit monoclonal anti-SUZ12 Cell Signaling Technology Cat# 3737; RRID: AB_2196850

Rabbit monoclonal anti-ERa Cell Signaling Technology Cat# 8644; RRID: AB_2617128

Mouse monoclonal anti-phospho-ERa Ser118 Cell Signaling Technology Cat# 2511; RRID: AB_331289

Rabbit polyclonal anti-Cleaved Caspase-3 (Asp175) Cell Signaling Technology Cat# 9661; RRID: AB_2341188

Rabbit polyclonal anti-Histone H3 (phospho S10) Abcam Cat# ab5176; RRID: AB_304763

Rabbit polyclonal anti-H3K4me3 Abcam Cat# 8580; RRID: AB_306649

Goat anti-rabbit IgG (H+L) conjugated to Alexa Fluor 488 Thermo Fisher Scientific Cat# A-11034; RRID: AB_2576217

Rabbit monoclonal anti-PR a/b (141Pr) Cell Signaling Technology Cat# 8757

Mouse monoclonal anti-CD10 (142Nd) BD Biosciences Cat# 555373; RRID: AB_395775

Rat monoclonal anti-CD44 (143Nd) Biolegend Cat# 103002; RRID: AB_312953

Mouse monoclonal anti-cyclin D3 (144Nd) Abcam Cat# ab28283; RRID: AB_2070798

Mouse monoclonal anti-Muc1 (145Nd) Biolegend Cat# 355602; RRID: AB_2561642

Mouse monoclonal anti-Lamp2 (146Nd) Biolegend Cat# 354302; RRID: AB_11204245

Mouse monoclonal anti-CDK4 (147Sm) BD Biosciences Cat# 559677; RRID: AB_397299

Rabbit monoclonal anti-PTEN (148Nd) Cell Signaling Technology Cat# 9559; RRID: AB_390810

Rabbit monoclonal anti-E-Cadherin (149Sm) Cell Signaling Technology Cat# 3195; RRID: AB_2291471

Mouse monoclonal anti-Epcam (150Nd) Biolegend Cat# 324202; RRID: AB_756076

Mouse monoclonal anti-Her2 (151Eu) BD Biosciences Cat# 554299; RRID: AB_395352

Rabbit polyclonal anti-CK5 (152Sm) Abcam Cat# ab53121; RRID: AB_869889

Mouse monoclonal anti-CD24 (153Eu) Biolegend Cat# 311102; RRID: AB_314851

Mouse monoclonal anti-CDK1 (154Sm) Biolegend Cat# 626901; RRID: AB_2074779

Rabbit monoclonal anti-CDK6 (155Gd) Cell Signaling Technology Cat# 13331; RRID: AB_2721897

Rabbit monoclonal anti-p63 (158Gd) Abcam Cat# ab124762; RRID: AB_10971840

Rabbit monoclonal anti-TCF7 (159Tb) Cell Signaling Technology Cat# 2203; RRID: AB_2199302

Rabbit monoclonal anti-AR (160Gd) Cell Signaling Technology Cat# 5153; RRID: AB_10691711

Mouse monoclonal anti-Cyclin A (161Dy) BD Biosciences Cat# 554175; RRID: AB_395286

Mouse monoclonal anti-Ki-67 (162Dy) BD Biosciences Cat# 550609; RRID: AB_393778

Mouse monoclonal anti-SMA (163Dy) Thermo Fisher Scientific Cat# 14-9760-82; RRID: AB_2572996

Mouse monoclonal anti-cPARP (164Dy) BD Biosciences Cat# 552596; RRID: AB_394437

Rabbit monoclonal anti-Vimentin (165Ho) Cell Signaling Technology Cat# 5741; RRID: AB_10695459

(Continued on next page)

e1 Cancer Cell 34, 939–953.e1–e9, December 10, 2018



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Rat monoclonal anti-GATA-3 (166Er) eBioscience Cat# 14-9966-80; RRID: AB_1210520

Rabbit monoclonal anti-p21 (167Er) Cell Signaling Technology Cat# 2947; RRID: AB_823586

Rabbit monoclonal anti-phospho-AKT Ser473 (168Er) Cell Signaling Technology Cat# 4060; RRID: AB_2315049

Rabbit monoclonal anti-phospho-STAT3 Tyr705 (169Tm) Cell Signaling Technology Cat# 9145; RRID: AB_2491009

Rabbit monoclonal anti-EGFR (170Er) Cell Signaling Technology Cat# 4267; RRID: AB_2246311

Rabbit monoclonal anti-phospho-SMAD2 Ser465/467/

Smad3 Ser423/425 (171Yb)

Cell Signaling Technology Cat# 8828; RRID: AB_2631089

Rabbit monoclonal anti-ERa (172Yb) Cell Signaling Technology Cat# 13258; RRID: AB_2632959

Rat monoclonal anti-CD49f (173Yb) Biolegend Cat# 313602; RRID: AB_345296

Rabbit monoclonal anti-phospho-STAT5 Tyr694 (174Yb) Cell Signaling Technology Cat# 4322; RRID: AB_10548756

Rabbit monoclonal anti-phospho-S6 Ser235/236 (175Lu) Cell Signaling Technology Cat# 4858; RRID: AB_916156

Mouse monoclonal anti-CK8/18 (176Yb) Cell Signaling Technology Cat# 4546; RRID: AB_2134843

Chemicals, Peptides, and Recombinant Proteins

C49 (NCGC00371442) This paper; Johansson et al. (2016) N/A

C70 (NCGC00371443) This paper; Johansson et al. (2016) N/A

C48 Genentech N/A

Fulvestrant Sigma-Aldrich I4409

4-hydroxytamoxifen Sigma-Aldrich T176

b-Estradiol Sigma-Aldrich E2758

GSK126 Selleckchem Cat# S7061

Critical Commercial Assays

CellTiter-Glo Luminescent Cell Viability Assay Promega G7573

ThruPLEX DNA-seq 48S Kit RUBICON R400427

Deposited Data

All raw genomic data GEO GSE104988

Experimental Models: Cell Lines

MCF7 cells Marc Lippman (University of Michigan) N/A

T-47D cells ATCC HTB-133

ZR-75-1 cells ATCC CRL-1500

BT-474 cells ATCC HTB-20

SUM185 cells Steve Ethier (University of Michigan) N/A

SUM159 cells Steve Ethier (University of Michigan) N/A

SUM 149 cells Steve Ethier (University of Michigan) N/A

MDA-MB-231 cells ATCC HTB-26

BT549 cells ATCC HTB-122

HCC1937 cells ATCC CRL-2336

HCC2157 cells ATCC CRL-2340

KDM5-C49R This paper N/A

KDM5-C70R This paper N/A

FULVR This paper N/A

TAMR This paper N/A

MCF7-ESR1Y537S Myles Brown N/A

MCF7 sgcontrol cells This paper N/A

MCF7 KDM5B-KO#1 cells This paper N/A

MCF7 KDM5B-KO#2 cells This paper N/A

MCF7 KDM5A-KO#1 cells This paper N/A

MCF7 KDM5A-KO#2 cells This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

Edit-R Lentiviral Blast-Cas9 Dharmacon CAS10138

Edit-R Lentiviral sgRNA Non-targeting Control Dharmacon GSG11812

Edit-R Human KDM5B Lentiviral sgRNA#1 Dharmacon GSGH11838-246552182

Edit-R Human KDM5B Lentiviral sgRNA#2 Dharmacon GSGH11838-246552189

Edit-R Human KDM5A Lentiviral sgRNA#1 Dharmacon GSGH11838-246592353

Edit-R Human KDM5A Lentiviral sgRNA#2 Dharmacon GSGH11838-246592357

Oligonucleotides

ON-TARGETplus Non-targeting siRNA#1 Dharmacon D-001810-03-05

ON-TARGETplus Non-targeting siRNA#2 Dharmacon D-001810-04-05

ON-TARGETplus Human ESR1 siRNA#1 Dharmacon J-003401-11

ON-TARGETplus Human ESR1 siRNA#2 Dharmacon J-003401-12

ON-TARGETplus Human ESR1 siRNA#3 Dharmacon J-003401-13
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Kornelia

Polyak, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA. E-mail: kornelia_polyak@dfci.harvard.edu; tel:

617-632-2106; fax: 617-582-8490.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Breast Cancer Cohort Data
We obtained the normalized gene counts, isoform counts and exon counts data (Level 3, RNAseqV2) and clinical data from The

Cancer Genome Atlas (TCGA) Broad GDAC Firehose database (https://gdac.broadinstitute.org/). Normalized microarray gene

expression and clinical data of a cohort of 132 primary tumors from tamoxifen-treated patients followed up more than 5-years

were obtained from GEO accession number GSE9893 (Chanrion et al., 2008). We also analyzed an unpublished dataset of RNA-

seq gene expression RPKM (Reads Per Kilobase of transcript, per Million mapped reads) of a cohort of 109 ER+ distant metastases

that are part of theMetastatic Breast Cancer Project (Cohen et al., 2017). Breast cancer patients were >18 years of age and all but one

female. Informed consent was obtained from all patients and the study was approved by the Dana-Farber/Harvard Cancer Center

Institutional Review Board (DF/HCC Protocol 05-246).

Breast Cancer Cell Lines
Breast cancer cell lines were obtained from ATCC or generously provided by Steve Ethier (SUM cell lines, University of Michigan) and

Marc Lippman (MCF7 cells, University ofMichigan) and cultured following the provider’s recommendations. Briefly, MCF7, C70R and

C49R cells were cultured in DMEM supplemented with 10% FBS, 1% penicillin/streptomycin and 10 mg/ml insulin. FULVR, TAMR,

andMCF7 as their corresponding control were cultured in RPMI without phenol red supplemented with 10% charcoal-stripped FBS,

1% penicillin/streptomycin and 10 mg/ml insulin. For estrogen deprivation/stimulation experiments cells were cultured in RPMI

without phenol red supplemented with 10% charcoal-stripped FBS, 1% penicillin/streptomycin. Fulvestrant-resistant cells were

generated by culturing parental MCF7 cells in phenol red-free RPMI containing 10% charcoal stripped FBS over a period of 3months

in the presence of 10mM fulvestrant, and then maintained them in 1mM fulvestrant.

Barcoding and Selection for Resistant Cells
High-complexity barcode library, ClonTracer, was as a kind gift from Frank Stegmeier (Novartis). Barcoding experiments were

performed as previously described. Briefly, MCF7 cells were barcoded by lentiviral infection using 8 mg/ml polybrene. After a 24 h

incubation with virus, infected cells were selected with 2 mg/ml puromycin. To ensure that the majority of cells were labeled with a

single barcode per cell, for lentiviral infection we used a target m.o.i. of approximately 0.2, corresponding to 20% infectivity after pu-

romycin selection. Infected cell populations were expanded in culture for theminimal time period to obtain a sufficient number of cells

to set up replicate experiments. Barcoded MCF7 cells were treated with four different inhibitors: fulvestrant (10 mM), 4-OHT (5 mM),

KDM5-C70 (10 mM) and KDM5-C49 (10 mM). The control groups were treated with 0.1% DMSO. Each group was cultured in quadru-

plicate. Cells were cultured in DMEM supplemented with 10% FBS, 1% penicillin/streptomycin and 10 mg/ml insulin for KDM5-C70,

KDM5-C49 and their corresponding control or RPMI without phenol red supplemented with 10% charcoal-stripped FBS, 1%

penicillin/streptomycin and 10 mg/ml insulin for fulvestrant, 4-OHT and their corresponding control. To keep the baseline control

population as close as possible to that of the treatment group, each treatment group was cultured at the same passage as their
e3 Cancer Cell 34, 939–953.e1–e9, December 10, 2018
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corresponding control group, because random barcode loss during passaging has been reported previously. Genomic DNA was ex-

tracted from the frozen cell populations with a QIAamp DNA Mini Kit (Qiagen). We used PCR to amplify the barcode sequence for

NGS by introducing Illumina adaptors and 5-bp-long index sequences. Uniquely indexed libraries were pooled in equimolar ratios

and sequenced on an Illumina NextSeq500 with single-end 75 bp reads by the Dana-Farber Cancer Institute Molecular Biology

Core Facilities.

Animal Model
For xenograft assays female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice at 5–6-weeks of age were purchased from the Jackson Labo-

ratory. Animal experiments were performed by the Lurie Family Imaging Center following protocols approved by the Dana-Farber

Cancer Institute Animal Care and Use Committee.

METHOD DETAILS

Cellular Viability Assay
Cellular viability assays (N = 6) were performed using CellTiter-Glo (Promega) ten days after treatments and repeated 2–3 times. Cells

were plated in 96-well plates and treated with inhibitors. Cells were cultured at 37�Cwith 5%CO, and the mediumwas replaced with

fresh medium (with or without inhibitors) every two days.

ChIP-seq and RNA-seq
For KDM5B ChIP-seq, 13 107 cells were fixed with 2mMDSG (Thermo Fisher Scientific cat#20593) for 30 min at room temperature.

DSG was then removed and replaced with fixing buffer (50 mM HEPES-NaOH (pH 7.5), 100 mM NaCl, 1 mM EDTA) containing 1%

paraformaldehyde (Electron Microscopy Sciences, 15714) and crosslinked for 10 min at 37�C. For histone modification ChIP-seq,

5 3 106 cells were fixed with 1% paraformaldehyde for 10 min at room temperature. For ER ChIP-seq, 1 3 107 cells were fixed

with 1% paraformaldehyde for 10 min at 37�C. Crosslinking was quenched by adding glycine to a final concentration of 0.125 M.

Cells were washed with ice-cold PBS and harvested in PBS. The nuclear fraction was extracted by first resuspending the pellet in

1 ml of lysis buffer (50 mM HEPES-NaOH (pH 8.0), 140 mM NaCl, 1mM EDTA, 10% glycerol, 0.5% NP-40, and 0.25% Triton

X-100) for 10 min at 4�C. Cells were pelleted, and washed in 1 ml of wash buffer (10 mM Tris-HCL (pH 8.0), 200 mM NaCl, 1 mM

EDTA) for 10 min at 4�C. Cells were then pelleted and resuspended in 1 ml of shearing buffer (10 mM Tris-HCl (pH 8), 1 mM

EDTA, 0.1% SDS) and sonicated in a Covaris sonicator. Lysate was centrifuged for 5 min at 14,000 rpm to purify the debris. Then

100 ml of 10% Triton X-100 and 30 ml of 5M NaCl were added. The sample was then incubated with 20 ml of Dynabeads Protein G

(LifeTechnologies,10003D) for 1 h at 4�C. Primary antibodies were added to each tube and immunoprecipitation (IP) was conducted

overnight in the cold room. Cross-linked complexes were precipitated with Dynabeads Protein G for 2 hr at 4�C. The beads were then

washed in low salt wash buffer (20 mM Tris-HCl pH 8, 150 mM NaCl, 10 mM EDTA, and 1% SDS) for 5 min at 4�C, high salt wash

buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, and 1% SDS) for 5 min at 4�C and LiCl wash buffer (50 mM Tris-HCl pH 8, 10 mM

EDTA, and 1% SDS) for 5 min at 4�C. DNA was eluted in elution buffer (100 mM sodium bicarbonate and 1% SDS). Cross-links

were reversed overnight at 65�C. RNA and protein were digested with 0.2 mg/ml RNase A for 30 min at 37�C followed by

0.2 mg/ml Proteinase K for 1 h at 55�C. DNA was purified with phenol-chloroform extraction and isopropanol precipitation. ChIP-

seq libraries were prepared using the Rubicon ThruPLEX DNA-seq Kit from 1 ng of purified ChIP DNA or input DNA according to

the manufacturer’s protocol. RNA-seq: Total RNA was extracted using the RNeasy Mini Kit (Qiagen). RNA-seq libraries were pre-

pared using Illumina TruSeq Stranded mRNA sample preparation kits from 500 ng of purified total RNA according to the manufac-

turer’s protocol. The finished dsDNA libraries were quantified by Qubit fluorometer, Agilent TapeStation 2200, and RT-qPCR using

the Kapa Biosystems library quantification kit according tomanufacturer’s protocols. Uniquely indexed libraries were pooled in equi-

molar ratios and sequenced on an Illumina NextSeq500 with single-end 75 bp reads in the Dana-Farber Cancer Institute Molecular

Biology Core Facilities.

Xenograft Assays
For xenograft assays 5–6-weeks old female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were purchased from The Jackson Laboratory.

Twenty-four hours prior to implantation of MCF7 cells, estrogen pellets (0.18 mg/pellet 17b-estradiol, 90-day release, Innovative

Research of America) were implanted subcutaneously between the scapulae of mice. Tumors were induced by bilateral orthotopic

mammary fat pad injection of 53 106 cells suspended in 100 ml of culturemedium/Matrigel Growth Factor Reduced Basement Mem-

brane Matrix, Phenol Red-Free (Corning) in a 1:1 ratio. Animal experiments were performed by the Lurie Family Imaging Center

following protocols approved by the Dana-Farber Cancer Institute Animal Care and Use Committee. After 27 days, mice were ran-

domized to treatment groups based on tumor size. Micewere administered FULV (5mg per dose, weekly), KDM5 inhibitor 48 (100mg

per kg, BID), combination of FULV and 48, or vehicle only (control) for 21 days. Tumors implanted in mice were imaged using mag-

netic resonance imaging (MRI). Mice were euthanized and tumors collected 22 days after injection.

Immunoblotting
Cells were lysed in RIPA buffer. Proteins were resolved in SDS-polyacrylamide gels (4–12%) and transferred to PVDFmembranes by

using a Tris-glycine buffer system.Membranes were blocked with 2.5%milk powder in 0.1% Tween20 in TBS (TBS-T) for 1 h at room
Cancer Cell 34, 939–953.e1–e9, December 10, 2018 e4



temperature followed by incubation with primary antibodies in 2.5% milk TBS-T. The membranes were developed with Immobilon

substrate (EMD Millipore).

Immunofluorescence Analyses
After deparaffinization and rehydration, slides were subjected to antigen retrieval in citrate buffer (pH 6; Dako) for 20min in a steamer.

Blocking solution (100% goat serum) was applied for 10 min. Incubation with primary antibody in PBS with 5% goat serum was held

overnight at 4�C in amoist chamber. Secondary antibody was applied for 1 h at room temperature. Samples weremounted with Vec-

taShield HardSet Antifade Mounting Medium with DAPI (Vector Laboratories). Imaging was performed in Servicebio (http://www.

servicebio.com).

Antibodies and Inhibitors
Compounds KDM5-C49 and KDM5-C70 were synthesized following the reported procedure (Tumber et al., 2017), and also sourced

from commercial vendors. All the chemical reagents and anhydrous solvents were purchased from Sigma-Aldrich and Strem. Pre-

parative purification was performed on a Waters semi-preparative HPLC system using a Phenomenex Luna C18 column (5 micron,

30 x 75 mm) at a flow rate of 45 mL/min. The mobile phase consisted of acetonitrile and water (each containing 0.1% trifluoroacetic

acid). A gradient of 10% to 50% acetonitrile over 8 min was used during the purification. Fraction collection was triggered by UV

detection (220 nm). Analytical analysis was performed on an Agilent LC/MS (Agilent Technologies, Santa Clara, CA). A 7min gradient

of 4% to 100% Acetonitrile (containing 0.025% trifluoroacetic acid) in water (containing 0.05% trifluoroacetic acid) was used with an

8 min run or a 3 min gradient of 4% to 100%Acetonitrile (containing 0.025% trifluoroacetic acid) in water (containing 0.05% trifluoro-

acetic acid) was used with a 4.5 min run time at a flow rate of 1 mL/min. Phenomenex Luna C18 column (3 micron, 3 x 75 mm) or

Phenomenex Gemini Phenyl column (3 micron, 3 x 100 mm) was used at a temperature of 50�C. Purity determination was performed

using an Agilent Diode Array Detector. Mass determination was performed using an Agilent 6130 mass spectrometer with electro-

spray ionization in the positive mode. 1H NMR spectra were recorded on Varian 400 MHz spectrometers. Chemical shifts are re-

ported in ppm with undeuterated solvent (DMSO-d6 at 2.49 ppm) as internal standard for DMSO-d6 solutions. All of the analogs

tested in the biological assays have purity greater than 95%, based on both analytical methods. High resolution mass spectrometry

was recorded on Agilent 6210 Time-of-Flight LC/MS system. Confirmation of molecular formula was accomplished using

electrospray ionization in the positive mode with the Agilent Masshunter software (version B.02). Fulvestrant (I4409), 4-hydroxyta-

moxifen (4-OHT, T176) and b-Estradiol (E2758) were from Sigma, GSK126 was purchased from Sellechem, and KDM5 inhibitor

48 was provided by Genentech under a Material Transfer Agreement. Antibodies used for immunoblotting were anti-KDM5B (Sigma,

HPA027179), anti-H3K4me3 (Abcam, ab1012), anti-H3K4me2 (Millipore, 07-030), anti-H3K4me1 (Abcam, ab8895), and anti-Histone

H3 (Abcam, ab1791), b actin (Sigma, A2228), anti-H3K27Ac (Abcam, ab4729), anti-H3K27me3 (Abcam, ab6002), anti-H3K27me2

(Abcam, ab24684), anti-H3K36me2 (Abcam, ab9049), anti-H3K9Ac (Abcam, ab4441), anti-H3K79me2 (Abcam, ab3594), anti-

SUZ12 (Cell Signaling, 3737), anti-EZH2 (Cell signaling, 5246), anti-ERa (Cell Signaling, 8644) , anti-phospho-ERa Ser118 (Cell

Signaling, 2511). The antibodies used for ChIP were anti-KDM5B (Novus Biologicals, 22260002), anti-H3K4me3 (Abcam, ab1012),

anti-H3K4me2 (Millipore, 07-030) and anti-ERa (Cell Signaling, 8644). Antibodies used for Immunofluorescence were anti-Cleaved

Caspase-3 (Cell Signaling, 9661; 1:200 dilution), anti-Histone H3 phospho S10 (Abcam, ab5176; 1:200 dilution), anti-H3K4me3

(Abcam, ab8580; 1:500 dilution) and goat anti-rabbit IgG (H+L) conjugated to Alexa Fluor 488 (Thermo Fisher Scientific; 1:100

dilution).

CRISPR Experiments
Lentiviral Blast-Cas9, lentiviral sgRNA non-targeting control, KDM5B lentiviral sgRNA and KDM5A lentiviral sgRNA were purchased

from Dharmacon. Following selection with blasticidin for Cas9, MCF7 cells were infected with each sgRNA and selected with puro-

mycin. Knockout efficacy was determined by western blotting and cells were seeded for cell viability assays as described above.

inDrop
8 3 104 cells were pelleted and resuspended in 1 ml of 15% OptiPrep Density Gradient Medium (Sigma). Single-cell RNA-seq was

performed using the inDrop protocol on a custom system as described (Zilionis et al., 2017). Hydrogel beads with version 3 oligonu-

cleotide design were purchased from the Harvard Single Cell Core (https://iccb.med.harvard.edu/single-cell-core). Microfluidic

encapsulation chips were purchased from 1CellBio (part no. 10080). Library preparation was performed as described (Zilionis

et al., 2017).

Mass Cytometry
Antibodies used for mass cytometry in this study are listed in a table above. All antibodies were purchased in carrier-free buffers from

the indicated sources and conjugated with the respective lanthanide metals by the CyTOF Antibody Resource and Core at Brigham

Women’s Hospital, Boston, MA, USA. Cells were treated with 50 mM IdU-127 (Fluidigm, South San Francisco, CA, USA) for 30 min

and 100 mMof the intercalator-103Rh (Fluidigm) for 15 min at 37�C in their respective medium. Next, 1x106 cells of each sample were

barcoded using the Cell-ID 20-Plex Pd Barcoding Kit (Fluidigm) according to the manufacturer’s instructions. Barcoded samples

were pooled and stained simultaneously. Cells were fixed for 10 min with paraformaldehyde (Electron Microscopy Sciences,

Hattfield, PA, USA) at a final concentration of 1.6 % followed by Fc-receptor block (Human TruStain FcX, Biolegend, San Diego,
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CA) for 10 min and surface antibody staining for 30 min at room temperature. Subsequently, cells were permeabilized with methanol

for 10 min on ice and incubated with the antibody cocktail for intracellular epitopes for 30 min. Cells were kept at 4�C overnight in Fix

and Perm Buffer (Fluidigm) supplemented with Intercalator-IR (Fluidigm) 1:2000. Prior to analysis cells were washed with water,

resuspended in water containing EQ� Four Element Calibration Beads (Fluidigm) (1:10) and filtered through a 35 mm strainer. Sam-

ples were acquired at a CyTOF Helios instrument (Fluidigm), normalized as previously described (Bendall et al., 2011) and analyzed

with Cytobank (Cytobank, Inc., Mountain View, CA). For all washes during staining Cell Staining Media (PBS with 0.5% BSA, 0.02%

NaN3) was used.

Mass Spectrometry Analysis of Histone Modifications
Briefly, histones were isolated from cell nuclei using acid extraction, biochemically prepared, and analyzed by mass spectrometry

against a reference of stable isotope-labeled synthetic peptide standards exactly as described (Creech et al., 2015).

QUANTIFICATION AND STATISTICAL ANALYSIS

ChIP-seq Analysis
Adapter sequences of ChIP-seq raw reads are removed by using cutadapt (https://doi.org/10.14806/ej.17.1.200). Trimmed reads are

aligned by bowtie2 using default parameters to version hg19 of human genome. The samtools (Li et al., 2009) and picard (http://

broadinstitute.github.io/picard) are used to sort and remove duplicated reads to avoid PCR bias from the sequencing process.

Each group of libraries after the above pre-processing is down-sampled (without replacement) to a fixed number of reads. Peak

calling (identification of regions of ChIP-seq enrichment over background) is performed by using MACS2 (Zhang et al., 2008) with

parameters of ‘‘–extsize=146 –nomodel’’. The ‘‘broad peak’’ option is on when identifying binding regions of KDM5B, H3K4me3

and H3K4me2.

RNA-seq Analysis
Raw RNA-seq reads are aligned to version hg19 of human genome by using Tophat2 (Kim et al., 2013) with the default parameters.

Gene counts are quantified by using HT-seq (Anders et al., 2015) with REFSEQ annotation. Differentially expressed genes are iden-

tified by using DEseq2 (Love et al., 2014) with cutoff of q value < 0.01 and fold change > 1.5, ranked by the statistics.

Barcoding Data Analysis
We followed themethod used in Bhang et al., (2015) with small modifications. In details, all sequencing reads are trimmed by using 3’

adaptor sequence: AGCAGAGCTACGCACTCTATGCTAGTGCTAGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTCACGAT

CGTATCTCGTATGCCGTCTTCTGCTTG with minimum alignment length of 40-nt. The trimmed reads with Ns or less than 30-nt or

without the WS x 15 pattern are removed. Then the 30-nt barcode sequences are extracted from the 3’ prime end of the trimmed

sequences. Barcodes with an estimated Phred quality score of at least 10 for all nucleotides and with an average Phred quality score

greater than 30 are kept as qualified barcodes. The barcodes with only one count are excluded from the analyses to avoid the noise

derived from the sequencing error.

Exome Sequencing
Exome sequencing was performed in the Dana-Farber Cancer Institute Center for Cancer Genome Discovery.

Library Preparation and Sequencing

Sequencing libraries were prepared as previously described (Brastianos et al., 2013). Briefly, gDNA from five cell lines and one human

CEPH normal (http://hapmap.ncbi.nlm.nih.gov/citinghapmap.html.en) were fragmented to 250 bp using Adaptive Focused Acous-

tics (AFA) ultra-sonication (Covaris Inc., Woburn, MA) and further purified using Agencourt AMPure XP beads (Beckman Coulter,

Inc., Indianapolis, IN). A total of 50 ng of size-selected DNA was ligated to DNA barcoded adaptors during library preparation

(KAPA HTP DNA Library Preparation Kit, KK8234, Kapa Biosystems, Inc., Wilmington, MA). Each library was made with sample-

specific barcodes and quantified using an Illumina MiSeq Nano flow cell (Illumina Inc., San Diego, CA). For exome enrichment,

the 6 libraries were pooled in 3 x 2-plex to a total of 750 ng per pool, and exonic regions were captured with the SureSelect Target

Enrichment system using the Human All Exon V5 hybrid capture kit (Agilent Technologies, Santa Clara, CA). All captures were further

pooled and sequenced in two lanes of the HiSeq 2500 system in Rapid Run Mode (Illumina Inc., San Diego, CA).

Demultiplexing, Mapping, SNV, Indel and Copy Number Calling

Samples sequenced in the same lane were demultiplexed using the Picard tools. Read pairs were aligned to the hg19

reference sequence using the Burrows-Wheeler Aligner (Li and Durbin, 2009), and data were sorted and duplicate-marked using

Picard tools. The alignments were further refined using the Genome Analysis Toolkit (GATK) (DePristo et al., 2011; McKenna et al.,

2010) for localized realignment around indel sites (https://software.broadinstitute.org/gatk/documentation/tooldocs/current/

org_broadinstitute_gatk_tools_walkers_indels_IndelRealigner.php). Recalibration of quality scores was also performed using the

GATK (http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bqsr). Mutation analysis for single nucle-

otide variants (SNV)wasperformedusingMuTect v1.1.4 (Cibulskis et al., 2013) in pairedmodeusing theCEPHas the ‘‘project normal,’’

and indel calling was performed using theGATKSomaticIndelDetector tool. SNVs and indels were annotated using Variant Effect Pre-

dictor (McLaren et al., 2010). Copy number variants were identified using RobustCNV, an algorithm in development at the CCGD
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(M. Ducar, personal communication). RobustCNV relies on localized changes in the mapping depth of sequenced reads to identify

changes in copy number at the loci sampled during targeted capture. This strategy includes a normalization step in which systematic

bias in mapping depth is reduced or removed using robust regression to fit the observed tumor mapping depth against a panel of

normals (PoN) sampled with the same capture bait set. Observed values are then normalized against predicted values and expressed

as log2ratios.A secondnormalizationstep is thendone to removeGCbiasusinga loessfit. Finally, log2ratiosarecenteredonsegments

determined to be diploid based on the allele fraction of heterozygous SNPs in the targeted panel. Normalized coverage data is next

segmented using Circular Binary Segmentation (Olshen et al., 2004) with the DNAcopy Bioconductor package. Finally, segments

are assigned ‘‘gain,’’ ‘‘loss,’’ or ‘‘normal-copy’’ calls using a cutoff derived from thewithin-segment standard deviation of post-normal-

ized mapping depths and a tuning parameter which was set based on comparisons to array-CGH calls in separate validation

experiments.

Resistant Cell-specific Mutations and Downstream GSEA Analysis
Resistant cell-specific mutations in each cell line were defined as mutations observed in that resistant cell line with variant allele

frequency R 10% and coverage R 30, but not observed in parental MCF7 cell line. Downstream GSEA is a pathway-based algo-

rithm. We searched seven available pathway databases (KEGG, BIOCARTA, REACTOME, NCI, SPIKE, HUMANCYC and PANTHER)

to identified downstream genesets of each resistant-specific mutation. Then we used GSEA algorithm to calculate whether these

downstream genesets are significantly differentially expressed between parental MCF7 and corresponding resistant cell line. The

GSEA q value can thus represent the functional effect of each resistant cell-specific mutation.
List of Lentiviral Integration Sites in Drug-Resistant Single Clones

Clone Name Insertion Site Intergenic/Intronic/Exonic Nearest Gene Nearest Exon Distance (bp)

bFULVR_1 Chr6: 111656384 Intronic REV3L Upstream of exon 23 441

bFULVR_2 Chr10: 5058744 Intronic AKR1C2 Downstream of exon 1 1,348

bFULVR_3 Chr3: 167413258 Intronic PDCD10 Downstream of exon 6 126

bFULVR_4 Chr3: 177415316 Intergenic PROP1 Downstream of gene 3,920

bFULVR_5 Chr3: 5058744 Intronic AKR1C2 Downstream of exon 1 1,348

bFULVR_6 Chr3: 167413258 Intronic PDCD10 Downstream of exon 6 126

bTAMR_1 Chr22: 42268989 Intronic SREBF2 Upstream of exon 5 813

bTAMR_2 Chr16: 90017249 Intronic DEF8 Downstream of exon 2 1,203

bTAMR_3 Chr5: 60786357 Intronic ZSWIM6 Upstream of exon 3 256

bTAMR_4 Chr16: 90017249 Intronic DEF8 Downstream of exon 2 1,203

bTAMR_5 Chr17: 57650363 Intronic DHX40 Upstream of exon 4 114

bTAMR_6 Chr19: 49751444 Intergenic TRPM4 Downstream of gene 36,346

bTAMR_7 Chr5: 60786357 Intronic ZSWIM6 Upstream of exon 3 256
Genetic Heterogeneity and Clonality Analysis of Cell Lines
The aligned files (bam) are prepared as described in ‘‘Exome sequencing’’ section. FACETS (Shen and Seshan, 2016) is used to

estimate the absolute copy number, ploidy and tumor purity of parental and resistant cell lines from aligned files. The cancer cell

fraction (CCF) of the mutations identified by MuTect2 (Van der Auwera et al., 2013) are then estimated based on the absolute

copy number, ploidy, tumor purity and variant allele frequency (VAF) as previously described (Landau et al., 2013; Lohr et al.,

2014; McGranahan et al., 2015). All mutations are classified as either clonal or subclonal according to the confidence interval of

the CCF estimates. Mutations are defined as clonal if the 95% confidence interval overlapped 1 and subclonal otherwise, which

is used in (McGranahan et al., 2015). Thus, the genetic heterogeneity/diversity of each cell line can be approximated by using the

proportion of subclonal mutations to all mutations.

Transcriptomic Heterogeneity Estimation in Clinical Samples
To access the relationship between KDM5B expression level and transcriptomic heterogeneity in primary human breast tumors, we

stratified patients into four groups with identical sample size based on the KDM5B expression level in ER+ and ER- tumors, respec-

tively. We then calculated Shannon’s equitability using gene, exon and junction level counts, respectively, within each patient to

estimate the transcriptomic heterogeneity at different levels. The Shannon’s equitability is a normalized version of Shannon’s index,

in which ‘‘0’’ represents no heterogeneity and ‘‘1’’ represents the highest heterogeneity. The Shannon’s equitability was chosen here

because the total number of population (genes) may vary for different samples. High Shannon’s equitability represents higher

transcriptomic heterogeneity. The same analysis was applied for other histone demethylases and housekeeping genes. Patient sur-

vival was compared between low and high transcriptome heterogeneity cases (cut by median of transcriptome heterogeneity across

patients) in all patients, ER+ patients and ER- patients in TCGA dataset.
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Width versus Height Analysis of Histone Marks
Promoter H3K4me3 andH3K4me2 peakswere compared in a panel of breast cancer cell lines before and after treatment with KDM5-

C70. All peaks were ranked by their height (read counts at the summit) from low to high and divided into 20 groups. For each of the

height group (represented by the mean value in x-axis), the mean and the interquartile range of the peak width in bp are calculated

and plotted in y-axis.

inDrop Data Analysis
Preprocessing of the inDrop Data

Single-cell RNA-seq data generated by inDrop version 3were processed using the indrops pipeline developed by the Klein laboratory

(https://github.com/indrops/indrops, v.0.3.1.1, commit 7979ee8a212fcec5ba726a8ccf8b7b8fa9db52cf, using Python 2.7, Rsem

1.3.0, Bowtie 1.1.1, Samtools 1.3.1, JDK 1.8.0_45) (Zilionis et al., 2017). Default parameters were applied (for Bowtie, m: 200, n:

1, l:15, e: 80; for Trimmomatic, LEADING: "28", SLIDINGWINDOW: "4:20", MINLEN: "16"; for UMI quantification, m: 10, u: 1, d:

600, split-ambigs: False, min_non_polyA: 15; for low complexity filter, max_low_complexity_fraction: 0.50; for output: output_una-

ligned_reads_to_other_fastq: False, filter_alignments_to_softmasked_regions: False). Alignment was performed against cDNA

from Ensembl GRCh38.85 release. Empty or unproductive droplets were filtered out based on the low abundance of reads per bar-

code, with a threshold set manually for each dataset after inspection of the barcode abundance distribution.

Filtering and Normalization of the inDrop Data

To get a reliable single cell transcriptome dataset, we exclude the cells with less than 1,000 genes expressed (UMI > 0), and exclude

the genes if they meet both of the criteria: expressed in less than 5% of all single cells and less than 50% of single cells of the same

type. The filtered data is then normalized by using scran (Lun et al., 2016) with deconvolution within each cell type followed by re-

scaling across cell types by using parameter ‘‘clusters’’ in computeSumFactors function. This setting can largely avoid the influence

of differentially expressed genes across cell types on the normalization accuracy (detail refers to scran paper). tSNE is performed on

the normalized data to visualize the single cells in 2 dimensions by using the top 500 most variable genes. Cell cycle phases of all

single cells are assigned by using cyclone function in scran package.

Cellular Transcriptomic Heterogeneity of Cell Lines Based on inDrop Data

Transcriptomic heterogeneity is accessed by calculating the pair-wised Euclidean distance between single cells of the same type. All

possible pair-wised distances are obtained, and the mean values are compared between cell types. TheWilcoxon rank sum test was

applied and p values were shown.

Identification of Pre-existing Resistant Cells from Single Cell Transcriptome

Cell identity signatures of MCF7, KDM5-C70 and C70R cells: For each of the three cell types, we compare the bulk gene expression

of it (three replicates) with the other two cells together (three replicates each). We choose the top most 100 up-regulated and down-

regulated genes as the (up and down) signatures of the cell type. Cell identity signatures of MCF7, fulvestrant-treated MCF7 and

FULVR cells were obtained in the sameway. Calculation of cell identity score: For each single cell, we calculated the average expres-

sion of each set of up signature genes minus the average expression of each set of down signature genes as the cell identity score.

We carried out a bootstrap procedure to estimate the significance of the cell identity score. We randomly select 1,000 sets of up and

down signatures with the same size of the original true signatures, generated the bootstrap distribution of the cell identity score, and

calculated the bootstrap p value based on the distribution. We classified the single cells based on the bootstrap p valuecutoff of 5%.

If a cell did not pass the test of any signature, it is annotated as unclassified. We observed that a few cells passed the test of two cell

identity signatures, but no cell passed the three cell identity signatures. Hexagonal plots (Figure 4) were used to show the bootstrap

classification of single cells in cell populations of MCF7, KDM5-C70 or fulvestrant-treated MCF7, and C70R and FULVR, in which

cells showed clear identity (passed the 5% threshold) are positioned on the edge of the plot.

Genes with Differential Percentage of Expressing Cells

To test genes with differential percentage of expressing cells between two cell populations, all single cells are ranked and grouped in

10 groups by their sequencing depth to avoid its influence. For each gene, the proportion of cells expressing it is calculated for each

group, and a weighted t-test is performed to access the significance of the difference between two cell populations. FDR is then

calculated to correct the multiple testing.

Gene Set Enrichment Analysis (GSEA)
GSEA of H3K4me3 width increase in C70 was performed against the genes with increased percent of expressing cells in C70 for all

genes or genes without expression change. H3K4me3 width changes were calculated as the average width changes across all six

cell lines in Figure 2C. GSEA of H3K4me3 width increase in time course of C70 treatment was performed against the differentially

expressed genes between corresponding treatment and parental cells in Figure S2D. GSEA of gene expression changes between

endocrine-resistant cells and parental MCF7 cells was performed against top 500 up- or down-regulated genes between C70R

and parental MCF7 cells in Figure 4C. GSEA of gene expression changes between KDM5 inhibitor resistant cells and parental

MCF7 cells was performed against ER binding genes of different clusters in Figure S4H.

Simulation Methods
We construct a 2-type birth-death-mutation process model with passaging to estimate the initial proportion of cells with preexisting

resistance (r) and mutation probability (m). In the model, cells live for an exponentially-distributed amount of time before splitting into
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two daughter cells according to their birth and death rateswhich are estimated from12-day cell-viability assayswith andwithout treat-

ment for each treatment (see Estimation of parameters). Upon splitting, a drug-sensitive cell may beget one sensitive and one resistant

with probability equal to the mutation probability, m or two sensitive cells with probability (1 � m). Resistant cells remain resistant.

For each combination of m and r, the process begins with 1.46 3 106 initial uniquely barcoded ancestor cells with the proportion

r as a starting resistant proportion and the rest (1�r) are sensitive. We then simulate the process by beginning with a 14-day expan-

sion phase simulated as a birth-death-mutation process for cells in DMSO to account for the initial barcode expansion. For each

treatment, 53 106 cells are sampled from the population into each of 8 subpopulations (4 treatment and 4 DMSO) using multinomial

sampling with weights equal to the number of cells present for each barcode. Each subpopulation then goes through a series of

expansions (birth-death-mutation process) and passaging (multinomial sampling with a size of 5 3 106 and weights equal to the

population sizes after expansion) according to the experimental passage schedules associated with each drug (see below). The final

passage consists of a birth-death-mutation process expansion without a sampling step. 10 simulations are run for each treatment,

pre-existing proportion, and mutation probability, and the results are fit to the experimental results in order to estimate the mutation

rate and pre-existing proportion of resistant cells. The proportion of resistant barcodes present after the experiments and the ratio of

barcodes shared among four replicates between the treatment and control group are determined for comparison to the data.

The multinomial distribution provides a fast approximation for the true multidimensional hypergeometric distribution which is

acceptable since the initial number of barcodes post expansion is large and a small number (relative to the expanded population

size) are sampled for plating.
Passage Schedule for Simulations

Group Passage Times (in Days)

MCF7-pp15 6, 7, 8, 7, 6, 8, 7, 7, 6, 8, 6, 7, 7, 7, 8, 6, 8, 6, 8, 6

C70 6, 10, 12, 10, 11, 10, 11, 10, 10, 9, 9, 11, 10, 10, 11, 12, 12, 11, 12, 13

C49 6, 10, 12, 10, 11, 10, 11, 10, 10, 9, 9, 11, 10, 10, 11, 12, 12, 11, 12, 13

MCF7 13, 15, 14, 14, 14, 10

Fulvestrant 28, 31, 24, 22, 14

Tamoxifen 21, 84, 69, 49, 17
Estimation of Parameters for Simulation
For each drug and control group, growth rates are estimated using 12-day cell viability assays to get the following rates: growth rate

of resistant cells in DMSO (lr,DMSO), growth rate of resistant cells in treatment (lr,TR), growth rate of sensitive cells in DMSO (ls,DMSO),

and growth rate of sensitive cells in treatment (ls,TR).

The growth rates of resistant populations, lr, are determined by fitting the number of viable cells to a log-transformed linear regres-

sion from experimentally generated data from resistant cell-lines. The estimated slope gives our estimated growth rate (see below).

We use the resistant growth rate alongwith the number of cells in the control 12-day growth assay containing and unknownmixture of

resistant and sensitive cells in order to determine the growth rate of sensitive cells. Given a particular value of r, we assume the con-

trol population grows approximately on according to the following equation:

NðtÞ= rNð0Þelr t + ð1� rÞNð0Þelst

whereN(t) is the number of cells at time t. This equation assumes a lowmutation probability since the experiments contain fewer cells

and are ran over a shorter time period. We solve for the growth rates of the sensitive population, (ls) with and without each drug, and

we use this value along with the resistant cell line growth rates to parameterize the model. We assume the death rate is the same

throughout the experiments and determine the birth rate from b = l + d. Changing the death rate had little effect on the results. These

growth parameters are used to parameterize the simulations along with the growth rates estimated from data.
Growth Rates of Resistant Cell Lines

Group Growth Rates in DMSO (Days-1) Growth Rates in Drug (Days-1)

C70-resistant 0.313 0.299

C49 resistant 0.321 0.305

Fulvestrant-resistant 0.221 0.173

Tamoxifen-resistant 0.199 0.142
DATA AND SOFTWARE AVAILABILITY

All raw genomic data was deposited to GEO: GSE104988.
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