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Introduction
The past decade has seen an increase in the availability of 
molecular-targeted cancer therapies.1 Though anticipated 
to revolutionize cancer treatment,2,3 the rapid onset of drug 
resistance4 has limited the effectiveness of such therapies. 
For instance, non-small-cell lung cancer (NSCLC) cells that 
harbor activating mutations in the epidermal growth factor 
receptor (EGFR) tyrosine kinase domain are exquisitely sensi-
tive to small-molecule EGFR inhibitors such as erlotinib.5–7 
However, prolonged treatment of EGFR-mutant tumors and 
tumor-derived cell lines ultimately lead to these cells becom-
ing refractory to EGFR inhibition. Numerous cell-intrinsic  
(eg, alterations to the drug’s target or activation of a compen-
sating pathway) and cell-extrinsic (eg, environmental blockade 

or alterations in drug metabolism) mechanisms for the emer-
gence of resistance have been identified; in EGFR-driven lung 
cancers, resistance can be driven by a secondary point mutation 
within EGFR, T790M, or amplification of MET.8,9

Recently, several studies have noted both the extensive 
genetic heterogeneity present within tumors10,11 and the sig-
nificant role of tumor molecular evolution of resistance in 
which selective forces acting on a tumor rapidly promote the 
growth of subclones with a fitness advantage. This process 
ultimately leads to radical alterations in tumor composition 
as drug-resistant cells come to dominate a tumor.12,13 Simi-
larly, there have been numerous studies exploring the tumor 
microenvironment,14 which comprises chemokines and other 
secreted factors, extracellular matrix components, nutrients 
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such as oxygen and glucose, and various stromal cell types. 
The tumor microenvironment (TME) is known to radically 
influence tumor progression as well as cancer cell physio-
logy.15,16 For example, naturally occurring nutrient gradients 
resulting from diffusion limitations can create individual 
niches in which cells are typically exposed to either normoxic 
or hypoxic conditions.

Though both tumor genetic heterogeneity and tumor 
microenvironmental heterogeneity have been extensively 
investigated, only a few studies have linked the two.17 For 
example, recent work has suggested that the microenviron-
ment can drive cellular adaptation14,15,18; cells inhabiting 
regions of hypoxia and acidosis may upregulate glycolysis and 
become resistant to acid-meditated toxicity in order to survive 
these harsh environmental conditions.16,19 Consequently, the 
microenvironment may influence the fitness of cancer cells and 
drive the evolution of a tumor.7,14,15,17,18 The interplay between 
the selective effects imposed by treatments and those of the 
tumor microenvironment is still poorly understood.19–21

One approach to gain insight into the emergence and 
spread of drug resistance throughout tumors relies upon the 
development of stochastic evolutionary models. So far, many of 
these models have been aimed primarily at understanding the 
accumulation of resistance mutations in exponentially grow-
ing, homogeneously mixed tumors so as to quantify the risk 
of resistance preexisting to therapy.22–31 These models employ 
stochastic processes that describe rare mutational events and 
the clonal evolution of sensitive and resistant cell population 
sizes. A second thread in current research is directed toward 
the dynamics of resistant cell populations during treatment. 
These works often utilize compartment-based ordinary dif-
ferential equation models of sensitive and resistant cell popu-
lations32–36 or stochastic process models.37–43 A major goal of 
these studies is to optimize treatment scheduling to minimize 
the total tumor burden or resistance fraction and maximize 
survival time.

Although there has been a lot of effort devoted to devel-
oping spatial models of tumor growth,44–46 the majority of 
the stochastic evolutionary models of drug resistance in can-
cer mentioned above have assumed that the tumor is spatially 
uniform. These works have investigated the temporal dynam-
ics of evolution and selection rather than the spatial dynamics 
in a tumor. For example, in previous work, we have utilized in 
vitro characterizations of cell behavior under standard labora-
tory conditions to inform evolutionary modeling predictions 
of tumor dynamics.43,47,48 These studies did not consider the 
contributions of the microenvironment when determining 
tumor growth rates and other cellular behaviors in response 
to therapy. The few spatial evolutionary models of drug resis-
tance have focused dominantly on variation in the perfusion 
of drug throughout a tumor.49,50 Outside the context of cancer, 
the impact of spatial environmental gradients on the develop-
ment of antibiotic resistance has also been recently modeled 
by Hermsen and colleagues.51 This study showed that drug  

gradients can foster certain types of population adaptation that 
are impossible in uniform environments, by allowing resistant 
mutants to evade competition in certain niches created by the 
heterogeneous environment. These preliminary studies have 
demonstrated the role of spatial environmental heterogene-
ity on the dynamics of drug resistance in cancer. However, 
these studies did not include any broader components of the 
microenvironment, such as variation in nutrient availability. 
To improve the utility of these models for designing treatment 
strategies, a better understanding of the feedback between the 
spatiotemporal gradients of nutrients and drug on the overall 
tumor dynamics and evolution of drug resistance is needed.

Here, we explored whether selection pressures imposed 
by the microenvironment (ie, oxygen, glucose, and drug lev-
els) influence the rate of tumor growth and the penetrance of 
drug resistance among clinically relevant subtypes of EGFR- 
mutant NSCLC. We found that exposing the same cancer 
cells to different microenvironmental conditions changed their 
overall behavior in terms of growth and response to therapy. 
This observation has a significant impact on the evolution-
ary dynamics of the entire tumor population as indicated by 
mathematical model predictions. We used our approach to ask 
the following questions: 1) to what extent does the microenvi-
ronment influence the time to tumor rebound? 2) what is the 
percentage of drug resistance at rebound time? and 3) what is 
the probability of resistance survival in different microenvi-
ronmental niches? By understanding the relationship between 
TME and evolution of resistance, it may ultimately become 
possible to develop treatment approaches that rely not only 
upon therapeutics targeting cancer cells but also upon thera-
peutics that modulate the microenvironment.

Materials and Methods
derivation of a microenvironmental mathematical 

model. Here we extend a previously developed41,47 model to 
incorporate the possible impact of inhomogeneous environ-
mental conditions on the evolutionary processes within a 
tumor. In particular, the three environmental factors described 
(drug, oxygen, and glucose) were chosen because they are 
likely to 1) strongly impact the growth kinetics of tumor cells,  
2) affect different cell types in distinct ways, thus altering 
selective advantages, and 3) vary in both time and spatial loca-
tion throughout a tumor.52,53 Within each compartment, we 
utilized a multitype time-inhomogeneous stochastic branch-
ing process model to describe the population of cancer cells. In 
this model, each cell waits a random amount of time to either 
divide or die; this random waiting time is an exponential ran-
dom variable with parameters given by the birth and death rates 
of the cell, respectively. In our model extension, the birth and 
death rates are dependent on the cell type (drug-sensitive or 
resistant) and the current local availability of oxygen, glucose, 
and local drug concentration. Mutations can arise within the 
sensitive cell population to confer resistance; this happens 
with a small mutation probability each time a sensitive cell 
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divides. However, here we considered a preexisting resistant 
population that comprises the dominant contribution to the 
resistant population, so that newly created resistant mutants 
after the start of therapy have negligible contribution to the 
dynamics. The evolutionary dynamics of each compartment is 
assumed to be independent of the other compartments. This 
assumption is made to preserve the simplicity of the model, 
but will be relaxed in future work involving a full model of the 
interaction between a cell population and its environment in a 
continuum setting.

To investigate in detail the impact of simultaneously 
varying parameters in this model, we constructed an ide-
alized model of a spatial microenvironment in which local 
concentration of environmental factors could be simultane-
ously varied. We first considered how oxygen, drug, and glu-
cose vary simultaneously as a function of the distance from 
the nearest blood vessel (Fig. 1). The concentration of each 
factor was assumed to decay exponentially as a function of 
distance from the vessel. The rate of decay for each nutri-
ent was para metrized by literature estimates of the half-life 
away from the vessel (18 µm for oxygen,14,54 36 µm for glu-
cose54). The rate of decay for erlotinib was varied between 15 
and 40 µm taking the baseline 15 µm value from the decay 
rate of doxorubicin, which has a molecular weight similar 
to that of erlotinib.55 The model considers initial values at 
distance 0 from the vessel or nutrient source as 6 µM drug 
(high drug) or 2.5 µM drug (moderate drug), 12% O2, and 
2 g/L glucose, which were chosen based on the literature.56,57 
Based on these considerations, we constructed a series of 
compartments representing various distances (in multiples 
of 20 µm) from the vessel, each reflecting a combination of 

drug, oxygen, and glucose levels expected to coincide in a 
particular localized environment (Fig. 2A–C). To estimate 
the relative contributions of each of these environmental 
compartments to tumor cell behavior, we utilized experi-
mental data capturing relative frequencies of a spectrum of 
O2 partial pressures throughout solid tumors (squamous cell 
carcinomas) found in Vaupel et al.58 (Supplementary Fig. 1). 
Specifically, we utilized experimental data that established 
the relative frequencies of a spectrum of O2 partial pres-
sures (150 squamous cell carcinoma patient tumors, 13,596 
pO2 values measured, median O2 = 9 mmHg) using a com-
puterized Eppendorf pO2 histography system.58,59 Based on 
these data, we constructed our mathematical model using 
a weighted mixture of compartments in which the relative 
frequency of each O2 partial pressure level was set using the 
experimental pO2 profile.

experimental methods. Reagents. The following stains 
were purchased from Invitrogen: Hoechst 33342 (#H21492) 
and propidium iodide (PI, #P1304MP). Erlotinib was pur-
chased from LC Laboratories (# E-4007), and D-(+)-glucose 
solution was purchased from Sigma-Aldrich (#G8644).

Cell culture. The HCC827 drug-resistant cell lines R1 
(T790M) and R2 (Met amplification) were derived from erlo-
tinib dose escalation experiments of the HCC827 parental 
line, as described in Ohashi et al.60 The HCC827 parental, R1, 
and R2 cells were cultured in Roswell Park Memorial Insti-
tute (RPMI) medium supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin solution using 
standard growth conditions of 37 °C and 5% CO2. Addition-
ally, the R1 and R2 resistant lines were maintained in 1 µM 
erlotinib. All experiments were performed with cells at low 

figure 1. Microenvironmental heterogeneity in the tumor is modeled using a weighted series of compartments reflecting co-occurring drug, oxygen, 
and glucose levels disseminating from blood vessels within the tumor. Weights of the compartments are calibrated to match experimental observations 
of oxygen partial pressure distribution within tumors. Within each compartment, a stochastic multitype branching process describes the evolutionary 
dynamics of the tumor cell population.
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passage numbers and before cells reached confluence. In addi-
tion, all cell lines were tested negative for mycoplasma.

Western blots. Dimethyl sulfoxide (DMSO) control cells 
or 1µM erlotinib-treated cells (6-hour treatment) were lysed 
in radioimmunoprecipitation assay (RIPA) buffer (Sigma-
Aldrich #R0278) supplemented with protease and phos-
phatase inhibitor cocktails (Thermo Scientific #78430 and 
78420, respectively). Fifty micrograms of protein was sepa-
rated on a 4%–20% Tris-HEPES gel (Thermo Scientific 
#25204) and transferred to a polyvinylidene fluoride (PVDF) 
membrane. The following primary antibodies were purchased 
from Cell Signaling: anti-EGFR (#4267), anti-phospho 
EGFR (Tyr1068 #2236), anti-phospho Met (Tyr1234/1235  
# 3129), anti-phospho Erk1/2 (Thr202/Tyr204 #9101), anti-Akt 
(#9272), anti-phospho Akt (Ser473 # 4060). β-Actin (A5441) 
was purchased from Sigma-Aldrich, and anti-Met (#SC-10) 
and anti-Erk2 (#SC-154) were purchased from Santa Cruz.

Treatment and environmental perturbations. Cell birth/
death experiments were conducted in 96-well black bottom 
plates (Corning Inc. #3904) under various environmental cul-
ture conditions (ie, combinations of 1, 5, or 20% oxygen and 
0, 0.5, or 2 g/L glucose). Approximately 3,000 cells per well 
were seeded. Low oxygen levels were controlled using hypoxia 
incubator chambers by Stemcell Technologies (#27310) and 
were purged with special gas mixtures of 1% or 5% O2 and the 
remaining N2. Low glucose levels were controlled by purchas-
ing RPMI media without glucose (0 g/L) and supplement-
ing them with 0.5 g/L glucose. The following day, cells were 
treated with erlotinib (0, 0.001, 0.01, 0.1, 1, 10 µM).

Live/dead cell counts. Live and dead cell counts were 
determined using the Cellomics ArrayScan VTI High Con-
tent Screening (HCS) Reader, a high-throughput quantitative 
imaging system, at 0, 24, 48, and 72 hours post drug treat-
ment. Briefly, cells were stained with 5 µg/mL Hoechst 33342 
and 5 µg/mL PI for 30 minutes prior to analysis. Average 
intensity of Hoechst 33342 and PI was determined for each 
individual cell using the target activation bioapplication of the 
Cellomics Arrayscan. A final readout of total cell number and 

percentage of PI positive cells was quantitatively measured 
within a given well for a given treatment and for a given time. 
Each condition was performed in triplicate. All data points 
used in the analysis were taken before any confluence effects 
were apparent.

Model calibration to experimental data. For each cell 
line in each set of environmental conditions (specified by 
drug concentration, glucose level, and oxygen level), a time 
series of live/dead counts was obtained between 0 and 72 hour 
(described above in experimental methods). For each set of 
log-transformed time-series live cell counts, linear regres-
sion was performed to obtain the net growth rates. Using the 
assumption of a constant death rate per live-cell unit of time, 
death rates were calculated using the accumulated amount of 
cell deaths over the time period. The cell birth rate was then 
equated to the sum of the net growth rate and the death rate 
for each cell type in each environment. Growth rates (not raw 
data) were averaged over each set of experimental replicates. 
Thus, analysis of these time series allowed us to calculate the 
birth and death rates of all three cell types (HCC827, R1, 
R2) in a series of 54 environmental conditions. Using linear/
nonlinear regression on this panel of data, we then obtained 
functional representations reflecting cell birth and death rates 
as an explicit function of the three factors, namely, drug, glu-
cose, and oxygen, for each cell type.

results
We investigated the relationship between tumor microenvi-
ronment and the evolution of drug resistance in three steps. 
First, we experimentally generated a comprehensive panel 
of cellular growth rates under a wide range of environmen-
tal conditions. Next, we used these rates to inform a sto-
chastic compartment-based tumor model of the outgrowth 
of preexisting drug resistance. Finally, we used our experi-
mentally calibrated modeling framework to investigate tumor 
rebound kinetics, and in particular to provide insight into the 
magnitude by which the microenvironment influences tumor 
progression.
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figure 2. relationship between glucose (blue), po2 levels (green), and drug concentration (varies along x-axis), modeled by consideration of relative 
diffusion length scales of each factor away from a source (eg, blood vessel). It relies on the assumption that the initial values at distance 0 from the 
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The net growth rate of erlotinib-sensitive and -resistant  
cells depends on the microenvironment. One of the domi-
nant factors influencing tumor evolution is the difference in 
net growth rates between the types of cells.61 Consequently, 
we initially investigated the effect of the microenvironment 
on the birth and death rates of a series of erlotinib-sensitive 
and derived resistant NSCLC cell lines using a quantitative 
fluorescence-imaging-based platform across a range of envi-
ronmental conditions. We defined 54 pseudo-environments 
as combinations of erlotinib drug concentration (0, 0.001, 
0.01, 0.1, 1, 10 µM), oxygen level (1%, 5%, 20%), and glucose 
level (0, 0.5, 2 g/L). Using the live and dead cell counts at 
four time points during 0–72 hours, we fitted an exponen-
tial growth model to the data to obtain the birth and death 
rates. All experiments were performed before the cells reached 
confluence, and the data confirmed a good fit with the expo-
nential growth model as shown previously.42,46 Figure 3 and 
Supplementary Figure 2 illustrate the 54 observed net growth 
rates, death rates, and birth rates for the HCC827 NSCLC 
cell line, and two isogenic, resistant-derived cell lines60 as a 
function of the pseudo-environment. As previously observed, 
we found that the HCC827 parental cells are highly sensi-
tive to EGFR tyrosine kinase inhibitor (TKI) therapy (IC50 at 
72 hours of 5 nM,60 and inhibition of EGFR pathway, Supple-
mentary Fig. 3). Since HCC827-R1 cells harbor the T790M 
point mutation and HCC827-R2 cells harbor a MET ampli-
fication, both cell types are significantly resistant to EGFR 
TKI therapy (IC50 at 72 hours of .5 µM60). Interestingly, 
we found that the growth kinetics of all tested cell lines were 
significantly impacted by modulating the environmental con-
ditions. For example, as the glucose concentration decreased, 
the cellular birth rates declined significantly for all cell types, 
whereas the death rates were less sensitive to this parameter 
(Fig. 3, Supplementary Fig. 2).

Furthermore, we observed that changing the environ-
ment had a larger impact on erlotinib-sensitive cells than 
on resistant cells, consistent with higher growth rates in the 
resistant cell lines compared to the sensitive line. In addi-
tion, analysis of the cell birth rates (see next section) showed 
that, in the absence of drug, the parental HCC827 cells had a 
larger response to oxygen variation than either of the resistant 
lines. This difference was most evident in low glucose settings. 
Additionally, we determined that the R1 and R2 cell line 
response to glucose variation was slightly stronger than that of 
the HCC827 parental cell line.

Variation in growth rates across the microenvironment 
model. As described in Methods section, we constructed an 
idealized model of a spatial microenvironment in which local 
concentration of environmental factors can be simultaneously 
varied. Next, we calibrated our mathematical model using 
our growth parameters and studied the differences in birth 
and death rates between sensitive and resistant cells within 
a series of tumor microenvironments (Fig. 4). We estimated  
the birth and death rates for each cell type at interpolated 

microenvironmental conditions from the empirically measured 
growth data (Fig. 3, Supplementary Fig. 2). Rates were esti-
mated by first performing nonlinear regression to fit the data 
in the drug dimension, and then linear regression to fit the 
data in the simultaneously varying oxygen and glucose dimen-
sions, for each drug condition. As a result, we obtained six 
analytical functions of three variables (O2, drug, glucose) for 
the birth and death rates of each of the three cell types, which 
we then utilized to determine the evolutionary advantage of 
sensitive and resistant cells within the varying microenviron-
ments of a tumor.

In Figures 4A–C, we illustrate the changes in net growth 
rates relative to 1) the specific microenvironmental compart-
ment, 2) the presence and type of drug resistance mutation, 
and 3) the drug decay rate. In the medium and low drug decay 
rate conditions, there is a strong selective pressure against the 
sensitive population throughout all environmental condi-
tions. This observation stands in contrast to the high drug 
decay rate condition, where there is a spike in the sensitive 
cells’ growth rate within the lower compartment numbers (ie, 
furthest from the blood vessel). This effect arises because in 
those compartments the drug concentration has decreased 
below the threshold level required for growth inhibition, 
as specified by the experimental data. In addition, despite 
the R1 and R2 cells both being resistant to erlotinib, their 
growth rate profiles across the environmental compartments 
differ considerably.

We also studied the growth rate changes over the 
sequence of microenvironments in the absence of drug 
(Fig. 4D). We observed that in those environments in which 
oxygen and glucose are most plentiful (as would be the case in 
the laboratory setting), sensitive cells have a growth advan-
tage as compared to both resistant types. This observation has  
led to the common conclusion that resistant cells are less 
fit than sensitive cells.62 However, our analysis presents a 
more complex picture. We surprisingly found that the selec-
tive advantage switches between the sensitive and resistant  
populations as we move through microenvironmental com-
partments. In the nutrient-stressed environments (ie, lower 
compartment numbers), the resistant cells have a selective 
advantage; this observation holds true for both T790M and 
MET amplification-mediated resistance mechanisms. Thus, 
although some groups have concluded that sensitive cells have 
a survival advantage over resistant cells,62 we observed that, 
within a tumor whose microenvironments are likely to be defi-
cient in oxygen and nutrients, the opposite may be true.

evolutionary dynamics of tumor population varies 
depending on the microenvironment. We next investigated 
the extent to which the tumor microenvironment influences 
the time until rebound, ie, time until the minimum tumor size 
is reached before increasing due to the outgrowth of resistance. 
Measuring rebound growth kinetics is important clinically, 
as it can be used as an indicator of tumor aggressiveness.  
Figure 5 shows the evolutionary dynamics of environmentally 

http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10


Mumenthaler et al

24 CanCer InformatICs 2015:14(s4)

heterogeneous tumor model in which we initialized each com-
partment with a mixture of 1% resistant cells (either R1 or R2) 
and 99% sensitive cells. To evaluate the impact of microen-
vironmental heterogeneity on tumor evolutionary dynamics, 
we compared the heterogeneous microenvironmental model 
(consisting of a “mixture” of environmental compartments) 
against two environmentally homogeneous conditions (H1 
and H2), for both high and moderate initial drug concentra-
tions. The condition H1 models traditional lab culture con-
ditions [20% O2, 2 g/L glucose, 6 µM (high drug)/2.5 µM 
(moderate drug)], whereas H2 represents a condition with 
the average concentration of each nutrient from the hetero-
geneous microenvironmental model [1.967% O2, 0.6517 g/L 
glucose, 0.5864 µM (high drug)/0.2444 µM (moderate 
drug)]. For the high drug case, the average conditions (H2) 
match closely to the mixed model (Fig. 5A), while the lab 
conditions (H1) result in very different predictions with a 
longer time to rebound, especially in the R1 case where it was 
more than double the timeframe. However, for the moderate 

drug case, the average conditions (H2) and our more detailed 
mixed environment model differ significantly, with a shorter 
time to rebound occurring in the mixed conditions. Upon 
further investigation, we found that in the detailed model, 
there exists a significant proportion of the tumor in which 
the sensitive cells are not being inhibited because the drug 
concentration is below the inhibition threshold. However, 
in the H2 model, the compartment average cannot capture 
this effect, resulting in a significantly slower predicted time 
to rebound.

We also noted that at high drug concentration, the 
R1 cells demonstrate a much longer time to rebound under 
H1 than H2 conditions. This is due to the observation that the 
R1 net growth rate is higher under H2 than H1 conditions. 
Even though the O2 and glucose levels are higher in H1, the 
drug concentration is also higher under H1 conditions, leading 
to a response via reduction in birth rates (see Supplementary 
Fig. 2B) by R1 cells, which then contributes to a slower time 
to rebound.
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figure 3. net growth rate, birth rate, and death rate under 54 environmental conditions for the erlotinib-sensitive HCC827 nsCLC cell line in conjunction 
with two resistant derived cell lines: R1, harboring the T790M point mutation; and R2, harboring the MET amplification form of resistance to erlotinib. In 
each panel, the horizontal axis represents increasing erlotinib concentration while glucose and oxygen concentration are varied along the vertical axis. 
the difference between cell lines is most evident when comparing the lower left-hand quadrant to the upper right-hand quadrant (ie, the most extreme 
environmental conditions) of the net growth rate charts, with the biggest difference seen in the sensitive cells, followed by the r1 cells, and the least 
environmental effect being felt by the r2 cells.
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figure 4. net growth rates of sensitive, r1, and r2 cells as a function of microenvironmental compartment in (a) high drug decay rate (0.05 µm),  
(b) medium decay rate (0.03 µm), and (C) low decay rate (0.02 µm) settings. Drug concentration is assumed to be 3 µm at the blood vessel for (a)–(C). 
(D) net growth rate for drug-sensitive, r1, r2 cells under no drug, assuming low drug decay rate (0.02 µm). 

We then investigated the percentage of resistant cells at 
the time of rebound in each model (mixed, H1, H2) in order 
to demonstrate the effects of the microenvironment on tumor 
composition (Fig. 5B). The mixed environment and H2 con-
ditions demonstrated a lower fraction of resistant cells at the 
time of rebound than H1 conditions. This is due to the contri-
bution of environments with lower oxygen, drug, and glucose, 
where the difference between sensitive cell and resistant cell 
fitness may vary greatly between the various environmental 
scenarios. In particular, under high drug concentration, the 
relative selective advantage of resistant cells is very large in 
H1 homogeneous conditions since the sensitive cells exhibit a 
large response to erlotinib. However, the mixed and H2 con-
ditions both reflect in some way the significant presence of 
parts of the tumor with low oxygen, drug, and glucose, where 
the selective advantage of resistant cells is much smaller. This 
results in a larger composition of resistant cells predicted at 
the time of tumor rebound in the H1 environment. The same 
phenomenon is noted under moderate drug concentration, 
but less pronounced since the sensitive cells are less inhibited 
by lower concentrations of drug. Figures 5C and D illustrate 
the change in tumor population size over time for each model 
(heterogeneous microenvironment, H1, H2) starting with 
high or medium drug conditions, respectively.

demonstration of tumor evolutionary dynamics under 
pulsed erlotinib treatment schedule. Using the model, we 
next investigated how the microenvironment impacts the 
evolutionary dynamics of resistance under a pulsed erlotinib 
treatment schedule. For demonstration purposes, we studied a 
pulsed schedule of 3.5 HCC827 doublings at 10 µM followed 
by 3.5 HCC827 doublings at 1 µM. Note that the HCC827 
doubling time in the absence of drug is 22 hours, and this is 
set as an appropriate time scale for studying dosing strategies. 
Figure 6 demonstrates the evolutionary dynamics under this 
schedule for the homogeneous environment using lab con-
ditions (H1) as well as for the heterogeneous microenviron-
mental model and averaged homogeneous conditions (H2), 
for varying drug decay rates and preexisting resistance status. 
We observed that the overall tumor response can be greatly 
impacted by the microenvironmental profile. Figure 6C 
demonstrates that, while tumor response is observed under 
homogeneous lab and averaged conditions, under a hetero-
geneous microenvironment we expect no reduction in tumor 
burden at all. Figures 6A and B show that, even when the 
overall tumor response is similar between the homogeneous 
lab and heterogeneous microenvironments, a larger fraction 
of the tumor is sensitive under the heterogeneous microen-
vironment setting. Here, the H2 condition yields the slowest 
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figure 5. (a) time until tumor progression (measured in units of HCC827 doublings in the absence of drug at normal laboratory conditions) under the 
heterogeneous environment (red line, “mixed environment” label) and two homogeneous environments (blue line, “H1” – lab conditions, and green 
line, “H2” – average conditions of the heterogeneous model). In the mixed environment model, we use 6 µm drug concentration at blood vessel with a 
15 µm diffusion half length. Initially, resistant cells are 1%. (b) Percentage resistant cells at time of rebound, under same conditions as above (C, D). 
time course of total tumor size with 1% initially preexisting r1 cells, under mixed, homogeneous (lab conditions – H1), and average homogeneous (H2) 
models as described in the previous figure, (C) under high drug conditions, (D) under moderate drug conditions. For all subfigures, the decay rate of drug 
is 0.05 (high drug decay rate, 15 µm half-life).

initial tumor response to therapy out of the three conditions 
but also the lowest resistant cell fraction, leading to the least 
aggressive recurrent tumor. Note that the overall differences 

between the microenvironmental model and homogeneous 
settings are modest in Figures 6A and B, while they are very 
dramatic in Figures 6C and D. This is due in large part to the 
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high decay rate of the drug in Figures 6C and D. In this situ-
ation, for the microenvironmental model the compartments 
with the highest weight (lowest oxygen, glucose, drug) have 
a drug concentration that is below the IC50 for the sensitive 
cells; in contrast, for the low decay rate scenario, all compart-
ments in the microenvironmental model have drug concen-
trations above the IC50. For the high decay rate scenario, this 
results in a large growth rate for the sensitive cells in the com-
partment with the largest weight, which prevents the total 
tumor population from exhibiting a reduction in response to 
therapy.

Using our evolutionary model, we can explore a range of 
possible dosing schedules, constrained by toxicity limitations, 
to determine the “optimal” strategy that maximally delays 
tumor rebound due to drug resistance or prevents the emer-
gence of drug resistance. We next studied how the optimal 
pulsed dosing strategy is impacted by considering the het-
erogeneous microenvironment of a tumor (Fig. 7). Figure 7A 
shows an estimated toxicity constraint (reproduced from  
Ref. 63); this constraint, estimated from clinical trial data 
on patient adverse effects, specifies the maximum tolerated 
length of a high-dose pulse at each erlotinib concentration. 
Using this toxicity constraint, we searched the space of sched-
ules (incorporating a high-dose pulse followed by low dose 
1 µM for the remainder of the week) to determine the opti-
mal schedule under both microenvironmental assumptions. 
Figures 7B and 7C demonstrate that the optimal schedule to 
minimize total tumor size or the fraction of the tumor that is 
resistant at time of 15 doublings is quite different between the 
two microenvironmental settings. For example, to minimize 
the resistant fraction, the optimal strategy is approximately 
5 µM high-dose pulse for 14 time units in the homogeneous 
laboratory environment model, but the shortest, highest pulse 
(10 µM for approximately 5 time units) for the heterogeneous 
microenvironment setting. These investigations demonstrate 
the importance of profiling and considering the heterogeneous 
tumor microenvironment when determining treatment sched-
uling to overcome resistance.

discussion
Cancer is an evolutionary process during which selective forces 
act on tumor cells and results in the propagation of tumor 
clones with a relative fitness advantage that drives the clonal 
progression of the tumor. Drug resistance remains a major 
barrier toward improving patient outcomes. To date, studies 
on the evolutionary dynamics of drug resistance using tradi-
tional culturing methods have failed to account for the effects 
of the microenvironment on cell behavior within a tumor, 
including cell growth and response to therapy. Here, we used 
an integrated experimental and computational approach to 
highlight the importance of gradients of oxygen, glucose, and 
drug concentrations on overall tumor growth dynamics and 
the implications this may have on designing optimal treat-
ment strategies.

The tumor microenvironmental landscape is continu-
ally in flux, requiring cells to adopt specific adaptive strate-
gies to survive. Under hypoxia, which commonly occurs in 
solid tumors as a result of limited blood supply, cells assume 
different metabolic strategies (eg, glycolysis, glutamine 
metabolism) to maximize their survival potential.64,65 For 
instance, Guillaumond et al recently demonstrated a meta-
bolic switch among hypoxic pancreatic tumor cells, which 
acts as a selection process for more aggressive and invasive 
cells. In addition, these authors provided evidence for the 
existence of a feedback mechanism between tumor cells 
undergoing hypoxia-driven glycolysis and the survival of 
normoxic cells,66 illustrating the dynamic interplay of cell–
cell and cell–environment interactions. Here, we deter-
mined that the resistant cell lines’ responses to glucose 
variation is slightly stronger than that of the parental line. 
We observed that the magnitude of the impact of decreasing 
oxygen concentration on cell growth kinetics is dependent 
on the glucose level; when glucose levels are high, variation 
of the oxygen concentration has the largest impact on cell 
growth kinetics. These observations support Guillaumond’s 
suggestion that the R1 and R2 resistant cell types have 
adapted metabolic strategies that are more robust to oxygen 
changes, but slightly more sensitive to glucose changes, than 
the parental cells.

Our characterization of the differential growth rate 
responses as a function of O2, glucose, and drug concentra-
tions leads us to believe that there exists an inherent metabolic 
difference between erlotinib-sensitive and -resistant cells, and 
that this metabolic difference preferentially favors the resistant 
cells to survive in nutrient-extreme environments. We have 
shown that the resistant cells are less sensitive to a reduction 
in O2 as compared to the sensitive cells, yet appear to be more 
sensitive to changes in glucose levels. One possible explana-
tion for this result is that the resistant cells are more efficient 
at glycolysis by increasing glucose uptake in low O2 condi-
tions, whereas the sensitive cells might be better at switching 
to glutamine breakdown for survival in limited-glucose envi-
ronments. Further investigation will be conducted to confirm 
this hypothesis.

Although recent studies have begun to characterize the 
differential impact of the microenvironment on tumor cells, to 
our knowledge, little is known about how these microenviron-
mental variations impact different tumor cell types, such as 
drug-sensitive and -resistant cells. The results described herein 
provide one of the first detailed examinations of the microen-
vironmental impact on growth rates of NSCLC lines that 
are either sensitive or resistant to the EGFR TKI erlotinib. 
These results demonstrate that 1) utilizing laboratory envi-
ronmental conditions to inform tumor dynamics and clinical 
progression can lead to incomplete conclusions, and 2) due to 
the ubiquity of threshold phenomena in biology, incorporation 
of detailed microenvironment heterogeneity is crucial – even 
homogeneous models constructed using averaged microen-
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vironmental data can still yield a very inaccurate picture of 
tumor dynamics.

We used an evolutionary model of the sensitive and 
resistant cell population within a heterogeneous mixture 
of environmental conditions to determine the impact of the 
microenvironment on tumor dynamics and the outgrowth of 
resistance. We demonstrated that microenvironmental hetero-
geneity greatly impacts model predictions of tumor rebound 
time and tumor composition at the time of rebound. In partic-
ular, predictions of these clinically relevant features of tumor 
progression deviated significantly from predictions utilizing 
a ‘perfect mixing’ assumption, even when the microenviron-
mental conditions of the perfect mixing model were tuned to 
match the average conditions of the heterogeneous model. The 
microenvironmental model was able to account for the presence 
of hypoxic, low-glucose regions of the tumor with low drug con-
centrations. In these regions, the growth kinetics of sensitive 

and resistant cell populations may deviate significantly from 
their counterparts under “averaged” environmental conditions; 
thus the evolutionary dynamics of resistance are significantly 
influenced by the heterogeneous environmental distribution 
within a tumor. Moreover, we demonstrated that the manner 
in which the tumor microenvironment impacts tumor dynam-
ics changes depending on the drug resistance mechanism. 
Another interesting finding is that, while the percent resistant 
fraction is the highest in the H1 model for all conditions, the 
time to rebound in the H1 model is not the shortest under any 
of these conditions (Fig. 5). This finding suggests that it is not 
necessarily the amount of resistant cells present but rather the 
differential selective pressure effects on tumor cell subpopu-
lations. Knowledge of the selective advantage/disadvantage of 
different cell populations within different regions of the tumor 
will better guide model predictions, influence overall tumor 
dynamics, and impact future treatment strategies.
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environment (H1, blue line; H2, green line) conditions under pulsed high–low schedule: 3.5 HCC827 doublings at 10 µm followed by 3.5 HCC827 
doublings on 1 µm (22 hour doubling time in absence of drug). (a, b) total population size and tumor composition vs time (using low drug decay rate 
0.02 µm, preexisting resistance at 0.1%). (C, D) total population size and tumor composition vs time (using high drug decay rate 0.05 µm, no preexisting 
resistance).

http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10


Modeling tumor microenvironmental heterogeneity and drug resistance

29CanCer InformatICs 2015:14(s4)

conclusion
Our investigations strongly suggest that, in order to cor-
rectly predict the evolutionary dynamics of tumors, detailed 
consideration of the tumor microenvironment is required 
and more detailed experimental characterization of cellular 
response to environmental conditions is necessary. A full 
model of how a tumor cell population evolves within the 
complex microenvironment of a tumor would require, among 
other things, careful consideration of physical processes of 
nutrients into tumors, compounded by variable cell density, 
differential forces acting upon cells, effect of these forces on 
growth rates, and consumption of nutrients by cells, which 
further impacts nutrient and drug profiles. Such a complex 
model will be the topic of future investigation.

Although the work presented here was carried out using 
an NSCLC model system, the microenvironment should be 
considered across all tumor types even if the significance of 
individual factors may vary. Given that the microenviron-
ment varies significantly throughout a tumor, uncovering a 
microenvironmentally driven growth signature would better 
inform the evolutionary dynamics of the entire tumor and 
greatly improve the clinical benefit from treatment regimens. 
The microenvironment has become an attractive target in 
cancer therapy with the design of drugs that modify its cur-
rent state, such as angiogenesis inhibitors, hypoxia-activated 
prodrugs,67,68 and bone-targeted therapeutics.69,70 Other 
strategies including inhalation of hyperoxic gas (2% CO2 and 
98% O2) have been shown to increase tumor oxygenation 
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and resensitize tumors to radiation therapy.71,72 It is known 
that tumor hypoxia leads to the failure of chemotherapy and 
radiotherapy treatment.73 Therefore, disrupting or perturbing 
the microenvironment can have a dramatic impact on tumor 
outcome. The studies presented here highlight the importance 
of treating cancer as a system with many moving parts if we 
intend to truly understand and eventually control it. Future 
cancer therapeutic strategies need to be developed to further 
modulate the microenvironment to optimize therapeutic effect 
and clinical benefit.
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supplementary Materials
supplementary Figure 1. Histogram of squamous cell 

carcinoma tumor pO2 measurements (data reproduced from 
Vaupel et al). From the lower left histogram of Figure 2 dis-
played in Ref. 58, we were able to extract the relative frequen-
cies of pO2 ranging from ,2.5 to 80 mmHg.

supplementary Figure 2. Microenvironment-dependent 
birth and death rates. Each panel corresponds to a different 
environmental condition (O2, glucose), with erlotinib concen-
tration varying on the vertical axis and birth/death rate varying 
on the horizontal axis. Dashed lines represent birth rate, and 
solid lines represents death rate. (A) HCC827 sensitive cells, 
(b) R1-T790M resistant cells, and (c) R2-Met+ resistant 
cells.

supplementary Figure 3. Western blot of key players 
in the EGFR signaling pathway (EGFR, Erk1/2, and Akt). 
After 6 hours of erlotinib treatment (1 µM), downregulation of 
phosphoErk1/2 and phosphoAkt is observed in the HCC827 

parental cell line, but they are unchanged in both resistant cell 
lines (R1-T790M; R2-Met+). This suggests that erlotinib has 
an inhibitory effect only on the EGFR signaling pathway in 
the parental cells and not in the resistant cells.

supplementary Figure 4. Demonstration of evolutionary 
dynamics under model incorporating heterogeneous microen-
vironment (red line) vs homogeneous laboratory environment 
(H1, blue line; H2, green line) conditions under pulsed high–
low schedule: 3.5 HCC827 doublings at 10 µM followed by 
3.5 HCC827 doublings on 1 µM (22 hours of doubling time 
in absence of drug). (A, b) Total population size and tumor 
composition vs time (using high drug decay rate 0.05, pre-
existing resistance at 0.1%) (c, d) Total population size and 
tumor composition vs time (using low drug decay rate 0.02, no 
preexisting resistance).
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