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an tumors often display startling intratumor heterogeneity in various features including histology,
expression, genotype, and metastatic and proliferative potential. This phenotypic and genetic
geneity plays an important role in neoplasia, cancer progression, and therapeutic resistance. In this
of the journal (beginning on page 1388), Merlo et al. report their use of molecular data from 239
ts with Barrett's esophagus to evaluate the propensity of major diversity indices for predicting
patien

progression to esophageal adenocarcinoma. This work helps elucidate the implications of molecular
heterogeneity for the evolution of neoplasia. Cancer Prev Res; 3(11); 1361–4. ©2010 AACR.
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plasia originates from normal cells that accumulate
c and epigenetic alterations. Although the types and
ers of alterations necessary for transformation differ
en tumor types, most types share a common feature:
worthy variability among the cancer cells within a
neoplastic lesion (1–3). These cells can be distin-

ed from each other by characteristics such as size,
ology, and antigen expression, as well as by beha-
like cell turnover, cell-cell interaction, invasive and
tatic ability, and sensitivity to pharmacologic inter-
ns (4, 5). This intratumor heterogeneity impedes
vestigation and treatment of cancer because indi-
l tumor-tissue samples may not be representative
whole tumor, and predictions about its evolution
ntly are inaccurate.
origins of intratumor heterogeneity have been the
t of much discussion (6, 7). Both the cancer stem
ypothesis and the clonal evolution model have
proposed as descriptions for the establishment
aintenance of intratumor heterogeneity (7). The
stem cell hypothesis suggests that a subset of cells
tem cell properties drive tumor initiation and pro-
on. These “cancer stem cells” are the only cells
the tumor that possess indefinite self-renewal

es (5, 8–11). Their differentiation, which leads to
roduction of all cell types in the tumor, generates
mor heterogeneity. In contrast, the clonal evolu-
odel states that a premalignant or malignant cell
umulates various hereditary changes over
confer advantages or disadvantages to the
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hich is hence subjected to natural selection. Carci-
esis is initiated by the accumulation of several
ions in a single cell and is driven by the emergence
ther genetic and epigenetic alterations that confer
aggressive, invasive, and drug-resistant phenotypes.
e context of this model, the emergence of new
itary traits in premalignant and tumor cells gives
heterogeneity.
ough these two hypotheses have been presented
tually exclusive explanations of tumor heterogene-
ey are easily reconciled and are both an integral
f cancer evolution and the generation of diversity
). Only cells that have self-renewal capabilities are
o persist over time and accumulate the genetic and
netic changes necessary for cancer initiation and
ssion. Such cancer stem cells give rise to distinct
of transit-amplifying cells and more differentiated
r cells. Transit-amplifying cells may also accumulate
ic changes, but unless a mutation conferring self-
al capabilities emerges, these changes are unable
rsist in the cell population and will be “washed
f the system. Nevertheless, they can be responsible
fraction of the variation detected in a snapshot
is of a tumor (Fig. 1).
alternative model for the ability of only a subset
ls to propagate the tumor cell population and give
intratumor heterogeneity is tumor cell plasticity.

ding to this model, all or most tumor cells have vary-
egrees of stem cell–like characteristics, which may
d on microenvironmental conditions and/or cell-
sic stochasticity (12). This idea is supported by recent
ce indicating that signaling within the perivascular
of glioma cells acted as a driving force for tumor
o acquire stem cell characteristics (13). In this study,
oxide was shown to activate Notch signaling in a
t of the glioma cells. This signaling resulted in the
sition of the side population phenotype and led to
sed neurosphere and tumor formation. These altera-

occurred within as few as 2 hours after nitric oxide
lation and had long-term effects on the stem-like
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ter of cells. Such plasticity of tumor stem cells may
pply to liquid tumors since leukemia-initiating cells
te myeloid leukemia patients harboring mutations in
phosmin can reside in the CD34+ as well as CD34−

n (14). Furthermore, the model of a rigid differenti-
hierarchy is not supported by experimental evidence
in normal tissues. Certain extracellular signals, for
ce, can induce oligodendrocyte precursor cells to
erentiate into multipotential neural stem cells (15).
arly, a single extracellular factor was sufficient to
e differentiated cells of the central nervous system
ress into a stem cell–like stage in a study of mature
ytes exposed to transforming growth factor α (16).
ontrast to its origins, the implications and clinical
rtance of intratumor diversity have been widely
ed. Because tumor cell populations are highly het-
eous and continuously evolve toward more aggres-
henotypes, the identification of effective treatment
lities poses a major challenge; similarly difficult is
ratification of a patient population with regard
k of progression from a premalignant lesion such
rett's esophagus to cancer such as esophageal adeno-
oma. Tumors consisting of multiple distinct clones
y different sensitivities to therapeutic interventions

ared with monoclonal tumors, and the preexistence
istance mutations may render certain treatment

cells w
comp

r Prev Res; 3(11) November 2010
s ineffective for a subset of patients. For instance, pa-
with chronic myeloid leukemia sometimes harbor
ions that confer resistance to one or more tyrosine
inhibitors. The specific therapeutic strategy of choice
ch patients depends on the identity and composition
resistant cell populations. Knowledge of the compo-
of tumors or premalignant lesions at diagnosis there-
ay determine both the prognosis and therapeutic
nse of cancer patients. Intratumor diversity also
licates the molecular classification of tumors into
ally relevant subtypes predicting prognosis, because
ostic biopsies sample only small regions of the prema-
t lesion or tumor. These small regions may not
resentative of the whole lesion, and the treatment
ion derived from a single-biopsy–based diagnosis
not elicit responses in all areas of the tumor.
ause of its clinical importance, intratumor diversity
een at the center of attention of investigators from
e fields. Several computational models have been
d to study aspects of intratumor diversity from the
of differentiation hierarchies (17, 18) and tissue
ecture (19–22) on heterogeneity to the consequences
atic evolution (23–25), mutator phenotypes, the

tion of resistance (26–28), and interactions of cancer
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or heterogeneity arises
th the differentiation
er stem cells (parallel
tal arrows) and the
lation of mutations in
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iverging arrows). Unless a
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ities arises in a transit-
ing cell, genetic changes
ng in those cells are unable
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samples, however, has only recently been initiated. In
Maley et al. showed for the first time a direct relation-
etween clonal diversity in premalignant lesions and
ssion to cancer (23). They studied the extent of genetic
geneity in patient samples of Barrett's esophagus using
ical measures of diversity. Diversity was measured by
ifferent indices: the number of clones in a neoplasm;
annon diversity index, which represents the informa-
ontent of a message in computer science (30); and
c divergence as measured by the number of loci show-
fferences divided by the number of informative loci.
measures incorporated information about loss of
zygosity, microsatellite shifts, and sequence muta-
across the genome. High degrees of clonal diversity
ound to correlate with increased risk of progression
lignancy, thereby suggesting that diversity measures
used to identify high-risk patients.

investigate the relative importance of the clonal evo-
model versus the stem cell model and to quantify
ity in human tumor samples, we recently performed
ined analyses of markers associated with cellular dif-
iation and genotypic alterations in human breast
omas (31). Similar to earlier studies (23), several dif-
measures of diversity were used to analyze the sam-
These studies uncovered a high degree of genetic
geneity both within and between distinct tumor cell
ations that were defined based on markers of cellu-
enotypes including stem cell–like characteristics. In
l tumors, stem cell–like and more differentiated can-
ll populations were genetically distinct; this observa-
uestioned the validity of a simple differentiation
chy-based cancer stem cell model. The degree of di-
correlated with clinically relevant breast tumor sub-

and in some tumors was markedly different between
situ and invasive cell populations. We also found
iversity measures were associated with clinical vari-
Therefore, the hypothesis that the degree of intratu-
eterogeneity in in situ and invasive breast tumors
ts the risk of progression and therapeutic resistance
be worth investigating in larger cohorts, as also sug-
by Tlsty et al. based on their studies of DCIS (3).
his issue of the journal, Maley et al. present a new
sis of clonal diversity in Barrett's esophagus (32).
uthors used molecular data from patient samples
tematically test all major diversity measurement
ds for their accuracy in predicting progression to
ageal adenocarcinoma. The molecular data included
satellite shifts, loss of heterozygosity, tetraploidy and
loidy, and methylation and sequence mutations.
se diversity indices are based on the number and
e abundance of distinct cellular clones within a sam-
e definition of clones may influence the magnitude
redictive power of individual indices. The authors
atically investigated this issue by considering several
ct definitions of clones, ranging from cellular groups
guished by all available molecular data to those that

d by alterations in neutral loci only. The choice of
ity measurement method may also influence the abil-

Rece
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intratumor heterogeneity to predict tumor prog-
n. To address this issue, the authors considered a
alized expression for diversity indices incorporating
tal number and frequency of distinct clones in the sam-
y adjusting the order (i.e., a parameter q) of the diver-
dex by scaling the parameter q, the relative importance
uent clones in the sample is altered. This generalized
sion allows the investigation of a large range of diver-
dices, including the frequently used Simpson and
on indices (30). The authors discovered that all mea-
of diversity were predictive of future progression,
less ofwhichdefinition of a clonewas used. This result
ortant from both the basic science and clinical per-
ve. Moreover, because progression to cancer in differ-
es is driven by evolutionarymechanisms that share the
basic principles, these findings may also be applicable
cers of other organs.
ically, the assessment of clonal diversity of human
rs may represent a unified method for identifying
ts at a high risk of progression to cancer or to more
ced stages of cancer and of relapse due to the exis-
of drug-resistant cells in the tumor cell population.
fying the utility of diversity measures for diagnosis,
osis, and treatment choices will require the elucida-
f the extent of diversity in a large number of tumor
es as well as in additional tumor types and prema-
t lesions. The magnitude of intratumor heteroge-
must then be correlated with clinical variables such
vival, proliferative indices, treatment sensitivity, and
sk of acquired resistance. Furthermore, studies of
-cell–based heterogeneity in different situations
g the evolution of a neoplasm, such as before and after
ent, and in premalignancy, primary cancer, and me-
is, have not been done to date and are needed in order
ain an accurate picture of the dynamics of diversity.
omprehensive analysis of intratumor heterogeneity
ds on more than just the availability of appropriate
is tools such as those described by Merlo et al. (32).
fficient ways to profile single cells from neoplasms
ltiple stages of their evolution are also necessary.
ugh not yet available, these methodologies, in com-
on with appropriate analysis tools, would signifi-
improve the clinical management of patients with
lignant lesions or cancer.
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