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SUMMARY

Glioblastomas (GBMs) are the most common and
malignant primary brain tumors and are aggressively
treated with surgery, chemotherapy, and radio-
therapy. Despite this treatment, recurrence is inevi-
table and survival has improved minimally over the
last 50 years. Recent studies have suggested that
GBMs exhibit both heterogeneity and instability
of differentiation states and varying sensitivities
of these states to radiation. Here, we employed an
iterative combined theoretical and experimental
strategy that takes into account tumor cellular het-
erogeneity and dynamically acquired radioresistance
to predict the effectiveness of different radiation
schedules. Using this model, we identified two deliv-
ery schedules predicted to significantly improve effi-
cacy by taking advantageof the dynamic instability of
radioresistance. These schedules led to superior sur-
vival inmice. Our interdisciplinary approachmay also
be applicable to other human cancer types treated
with radiotherapy and, hence, may lay the foundation
for significantly increasing the effectiveness of a
mainstay of oncologic therapy.

INTRODUCTION

Patients suffering from glioblastoma (GBM), the most common

and malignant primary brain tumor, have very poor survival.

The standard of care is surgery when possible followed by

radiation (Figure 1A) and chemotherapy (Stupp et al., 2005).

This regime has seen little change over the past 50 years, as

has the overall survival for this disease. Radiation is used in
adjuvant therapy globally and provides a significant increase in

the survival of GBM patients (Walker et al., 1980). Dose escala-

tion studies demonstrated that survival improvements are

observed up to an overall dose of 60 Gy (Walker et al., 1979).

Beyond this point, there are little, if any, improvements in survival

at the cost of increased toxicity (Bleehen and Stenning, 1991;

Chan et al., 2002; Morris and Kimple, 2009). Typically, the dosing

schedule is 2 Gy per day, 5 days per week, for 6 weeks. Several

alternative schedules have been attempted, such as hypofrac-

tionated dosing of 3–6 Gy per session, hyperfractionated dosing

of 1 Gy fractions two to three times per day, and accelerated

dosing using multiple 2 Gy fractions a day to shorten the overall

treatment time (Laperriere et al., 2002). None of these strategies,

however, have resulted in consistent improvements in tumor

control or survival and are thus not routinely used in the clinic.

Three recent advances provide insights into GBM biology

that may impact therapy. First is the realization that GBM falls

into several molecular subgroups that appear to be dominated

by specific signaling pathways (Brennan et al., 2009; Phillips

et al., 2006; Verhaak et al., 2010). These subgroups include

proneural GBM that is related to abnormal platelet-derived

growth factor (PDGF) signaling, classical GBM with canonical

epidermal growth factor receptor (EGFR) amplification, and

mesenchymal GBM with common loss of NF1 function. The

second advance is the development and use of genetically

engineered mouse models of GBM that provide genetically

and histologically accurate models of these molecular subtypes

of GBM (Hambardzumyan et al., 2011; Huse and Holland, 2009;

Sharpless and Depinho, 2006). The third development is a series

of work describing a subset of glioma cells that share many

characteristics with stem cells (Galli et al., 2004; Ignatova

et al., 2002; Singh et al., 2004). These cells are preferentially

resistant to radiation and temozolomide and are considered an

underlying cause of disease recurrence (Bao et al., 2006; Chen

et al., 2012; Liu et al., 2006).
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Figure 1. Human and Murine Gliomas Display Similar Recurrence Patterns in Response to Radiation

(A) Representative MRIs showing human and mouse gliomas that are resolved by radiation treatment but then recur.

(B) Representative images andquantification of a radiation dose response assayed inE2f1-Lucglioma-bearing 24 hr after a given radiation dose. Error bars are SD.

(C) Schematic of the mathematical model used to describe the radiation response. The tumor is modeled as two separate cellular components: the stem-like

resistant cells (SLRCs) and the differentiated sensitive cells (DSCs). SLRCs can repopulate the tumor, and someDSCs cells, represented by g, are able to revert to

SLRCs in response to radiation.

(D) Flow-chart summarizing the workflow described in the paper.

See also Figure S1.
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The PDGF-induced mouse model of GBM accurately mimics

the 25%–30% of human GBMs in which aberrant PDGF

signaling is present (Brennan et al., 2009; Shih et al., 2004;

Verhaak et al., 2010). This model also contains a subpopulation

of tumor cells that have similarities to stem cells (Barrett et al.,

2012; Bleau et al., 2009; Charles et al., 2010). Stem-like cells

are thought to reside in the perivascular niche and are main-

tained in that state at least partly by nitric oxide (NO) that signals

through cyclic guanosine monophosphate, PKG, and NOTCH

(Calabrese et al., 2007; Charles et al., 2010; Eyler et al., 2011).

Within as little as 2 hr, NO can induce tumor cells to acquire a

stem-like phenotype resulting in enhanced neurosphere and

tumor formation upon transplantation (Charles et al., 2010).

Other niche factors, such as hypoxic conditions, have also

been shown to induce stemness (Heddleston et al., 2009;

Li et al., 2009). Additionally, recent work has demonstrated

that there aremultiple tumorigenic cell types within a given tumor

and that terminally differentiated astrocytes and neurons can

dedifferentiate under oncogenic stress (Chen et al., 2010; Fried-

mann-Morvinski et al., 2012). These observations suggest that

GBMs possess a dynamic heterogeneity of differentiation states

that may allow them to rapidly and dynamically acquire a more

resistant phenotype.

We hypothesized that mathematical modeling of this dynamic

plasticity could be used to enhance radiation therapy. In the

past few decades, the vast majority of mathematical modeling

of the effects of radiation on cells has been based on the linear

quadratic model. This model is widely accepted in the radiation

literature due to its close agreement with experimental results for

almost all radiation values of clinical interest (Hall and Giaccia,

2012). Several previous studies have specifically investigated

the impact of radiotherapy on glioblastoma (Dionysiou et al.,

2004; Harpold et al., 2007; Rockne et al., 2009; Stamatakos

et al., 2006). These studies range from purely computational

experiments to models fitting clinical data and have been utilized

in predicting the outcomes of accelerated hyperfractionated

schedules. Other recent work has successfully utilized mathe-

matical modeling of cellular in vitro or rat-based in vivo systems

to describe glioma behavior (Gao et al., 2013; Massey et al.,

2012). Despite the multitude of work that has been done

on optimal fractionation schedules, there has been very little

success against aggressive gliomas in the clinic (Gupta and

Dinshaw, 2005).

Here, we aimed to model a dynamic radiation response with

the goal of identifying optimal schedules capable of improving

radiation efficacy in a mouse model of PDGF-driven glioma.

Our model considers two separate populations of cells: the

largely radioresistant stem-like glioma cells and the radiosen-

sitive differentiated glioma cells. We hypothesized that, after

exposure to radiation, a fraction of the radiosensitive cells could

rapidly revert to the radioresistant state. The inclusion of this

dynamic hierarchical population structure and its plasticity

induced by exposure to ionizing radiation is a key feature

of our framework. Based on this model, we described an

optimized schedule that was predicted to prolong survival.

Crucially, when tested in a clinically relevant glioma mouse

model, this schedule markedly improved survival compared to

a standard schedule. The fidelity of the model was improved
by adding nonlinear temporal constraints to the acquisition of

radioresistant properties based on the time since the previous

radiation treatment. This second iteration of the model was

able to generate a second optimized schedule that also

improved survival in glioma-bearing mice. The mathematical

model identifies the fraction of cells capable of acquiring radio-

resistance and the temporal constraints under which this pro-

cess occurs as sensitive parameters for predicting radiation

response. Specifically, our model predicts that if tumors were

unable to rapidly acquire radioresistance, there would be no

benefit to any of the optimum schedules. Our data support

the functional importance of dynamic radioresistance to therapy

and suggests that, at least in PDGF-driven glioma, the standard

radiation schedule used may not be optimal. These findings

may have broad implications for improving radiation therapy

and provide a framework for future optimization of cytotoxic

treatment delivery.

RESULTS

Initial Characterization of Radiation Dosing Using an
Animal Model for PDGF-Driven GBM
We first performed a dose-response study to determine

the effectiveness of various single-fraction doses of radiation

(Figure 1B). We generated PDGF-B-induced tumors in Nestin-

tv-a;E2f1-Luc mice using the replication-competent ASLV

long-terminal repeat (LTR) with a splice acceptor (RCAS)/t-va

mouse-model system (Uhrbom et al., 2004). These mice ex-

press firefly luciferase driven by the E2f1 promoter (E2f1-Luc),

allowing for a noninvasive readout of cellular proliferation. This

model is similar to human gliomas, in that glioma-bearing

mice transiently respond to radiation treatment but ultimately

succumb to disease recurrence (Figure 1A). We irradiated

glioma-bearing mice with a variety of single doses: 2 Gy

(approximately the daily dose used in humans), 4 Gy, 10 Gy,

and 15 Gy. Twenty-four hours after irradiation, we found a

progressive decrease in E2F1-drive bioluminescence activity

with increasing radiation dose that appeared to plateau around

10 Gy (Figure 1B). For this reason, we chose a 10 Gy dose for

further investigations.

Mathematical Modeling of GBM Cell Dynamics Predicts
Treatment Response
We designed a mathematical model of GBM cell dynamics in

response to radiation therapy. The model considers two distinct

subpopulations of cells: stem-like/resistant cells (SLRCs) and

differentiated/sensitive cells (DSCs) (Figure 1C). SLRCs repro-

duce symmetrically at rate rs to give rise to two SLRCs and asym-

metrically at rate as to produce a SLRC and a DSC. Initially, the

ratio of DSCs to SLRCs is given by R. Our model incorporates

a bidirectional flow of cells between the SLRC and DSC states.

In addition to SLRCs converting to a differentiated sensitive

state, our model assumes that a fraction of DSCs may be

capable of reverting to become SLRCs after exposure to ionizing

radiation (Bleau et al., 2009; Charles et al., 2010; Chen et al.,

2012; Li et al., 2009; Pistollato et al., 2010). The rate at which

DSCs revert to a stem-like state is given by n, and the fraction

of DSCs that can revert is given by g.
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SLRCs are relatively radioresistant, whereas DSCs respond

to radiation therapy via cell-cycle arrest, mitotic cell death, and

apoptosis (Bao et al., 2006; Chen et al., 2012; Hambardzumyan

et al., 2008). We modeled the cell population response to

radiotherapy using the linear quadratic model, which is widely

accepted in the radiation literature due to its close agreement

with experimental results (Dale, 1985; Fowler, 2010). The basic

linear quadratic model states that the fraction of cells that

survives a radiation dose of d Gy is given by exp[�ad � bd2].

The parameters a and b are specific to the type of tissue that is

being irradiated; the parameter a represents cell killing resulting

from a single radiation track causing damage to a specific chro-

mosomal locus, whereas b represents cell killing via two tracks

of radiation causing damage at the same locus. Within our math-

ematical framework, the parameters as and bs characterize the

response of SLRCs to radiation, whereas the parameters ad
and bd denote the response of DSCs. In order to simplify the

model, we considered the increased radiosensitivity of DSCs to

be expressed in relation to the SLRC radioresistance, repre-

sented by the parameter r. In particular, we assumed that 0 %

r% 1, as = r ad, and bs = r bd. Therefore, the sensitivity of SLRCs

to radiation can be characterized by a single parameter, r.

Our model also included radiation-induced cell-cycle arrest

and attempted DNA-damage repair (Bao et al., 2006). In the

context of our model, this arrest lasts for a minimum of Ls and

Ld time units after radiation exposure in SLRCs and DSCs,

respectively, and the rates at which these cells exit cell-cycle

arrest are given by ls and ld. Further, newly converted DSCs

take a minimum of Md units of time to begin reproducing again,

and this event occurs at rate hd.

Using this notation, we then formulated a mathematical model

to describe the numbers of SLRCs and DSCs in response to

radiation. At the time of diagnosis of the disease, there are NS
0

SLRCs and Nd
0 DSCs. When these cells are exposed to the

first dose of d Gy of radiation, there occurs a change in their

numbers according to the linear quadratic model, producing

NS
0 exp[�asd � bsd

2] SLRCs and Nd
0 exp[�add � bdd

2] DSCs.

Additionally, there are g Nd
0 exp[�add � bdd

2] DSCs that are

capable of reverting to the SLRC state. Using this description,

we can then calculate the number of cells present at time t after

exposure of the cell population to a dose of radiation. The

number of DSCs is given by the number of DSCs that survived

radiation and do not have the potential to revert to SLRCs plus

any new growth and conversion from SLRCs since treatment;

in addition, there are DSCs in the process of reversion. Similarly,

the number of SLRCs is given by the population of cells that sur-

vived the dose of radiation plus any growth and reversion that

has occurred since then:

Nd
1 =Nd

0e
�addi�bdd

2
i

"
ð1� gÞerdðt�LdÞ+ +ge�nt +asgn

Z t
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where we use the notation x+ = x, xR 0, and x+ = 0, x < 0. Further,

note that, for the sake of readability, we have assumed that the

rates ls, ld, and hd are sufficiently large so they can be ignored;

for the optimization described below, however, these termswere

included (values listed in Table 1). For the full model without this

assumption, see Equations 7 and 8 in the Supplemental Informa-

tion available online.

We can use the analytic description above to predict the

response of the tumor to any course of radiation therapy.

Determination of an Optimal Radiation Schedule
To evaluate the response to a given radiation schedule in the

context of our mathematical model, we considered the number

of tumor cells present 2 weeks after treatment conclusion as

an endpoint. To implement the optimization algorithm, an initial

set of parameter values was derived from preliminary data (Fig-

ure 1B), previous studies (Galbán et al., 2012; Hambardzumyan

et al., 2009; Pitter et al., 2011), or estimates (Table 1; Supple-

mental Information). We then predicted the survival outcomes

for 10 Gy either administered as a single dose or in a clinically

standard treatment (5 days of 2 Gy), finding that a standard

fractionation schedule would perform significantly better than a

single dose (Figures 2A and 2D).

We then aimed to identify an optimal fractionation schedule,

with the goal of finding those schedules that minimized the

number of tumor cells 2 weeks after the treatment conclusion.

Mathematically identifying the global optimal schedule was not

computationally feasible due to the complexity of our model,

as well as the uncertainty of some of the parameters. Because

of this, we utilized simulated annealing, a Monte-Carlo-based

method (Kirkpatrick et al., 1983; Van Laarhoven and Aarts,

1987), to identify the best treatment strategies (see Supple-

mental Information; Table 2).

A clinically motivated constraint set for our schedules is pre-

sented in the Supplemental Information. With this constraint

set and using our initial set of parameters (Table 1), we identified

an optimal schedule, ‘‘optimum-1,’’ that was predicted to do

significantly better than standard treatment. We also created a

control schedule by generating a scrambled sequence with a

similarly clustered dosing scheme that was predicted to not

perform significantly better than standard treatment (Figures

2A and 2D; Table 2).

AnOptimizedRadiation Schedule Significantly Improves
Survival in a Mouse Model of PDGF-Driven Glioma
We then returned to the RCAS/t-va mouse system to test the

model’s predictions in a survival assay. We performed survival

experiments using PDGF-B-driven gliomas in Nestin-tv-a;

Ink4a/Arf�/� mice. The genetic background of these mice is

similar to human PDGF-driven tumors (Verhaak et al., 2010).

As mice developed symptoms of glioma, such as lethargy,

weight loss, seizures, etc., they were randomized into either

the mock-treated group or one of the various 10 Gy radiation

treatment groups, which consisted of a single dose, standard

fractionation, optimum-1, and a scramble control (Table 2). The



Table 1. Description and Values of the Mathematical Model Parameters

Biological Process Symbol Original Parameter Second Iteration Final Iteration

Per Gy production of lethal DNA lesions from

single radiation track in DSC and SLRC

ad/as 0.0987/0.0395 0.0987/0.0429 0.0987/0.00987

Per Gy2 production of lethal DNA lesions

from two radiation tracks in DSC and SLRC

bd/bs 1.14 3 10�7/4.58 3 10�8 1.14 3 10�7/4.96 3 10�8 1.14 3 10�7/1.14 3 10�8

Rate at which newly converted DSC lead to

clonal expansion (hr)

hd 0.5 0.092 0.054

Minimum time for newly converted DSC to

begin clonal expansion (hr)

Md 24 313.256 366.3

Minimum time DSC and SLRC are in

quiescence (hr)

Ld/Ls 24/36 461.46/464.99 193.32/477.02

Rate at which DSC and SLRC exit quiescence ld/ls 0.5/0.35 .011/.0001 .1/.0328

Proliferation rate of DSC and SLRC after

exiting quiescence

rd/rs .0088/.0001 .0057/.0001 .0038/.0008

Initial ratio of DSC to SLRC R 20 20 20

Rate at which SLRC convert to DSC as 0.0001 0.0001 0.0019

Rate of reversion of DSC to SLRC n 1.15 3.64 0.45

Fraction of DSC capable of reverting to SLRC g 0.15 0.353 0.4

Time to peak reversion after irradiation m - 3.5 3.25

Width of window of reversion s2 - 2.5548 1.46
endpoint of survival was defined as the time point at which the

animal had to be sacrificed because of excessive tumor burden:

greater than 10%weight loss, lethargy, or seizure. Mock-treated

mice quickly succumbed to their disease, with a median overall

survival of 5 days after the onset of symptoms (Figure 2B).

Animals in the single-dose and the clinical-standard groups

had respective median survivals of 28.5 and 33 days after

the onset of symptoms, which was significantly longer than the

mock-treated group (p < 0.0001; Figure 2B). Although the

median survival of the single dose-treated animals was shorter

than the standard treatment group, there was no significant dif-

ference between treatments (hazard ratio [HR] [95% confidence

interval (CI)] = 1.619 [0.8450–3.932]; p value = 0.1742; Figures 2D

and 2E).

We also analyzed two different mathematically predicted

schedules: optimum-1 and the scrambled control sequence

(Figures 2A and 2D; Table 2). The median survival of mice

treated with the scrambled control schedule was 30 days (Fig-

ure 2B), which was not significantly different from the standard

schedule (HR [95% CI] = 1.613 [0.7453–4.863]; p value =

0.2346; Figures 2D and 2E). Mice treated with optimum-1 had

a median survival of 50 days (Figure 2B), which was signifi-

cantly longer than the clinical standard schedule (Figures 2D

and 2E; HR [95% CI] = 0.3015 [0.04708–0.3760]; p value =

0.001). Due to the increase in median survival observed with

the optimized schedule, we next compared the optimized

schedule to 2 weeks of clinical standard therapy; in the latter,

mice were treated with 20 Gy, delivered in ten fractions

given over 12 days, with a 2-day weekend break. The 20 Gy

treatment group had a median survival of 53 days (Figure 2B),

which was significantly greater than the 10 Gy clinical standard

(Figures 2D and 2E; HR [95% CI] = 0.2084 [0.01295–0.1319];

p < 0.0001), but not significantly different from optimum-1
(Figure 2E, HR [95% CI] = 1.429 [0.6230–3.698]; p value =

0.3907).

Mathematical Modeling of Other Clinically Relevant
Fractionation Schedules Leads to Iterative Updating of
the Model
We then set out to investigate other fractionation schedules that

have been clinically tested in GBM. Hyperfractionation sched-

ules consist of a large number of smaller-dose treatments in

an attempt to minimize damage to surrounding normal tissue,

but according to clinical trials, this approach has not improved

overall survival (Coughlin et al., 2000; Laperriere et al., 2002).

Hypofractionation schedules involve a larger fraction size with

fewer treatments, resulting in a shorter overall treatment time

that again yields similar survival to conventional therapy (Laper-

riere et al., 2002). Surprisingly, our initial model predicted that

both hypo- and hyperfractionated schedules would perform

significantly differently than standard therapy: the hypofractio-

nated schedule was predicted to be similar to a single dose

of 10 Gy, whereas a standard hyperfractionated schedule was

predicted to perform as well as or slightly better than opti-

mum-1 (Figures 3A and 3G).

We tested this prediction for both schedules by overall survival

in mice. Mice were randomized as described above into either

a hyperfractionated group or hypofractionated group and

compared to standard therapy (Table 2). Mice treated with these

schedules had a median survival of 37.5 days and 36 days,

respectively (Figure 3B). Similar to results observed in human

clinical trials, neither of these schedules was significantly

different from the clinical standard schedule (Figure 3D; HRhyper

[95%CI] = 0.5237 [0.1708–1.167]; p value = 0.1383; HRhypo [95%

CI] = 0.3427 [0.1123–1.046]; p value = 0.0599). These results,

and the hyperfractionated schedule in particular, highlighted a
Cell 156, 603–616, January 30, 2014 ª2014 Elsevier Inc. 607
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Figure 2. Mathematical Modeling of the Radiation Response Improves Survival in a Mouse Model of Proneural Glioma

(A) Original model-predicted tumor response and growth following standard, single-dose, optimum-1, and scramble control radiation treatment schedules.

Model parameters are listed under ‘‘Original Parameters’’ in Table 1.

(B) Kaplan-Meier survival plot of various radiation schedules. IR, ionizing radiation.

(C) Schematic depicting the various schedules tested. The arrow position represents the time of dose during the 8am–5pm treatment window. The size of the

arrow correlates with the size of the dose.

(D) Table summarizing number of mice treated, the performance relative to standard therapy, and the original model-predicted performance of each group. ns,

not significant.

(E) Hazard ratios of the various radiation schedules, compared to the standard radiation schedule. Error bars represent the 95% confidence interval (CI) of the

hazard ratio (HR).

See also Figure S2.
weakness in our model that we addressed with a second itera-

tion of the model.

Time-Dependent Acquisition of Radioresistance
Improves the Mathematical Model
To address the inaccurate predictions of the original model,

we iteratively updated our model such that the fraction of

cells rapidly acquiring resistance, g, now depends on the time

elapsed since the previous dose of radiation. Whereas the initial

model treated g as a time-independent constant following radi-

ation, the updated model stipulates that g varies over time and

that there is a time where a maximum number of cells are prone

to reversion in response to subsequent exposure to ionizing

radiation. The updated model thus describes the acquisition

of resistance with two additional time-dependent parameters:

the time of maximal reversion after radiation, m, and the width

of the window during which reversion can occur after radiation,
608 Cell 156, 603–616, January 30, 2014 ª2014 Elsevier Inc.
s2. The model stipulates that, after the first dose of radiation,

g0 cells are capable of reversion; for a later dose given t hr after

the previous dose of radiation, the fraction of cells capable

of reversion is given by gðtÞ=goe
�ðt�mÞ2=s2 . Other than these

additional parameters added to further describe g, the updated

model is the same as the original model.

To investigate this time-dependent model, we first tested

its predictions against volumetric time series data of mice after

treatment with 2 weeks of standard therapy (Figure 3E). This

comparison allowed us to identify parameter values capable

of recapitulating the time-series data. Based on these model

parameters, we found a closer concordance between predicted

mouse survival times and observed experimental survival times

of the optimum-1, hyperfractionated, hypofractionated, and

standard schedules (Figures 3F and 3G). In addition to more

accurately predicting the survival response, the model also

makes significantly different predictions with regard to the



Table 2. Description of the Tested Radiation Schedules

Schedule Day 1 Day 2 Day 3 Day 4 Day 5

Standard 2 Gy 2 Gy 2 Gy 2 Gy 2 Gy

Single dose 10 Gy – – – –

Optimum-1 1 Gy 1 Gy 1 Gy 1 Gy 1 Gy

8am 5pm 3pm 5pm 3pm

2pm 5pm 4pm

5pm 5pm

Scramble control 1 Gy 1 Gy 1 Gy 1 Gy –

10am 4pm 2pm 1pm

11am 3pm 2pm

12pm 4pm 3pm

Hypofractionated 5 Gy – – – 5 Gy

Hyperfractionated 1 Gy 1 Gy 1 Gy 1 Gy 1 Gy

9am 9am 9am 9am 9am

3pm 3pm 3pm 3pm 3pm

Optimum-2 3Gy 1 Gy – 1 Gy 1 Gy

8am 4pm 9am 9am

1pm 1pm

5pm 5pm
enrichment of the SLRC population after radiation. Both models

similarly predict that 1 day after the last dose, optimum-1 will

lead to a larger number of SLRCs relative to standard therapy.

However, the models offer differing predictions for the hyper-

fractionated schedule. The original model predicts that the

hyperfractionated schedule maximally enriches the SLRC

population among all schedules tested (Figure 4A), whereas

the time-dependent model predicts that optimum-1 enriches

the SLRC population to a greater extent than the hyperfractio-

nated schedule (Figure 4B).

To test the effects of various schedules on the enrichment of

SLRCs, we then treated mice with the standard, hyperfractio-

nated, and optimum-1 schedules. Glioma tissue was harvested

for side-population (SP) analysis on the sixth day, i.e., 1 day after

the last dose of radiation. Stem-like cells are frequently identified

from a variety of normal and malignant tissues by flow cytometry

as the SP based their ability to efflux Hoechst dye via the ABC

transporter, ABCG2 (Greve et al., 2012). Previous work has

demonstrated that, in PDGF-driven murine gliomas, SP cells

are enriched for canonical cancer stem cell properties, such as

stem-marker expression, enhanced tumor-sphere formation,

and enhanced tumorigenicity (Bleau et al., 2009). We generated

tumors using a previously described RCAS vector that ex-

presses both PDGF-B and enhanced GFP, which results in gli-

omas with GFP-positive tumor cells (Fomchenko et al., 2011).

This system allowed us to limit the SP analysis to bona fide tumor

cells (Figure 4C). We observed that tumors treated with the opti-

mized schedule have a 3.55-fold enrichment when compared to

standard therapy (p value = 0.0265; Figure 4D). However, as pre-

dicted by the time-dependent mathematical model, the hyper-

fractionated therapy was not able to statistically significantly

enrich the SP when compared to standard treatment (1.145-

fold enrichment; p value = 0.5944; Figure 4D).
To further validate the time-dependent model, we used it to

derive an optimized schedule, ‘‘optimum-2’’ (Table 2). As with

optimum-1, optimum-2 was predicted to lead to an enriched

number of SLRCs 1 day after the last dose of radiation compared

to standard treatment (Figure 4B). Tumors treated with the

optimum-2 schedule had a 2.6-fold enrichment when compared

to standard therapy (p value = 0.0210; Figure 4D). Although

optimum-2 was predicted to enrich the SLRCs further than

optimum-1, we saw no significant difference in the SP between

the two groups (p value = 0.3805). We also tested the opti-

mum-2 schedule using overall survival in mice and observed a

significant improvement in survival compared to standard

treatment (hazard HR [95% CI] 0.2720 [0.04074–0.2967] ratio;

p value < 0.0001; Figure 4E). Optimum-2 was also predicted to

have longer survival than optimum-1 (Figure S3). The median

survival of the optimum-2 group was longer than that of the

optimum-1 group; this difference, however, did not reach statis-

tical significance (Figure 4F; HR [95% CI] = 0.8788 [0.4572–

1.689], p value = 0.1768).

To further improve the predictive accuracy of the model, we

performed a final iteration by reparameterizing the model using

the experimental survival data (Figures 5A and 5B). Performing

this calculation led to a further confirmation that the time depen-

dence of gwas essential to themodel: fitting the time-dependent

model to the survival data led to a smaller minimal mean square

error as compared to the original model. The time-dependent

model was able to fit the observed data to within an error of

5.2 days, in contrast to the original model, which could only fit

the data to an error of 16.32 days. Thus, including time-depen-

dent dedifferentiation increases the model’s ability to match

the survival data. We therefore concluded that the time-depen-

dent form of g is necessary to accurately explain the observed

survival data and it is likely that any cell reversion due to ionizing

radiation occurs in a time-dependent fashion.

Lastly, we created a simplified version of the model that

was more suitable for analysis and interpretation. The simplified

model predictions for the tumor cell populations prior to dose

i+1 (assuming t hours between doses i and i+1, and t0 hours

between doses i�1 and i) are given by

Nd
i + 1 = ð1� gðt0ÞÞerdðt�LdÞ +Nd

i e
�addi

Ns
i + 1 =Ns

i e
�asdi +gðt0ÞNd

i e
�addi

According to this simplified form of the model, the optimized

therapies optimum-1 and optimum-2 increase survival by con-

verting cells from the fast-growing radiosensitive population to

the slow-growing radioresistant population. Notably, sensitivity

analysis of the simplified model identifies the parameters that

describe reversion as novel sensitivity parameters (Figure 5C;

Supplemental Information).

Finally, as a thought experiment, we considered this model in a

settingwhere there is no reversion (g0 = 0) and therefore no ability

to rapidly acquire radioresistance. Under these conditions, the

model reduces to the standard linear quadratic model, which

highlights two important observations. First, in this scenario, all

fractionation schedules would result in the same ratio of stem-

like to differentiated cells (Figure 5D). This finding is in clear

contradiction to the observations of our SP analysis (Figure 4D).
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Figure 3. Comparison of Two Models: Incorporating Dedifferentiation Time Dependence Improves Fidelity

(A) Predicted tumor growth in response to standard, hypofractionated, hyperfractionated, and optimum-1 radiation treatment schedules. These curves are based

on the original model; parameters are listed under Original Parameters in Table 1.

(B) Kaplan-Meier survival plot of hypo- and hyperfractionated radiation schedules. Mock-treated and standard survival are the same curves as Figure 2 and are

shown for comparison.

(C) Schematic depicting the hyper- and hypofractionated schedules tested. The arrow position represents the time of dose during the 8am–5pm treatment

window. The size of the arrow correlates with the size of the dose.

(D) Hazard ratios of the hypo- and hyperfractionated radiation schedules, compared to the standard radiation schedule. Error bars represent the 95%CI of theHR.

(E) Reparameterization of the time-dependent model based on volumetric MRI studies of mouse gliomas treated with 2 weeks of the standard schedule.

(F) Time-dependent model-predicted tumor growth in response to the various treatment schedules. Model parameters are listed under ‘‘Second Iteration’’ in

Table 1.

(G) Table summarizing number of mice treated, the performance relative to standard therapy, and the predicted performance of the original and time-dependent

model for each treatment group.

See also Figure S3.
Second, if there was no reversion, the model would predict that

all fractionation schedules result in the same survival (Figure 5E),

which is also contradicted by the observations from mouse

survival experiments (Figures 2B and 4E). Taken together, these

observations provide significant evidence for the fact that

ionizing radiation encourages rapid reversion of a subset of

glioma cells to a radioresistant stem-like state.

In sum, our iterative mathematical modeling approach,

informed and validated by mouse modeling, allowed us to deter-

minenot only a radiationdelivery schedule that prolongedsurvival

in mice, but also to identify parameters of the biological pro-

cesses guiding cellular behavior in gliomas that are responsible

for radioresistance. This validated mathematical model can be

used, in futurework, to investigate the effectiveness of alternative

schedules and test their effects on GBM cell populations.
610 Cell 156, 603–616, January 30, 2014 ª2014 Elsevier Inc.
DISCUSSION

Standard radiation delivery schemes are based on decades-old

data that mostly predate recent findings on cancer stem cells. In

GBM patients, many different radiation schedules have been

tried in the clinic based on classic radiobiological data, but

thus far all have had roughly the same effectiveness. Here, we

adopted a combined experimental and theoretical approach

with the goal of identifying treatment schedules that would

lead to better survival in animal models of the disease by

accounting for dynamic transitions of cells between relatively

radiosensitive and radioresistant pools. Our approach was

based on the assumption that the tumor has a kinetic response

to radiation causing some of the surviving cells to acquire resis-

tance by adopting amore stem-like quiescent state over amatter



of hours. Based on this approach, we successfully identified two

treatment schedules that significantly extended survival in

glioma-bearing mice, whereas a control schedule failed to do

so, as predicted. The fact that optimized schedules clearly out-

performed other schedules suggests that the response to radia-

tion is dynamic and that the schedule of a given total dose of

radiation can affect its ultimate efficacy.

Although the mathematical model presented here offers

complexity, it does not include several potentially important bio-

logical factors, such as the immune system, stromal-tumor inter-

actions, nutrient gradients, and others. For example, the work by

Stamatakos et al. (2006) developed a sophisticated four-dimen-

sional model for the response of high-grade gliomas to ionizing

radiation. Based on their computational model, the authors are

able to discuss the effects of cell-cycle time, reoxygenation

times, and cell density on tumor response to therapy. Whereas

these factors are important, using a simplified model focusing

on a single factor, such as dynamic radioresistance, is a powerful

way to isolate and better study that phenomenon. Additionally, it

has previously been shown that working with a simplified model

allows for a more thorough exploration of the mathematics

behind the specific parameter, which often uncovers nonobvious

predictions (Michor et al., 2005; Norton, 1988). Lastly, simplified

models are amenable to more complex mathematical analysis,

such as optimization of treatment schedules.

Glioma stem cells are functionally defined by their capacity to

self-renew and to generate heterogeneous tumors upon trans-

plantation (Vescovi et al., 2006). As stem-like cells are more ther-

apeutically resistant and ultimately give rise to recurrent disease,

it is commonly believed that decreasing the stem-like population

will increase overall survival (Cheng et al., 2010; Scopelliti et al.,

2009). However, our model predicts an improved overall survival

for fractionation schedules that enrich the SLRC population. The

side population, which is enriched for quiescent stemcells (Bleau

et al., 2009; Deleyrolle et al., 2011; Harris et al., 2008), was

elevated in the two optimized schedules that increased overall

survival. However, the success of our model is driven by these

cells acquiring a quiescent state and slower proliferation rate

and therefore is not dependent on a complete dedifferentiation.

Further characterization of the ability of radiation to induce other

stem-like properties remains an exciting area for future studies.

While eradicating all glioma cells, including the stem-like popu-

lation, is essential for ultimately curing the disease, our model de-

scribes a phenomenonwhereby utilizing alternatively fractionated

schedules can increase the SLRC population and still result in a

slower-growing residual tumor and prolonged time to recurrence.

In this regard, our model joins a growing body of evidence sug-

gesting that the relationship between cells with stem-like char-

acter and clinical outcomes might not be as straightforward as

previously thought. A recent theoretical paper modeling tumor

growth kinetics argues that,whereascancer stemcells areneces-

sary for tumor growth, thekinetics of growtharebest describedby

the nonstem compartment (Morton et al., 2011). Additionally, a

recent human GBM study compared the percentage of CD133+

glioma stem cells in patient-matched primary and recurrent sam-

ples (Pallini et al., 2011). Patients whose gliomas contained an

increased percentage of CD133+ at recurrence demonstrated a

significantly longer survival than those with decreased CD133+
cells at recurrence. These studies support our finding that a rela-

tive enrichment in the resistant stem-like populationmight prolong

survival by increasing the time to recurrence.

Translating Optimized Schedules to Human Patients
There are some clear hurdles and open questions in regards to

translating our findings from themouse to theclinic.Onemeasure

of predicted toxicity and lethality of different fractionation sched-

ules is given by the biologically effective dose (BED) (Fowler,

2010; Hall and Giaccia, 2012). This measure is frequently used

to compare the effectiveness and toxicity of different schedules.

It is difficult to use BED to compare the optimized schedules

testedhere, as the spacing of our doses is inconsistent. However,

if we use the common assumption that doses separated bymore

than 6 hr are independent, then the optimum-1 schedule had one

of the lowest BED values of all schedules tested. Because of this,

it might even be possible to increase the dosage levels while

keeping the toxicity of the schedule at or below the level of the

standard therapy. An important avenue for extending these re-

sults to the clinical setting will be to consider optimizing fraction-

ation schedules while stipulating that the schedule has an equal

or lower BED than that of standard therapy.

Note also that this treatment approach enriches a slow-

growing glioma stem cell (GSC) population and therefore would

not be curative. However, previous studies have shown that can-

cer stem cells are dependent on the NOTCH signaling pathway

(Androutsellis-Theotokis et al., 2006; Charles et al., 2010; Eyler

et al., 2011), and further studies have shown depletion and ther-

apeutic sensitization of GSCs when treated with gamma-secre-

tase inhibitors (Gilbert et al., 2010; Hovinga et al., 2010; Wang

et al., 2010). Future studies that combine optimized radiation

with therapeutics that specifically target GSCs, via NOTCH or

other pathways, might further improve outcomes.

GBM is by definition a heterogeneous disease, and it is unclear

how robust an optimized schedule developed for proneural

glioma would perform across the various other GBM subtypes.

The mouse model used in these studies is driven by PDGF

signaling, which is characteristic of approximately 25%–30%

of human GBMs. Of note, this mouse model might not reflect

the biology of other commonly altered signaling pathways,

such as EGFR amplification or NF1 loss, and further studies

are needed to determine if the optimization will extend to those

tumors. Additionally, even tumors with similar molecular under-

pinnings are likely to exhibit variability in the parameters used

to optimize radiation delivery, such as proliferation rate and

the fraction of cells capable of rapidly acquiring resistance.

This observation brings up the possibility theremay be no univer-

sal optimum schedule but rather multiple schedules where opti-

mization for a given patient is dependent on detailed pathologic

analysis of each resected tumor.

Additionally, the parameter values we used were determined

iteratively based on the mouse model, and it is probable that

the schedules presented here will not translate precisely to

human tumors. Our investigation was performed for 1 week of

therapy delivering a total of 10 Gy of radiation. Human patients

receive 60 Gy of radiation over 6 weeks, and optimizing that

schedule might not simply be six cycles of the 1 week optimized

schedules. Nevertheless, our findings suggest that the gliomas
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A B

C D

E F

G

Figure 4. Optimized Radiation Schedules Enrich the Glioma Stem Cell Population

(A and B) Graph showing predicted SLRC/DSC ratio for hyperfractionated, optimimum-1, and optimum-2 schedules, using the original model (A) or the time-

dependent model (B). All values are normalized to predictions for standard therapy. Parameters in (A) and (B) are, respectively, from the Original Parameters and

Second Iteration in Table 1.

(C) Representative gating strategy for eGFP+ tumor cell side-population (SP) analysis. The upper panel depicts the gate used to identify GFP-positive cells, based

on a GFP-negative sample shown in the insert. The lower panel depicts the gate used to identify the SP, based on a Fumitremorgin C-verapamil-treated control

shown in the insert.

(legend continued on next page)
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Figure 5. Growth Rate and Dynamic Dedifferentiation Are the Most Influential Parameters in Modeling Radiation Response

(A) Survival-fit, model-predicted tumor growth in response to various radiation treatment schedules. These predictions are from the time-dependent model

reparameterized to fit the mouse survival data with the parameters under ‘‘Final Iteration’’ in Table 1.

(B) Table summarizing the number of mice treated, the performance relative to standard therapy, and the predicted performance survival data reparameterized

time-dependent model for each treatment group.

(C) Sensitivity analysis of the model’s parameters, ranked from most to least sensitive, as determined by the sensitivity analysis (Supplemental Information).

(D) Predictions of the SLRC/DSC ratio while varying the fraction of cells capable of reversion (go).

(E) Sensitivity plot showing the relative efficacy of several schedules while varying the fraction of cells capable of reversion (go). An explanation of how we found

the parameters for (E) can be found in Section 5 of the Supplemental Information.

See also Figure S4.
respond dynamically and that the response follows kinetics with

a timescale of hours, not weeks. It is therefore imperative to

include such considerations into a theoretical framework in order

to determine optimum radiation administration schedules for

human patients.

Finally, our work studied radiation in isolation, whereas inman,

radiation is usually administered after neurosurgical resection

and with temozolomide. These treatment modalities need to be

incorporated into models aimed at identifying dosing strategies

for human patients. Nonetheless, our studies suggest that
(D) Representative images and quantification of SP analysis 24 hr after the conclus

For quantification, all values are normalized to the average SP of the standard sc

(E) Kaplan-Meier analysis comparing standard, optimum-1, and optimum-2 sched

2 and 3.

(F) Hazard ratios of the optimum-1 and optimum-2, compared to standard radia

(G) Schematic briefly describing the optimum-1 and optimum-2 schedules. The

window. The size of the arrow correlates with the size of the dose.
modeling glioma response to radiation as a dynamic heteroge-

neous process can predict a treatment schedule that improves

overall survival. It also suggests that the schedule that patients

are currently receiving may not be optimal.
EXPERIMENTAL PROCEDURES

Generation of Tumors Using RCAS/TVA

All of the animal experiments were conducted using protocols approved by the

Institutional Animal Care and Use Committees of Memorial Sloan-Kettering
ion of the standard, hyperfractionated, optimum-1, and optimum-2 schedules.

hedule. Error bars represent the SD.

ules. Thesemice represent an entirely independent cohort frommice in Figures

tion. Error bars represent the 95% CI of the HR.

arrow position represents the time of dose during the 8am–5pm treatment
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Cancer Center, protocol 00-11-189. Tumors were generated as previously

described by injecting RCAS-transfected DF1 cells into n-tvamice (Hambard-

zumyan et al., 2009). Mice were monitored carefully, and treatment began

when they displayed neurological symptoms, such as lethargy or head tilt

due to tumor burden, at which point they were irradiated for either biolumines-

cence (BLI) or survival assays. For BLI, mice were analyzed 24 hr after irradi-

ation. For survival, mice were monitored until recurrence of symptoms. The

various radiation schedules are described in Table 2; further details on mouse

work can be found in the Supplemental Information online.

MRI Reconstruction and Analysis

Please see the Supplemental Information online.

SP Analysis

Hoechst 33342 staining was performed as previously reported (Bleau et al.,

2009). Briefly, glioma-bearing mice were treated with standard, hyperfractio-

nated, optimum-1, or optimum-2 schedules. Twenty-four hours after the last

treatment, mice were euthanized and tissue was harvested for SP analysis.

Bona fide tumor cells were identified based on eGFP+ expression, SP was

based on Hoescht dye exclusion, and the data were analyzed by FlowJo.

Further details on the SP analysis can be found in the Supplemental Informa-

tion online.

Statistics

Please see the Supplemental Information online.

Mathematical Modeling

Please see the Supplemental Information online.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and three tables and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2013.12.029.
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