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SUMMARY

Extra-medullary disease (EMD) in multiple myeloma
(MM) is associated with poor prognosis and resis-
tance to chemotherapy. However, molecular alter-
ations that lead to EMD have not been well defined.
We developed bone marrow (BM)- and EMD-prone
MM syngeneic cell lines; identified that epithelial-
to-mesenchymal transition (EMT) transcriptional
patterns were significantly enriched in both clones
compared to parental cells, together with higher
levels of CXCR4 protein; and demonstrated that
CXCR4 enhanced the acquisition of an EMT-like
phenotype in MM cells with a phenotypic conversion
for invasion, leading to higher bone metastasis and
EMD dissemination in vivo. In contrast, CXCR4
silencing led to inhibited tumor growth and reduced
survival. Ulocuplumab, a monoclonal anti-CXCR4
antibody, inhibited MM cell dissemination, sup-
ported by suppression of the CXCR4-driven EMT-
like phenotype. These results suggest that targeting
CXCR4 may act as a regulator of EMD through
EMT-like transcriptional modulation, thus represent-
ing a potential therapeutic strategy to prevent MM
disease progression.

INTRODUCTION

The process of tumor cell metastasis is a multilevel phenome-

non, which involves several steps including cell invasion, blood

vessel intravasation, and passage of the tumor cells into the cir-

culation, followed by homing or extravasation of the clonal cells
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into distant tissues, resulting in the formation of new foci of tumor

colonization. Multiple myeloma (MM) represents a plasma cell

dyscrasia characterized by the presence of clonal plasma cells

within the bone marrow (BM), together with multiple myeloma-

tous ‘‘omas’’ throughout the skeleton. The occurrence of bone

lytic lesions suggests a continuous trafficking of tumor cells to

multiple BMareas. A subset ofMMpatientsmay present with ex-

tra-medullary disease (EMD), defined as an infiltrate of clonal

plasma cells at an anatomic site distant from the BM. EMD oc-

curs in about 4%–20% of patients with MM either at the time

of diagnosis or more frequently after multiple relapses (Oriol,

2011; Varettoni et al., 2010; Weinstock and Ghobrial, 2013). Prior

clinical observations have shown that patients with EMD have a

poor prognosis with a median overall survival of 1.3 years from

the time of diagnosis of EMD (Weinstock and Ghobrial, 2013).

A recent study has reported on the incidence and clinical fea-

tures of EMD in MM patients (Weinstock et al., 2015). However,

themechanisms by which EMD occurs in MM and whether it can

be therapeutically targeted to improve the survival of these pa-

tients remain poorly explored.

Epithelial-mesenchymal transition (EMT) programs occur in

both physiological conditions, such as during implantation,

embryogenesis, and organ development (type-1 EMT; Acloque

et al., 2009; Vi�covac and Aplin, 1996) and in pathological set-

tings, including tissue regeneration and fibrosis (type-2 EMT;

Okada et al., 1997; Zeisberg et al., 2007a, 2007b) as well as can-

cer progression and metastasis (type-3 EMT; Ansieau et al.,

2008; Brabletz et al., 2001; Gupta et al., 2005; Hanahan and

Weinberg, 2000; Medici et al., 2008; Smit and Peeper, 2008;

Thiery, 2002; Yang et al., 2006; Yang and Weinberg, 2008). We

previously demonstrated that EMT-like transcriptional regulation

occurs in MM cells during hypoxic conditions (Azab et al.,

2012a). However, whether EMT plays a role in regulating MM

cell dissemination and EMD remains unexplored.
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Among the factors that may modulate metastasis in the

context of solid tumors, CXCR4 and its ligand CXCL12 have

been reported to act as positive regulators of tumor cell metas-

tasis (Müller et al., 2001; Orimo et al., 2005; Schioppa et al.,

2003; Yagi et al., 2011). CXCL12 axis has been reported to

play a crucial role in facilitating BM homing and engraftment

of clonal MM plasma cells, thus resulting in enhanced MM cell

dissemination from bone-to-bone (Roccaro et al., 2014). Here,

we found that an EMT-like signature characterizes both EMD

as well as MM disease progression in a human MM cell line

propagated in vivo to develop EMD and BM-prone cells. Similar

results were observed in patient samples during disease pro-

gression with higher CXCR4 expression at the protein level

and a higher EMT-like signature at the transcriptional level.

We subsequently interrogated whether CXCR4 may enhance

a metastatic-prone phenotype in MM cells in vivo by favoring

EMT-like features within the tumor clone. We dissected the

in vivo functional relevance of CXCR4 in mediating the EMT-

related signature as well as MM cell dissemination, tumor

growth, and survival by using gain- and loss-of-function ap-

proaches. We next tested the anti-metastatic activity of the

monoclonal antibody anti-CXCR4 (ulocuplumab) in vivo, in the

context of both MM, confirming the ability of ulocuplumab to

modulate the expression of EMT-related genes. Overall, our

findings support the preclinical evidence for targeting CXCR4

as a novel approach to inhibit tumor cell metastasis through

the regulation of EMT.

RESULTS

EMT-like Transcriptional Regulation Characterizes
Extra-Medullary MM
To examine molecular alterations that occur in EMD, we gener-

ated EMD- and BM-prone MM cells by adopting a serial in vivo

selection approach (Figure S1A). After three rounds of in vivo se-

lections, the total number of humanMMcells engrafted to femur-

BM and liver was calculated for the BM-prone and EMD-prone

MM cell lines by counting GFP+ cells from the BM-harvested

cells and from the collagenase-digested liver, respectively.

Localization of the BM- and EMD-prone cells was examined us-

ing a fluorescencemicroscope on the whole transparent CUBIC-

treated mouse (Figure 1A). Specifically, both the BM- and the

EMD-clone colonized BM niches, including vertebrae, humeri,

tibiae, and femurs; in addition, the EMD-clone could metastasize

to and engraft within extra-medullary sites, including liver, kid-

ney, and abdominal-pelvic areas, whereas extra-medullary infil-

tration of the BM-prone clone was not detectable (Figure 1B). A

representative 3D reconstruction of BM and liver infiltration of

BM- and EMD/liver-prone MM cells is provided (Figure 1C).

The number of liver-infiltrating MM.1S cells was higher after

injection of the EMD-prone clone compared to the BM-prone

clone (Figures S1B and S1C). There were no significant differ-

ences in the number of BM-infiltrating cells between the EMD-

and BM-prone clones (Figure S1D), thus confirming that the

EMD-prone MM.1S clone presents with enhanced ability of liver

homing, together with an equivalent infiltrative ability within the

BM, compared to the BM-prone counterpart. In addition, the

two clones did not differ in terms of cell proliferation. Moreover,
both the BM- and the EMD-prone clones significantly enhanced

their migration in response to the chemoattractant, with the

EMD-prone clone presenting with higher migration as compared

to the BM-prone clone (Figures S1E and S1F).

We next performed RNA sequencing on the BM- and EMD-

prone clones and compared their transcriptional profile to the

parental MM.1S cells. We found that the most significantly en-

richedmRNA signatures in EMD- and BM-prone clones included

genes defining an epithelial-mesenchymal transition (EMT),

genes upregulated in response to hypoxia, and genes related

to TNFa/NFkB response, as shown by GSEA (Figure 1D; Tables

S1 and S2). These findings, therefore, indicate that EMT occurs

in BM-disseminating MM cells but also in MM cells colonizing

EMD sites, such as the liver.

It is known that CXCR4 may act as a positive regulator of tu-

mor cell metastasis, and previous studies have shown that EMT

regulates CXCR4, leading to enhanced metastasis and cell

dissemination in solid tumors (Müller et al., 2001; Orimo et al.,

2005; Schioppa et al., 2003; Yagi et al., 2011). MM cells have

been previously shown to express CXCR4 and this has been

linked to the BM homing, engraftment, and growth of the clonal

plasma cells (Alsayed et al., 2007), and we have previously

shown that hypoxia may enhance CXCR4 expression in MM

(Azab et al., 2012a). We therefore hypothesized that CXCR4

may be upregulated with the acquisition of an EMT-like pheno-

type during disease progression and development of EMD in

MM, thus resulting in an enhanced MM cell dissemination. We

therefore evaluated the expression pattern of CXCR4 at the pro-

tein level and confirmed that both BM- and EMD-prone clones

expressed higher surface CXCR4 by flow cytometry, compared

to the parental cells, with a relatively higher expression in the

EMD-prone cells compared to the BM-prone cells (Figure S1G).

Importantly, these findings were recapitulated using patient-

derived EMD tissues, including brain, breast, liver, and abdom-

inal wall mass, where a positivity for CXCR4 was demonstrated

in CD138+ cell-infiltrated areas (Figure 1E). The expression

of other chemokine receptors was tested, showing minimal

differences between the BM- and the EMD-prone clones

(Figure S1H).

EMT-like Phenotype Acquisition in Patient Sampleswith
MM during Disease Progression
We next examined whether an EMT signature is also present in

patient BM-derived CD138+ cells. We therefore investigated

the publically available gene sets (GSE24080), classified patients

according to the International Staging System (ISS) (Greipp et al.,

2005), and confirmed a significant enrichment for EMT-related

mRNA signature in ISS1- versus ISS3-MM patients. Similarly,

an EMT-like phenotype was demonstrated, evaluating an inde-

pendent gene set (GSE6477) in active MM compared to smol-

dering MM patients, as well as in relapsed MM patients (Figures

2A and 2B). To further investigate whether CXCR4 may favor

the acquisition of an EMT-like signature in MM cells, we catego-

rized primary BM-MM-derived CD138 cells according to their

CXCR4 expression levels. Patients with higher (log fold

change > 1.1) and lower CXCR4 expression (log FC < �1) were

next examined (Figure S2A). We first adopted a positive control

gene set, represented by a signature of genes activated by
Cell Reports 12, 622–635, July 28, 2015 ª2015 The Authors 623



Figure 1. RNA Sequencing Shows Enrichment for Epithelial-to-Mesenchymal Transition Signature in Bone-Marrow- and Liver-Prone

MM Cells

(A and B) BM-prone and liver-prone MM.1S/GFP+ cell lines were developed by serial in vivo selection as described within Figure S1. BM- and liver-prone clones

were injected i.v. into SCID/Bg mice (n = 3/group). Visualization of BM- and liver-colonizing MM cells was documented by fluorescence microscopy using

transparent CUBIC-treated whole-mouse body.

(legend continued on next page)
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Figure 2. EMT Characterizes MM Patients

with Advance Stage Disease

(A) MM patients (GSE24080) with ISS3 presented

with an enrichment for EMT-like mRNA signature,

compared to MM patients with ISS3, as shown by

GSEA.

(B) MM patients (GSE6477) with active MM pre-

sented with an enrichment for EMT-like mRNA

signature, compared to patients with smoldering

MM. Similarly, an enrichment for EMT-like mRNA

signature was observed in relapsed MM patients,

as shown by GSEA.
CXCR4 (CXCR4_OE; instance ID OEB005_HT29_96H:

BRDN0000410050) and confirmed an enrichment of the

CXCR4_OE signature in patients characterized by higher

CXCR4 expression versus patients with lower CXCR4 expres-

sion, as shown by using GSEA (FDR 0.1; p = 0.01; Figure S2B).

We further proceeded to identify the pathways differentially

expressed between BM-MM CD138+ plasma cells with high

CXCR4 expression (MM-CXCR4high), compared to clonal MM

plasma cells with lower CXCR4 expression (MM-CXCR4low), by

using GSEA and observed an EMT-related pathway to be signif-

icantly enriched in MM- CXCR4high versus MM-CXCR4low (FDR

0.026; p = 0.01; Table S3). These findings further suggest that

CXCR4 may possibly modulate EMT in the context of MM.
(C) GFP-expressing BM- and EMD-prone MM1.S cells were visualized within the resected BM and liver, re

and liver and reconstructed in 3D using z stack images. GFP expression (green signal) indicates myeloma

conjugated Lycopersicon Esculentum Lectin (red signal).

(D) BM- and liver-prone MM.1S cells were subjected to RNA sequencing, showing an enrichment for EMT

GSEA. The green curves show the enrichment score and reflect the degree to which each gene (black verti

ranked gene list. The heatmap indicates the relative abundance (red to blue) of the genes specifically enriched

to original MM.1S cells. EMT gene sets were enriched in the BM- and in the liver-prone MM.1S cells.

(E) Expression of CXCR4 on samples obtained from patients with extra-medullary MM, including brain, breas

immunohistochemistry using anti-CXCR4 antibody. Staining for CD138 was also performed to identify the MM

EMD tissues stained for CXCR4 and CD138. Immunohistochemistry images were obtained from brain, breas

with an Eclipse 80i microscope (Nikon); 203 magnifications are provided.
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CXCR4Regulates the Acquisition of
an EMT-like Phenotype in MM
To date, several studies have shown that

EMT leads to CXCR4 upregulation, lead-

ing to enhanced tumor cell dissemination

(Jung et al., 2013; Müller et al., 2001).

However, we sought to examine whether,

conversely, CXCR4 may regulate the

EMT-like transcriptional regulation in MM

using in vivo models. We first performed

CXCR4 gain-of-function studies and

confirmed that CXCR4 overexpression

led to the acquisition of a mesenchymal-

like morphology, with changes in actin

cytoskeleton reorganization of MM cells

with protrusion of cell pseudopodia,

compared to empty vector (EV)-infected

cells (Figure 3A). This phenotype was

also supported by the modulation of

EMT-related markers in CXCR4-overex-
pressing (CXCR4/OE) MM.1S cells compared to EV-infected

cells, as shownby upregulation of Slug, Snail, andTwist, together

with downregulation of E-cadherin (Figure 3B). Of note, CXCR4/

OE cells also showed enhanced activation of pro-survival path-

ways, such as p-ERK and p-AKT, together with modulation of

migration and adhesion-related proteins (Figure 3B). In addition,

CXCR4/OE MM cells presented with enhanced invasive proper-

ties compared to control cells (Figure 3C). Demonstration of

CXCR4 overexpression in CXCR4/OE MM cells compared to

EV-infected cells was performed using qRT-PCR and western

blot (Figures 3B and S3A). Similarly, additional MM cell lines

(RPMI.8226) presented with the same changes in cellular

morphology, together with enhanced Slug, Snail, and Twist
spectively, using transparent CUBIC-treated femur

cells; blood vessels were labeled with DyLight 594

-related mRNA signature, as shown by performing

cal lines) is represented at the top or bottom of the

in the BM- or liver-proneMM.1S cells as compared

t, liver, and abdominal wall mass, was evaluated by

-infiltrating areas. Isotype control was used for the

t, liver, and abdominal wall. Tissues were visualized

635, July 28, 2015 ª2015 The Authors 625



Figure 3. CXCR4 Mediates Acquisition of EMT-like Features in MM Cells In Vitro and In Vivo

(A) CXCR4-overexpressing MM.1S cells (MM.1S CXCR4+) present with an EMT-like phenotype compared to empty vector (EV)-infected cells used as control, as

shown by confocal microscopy. Anti-actin Ab and DAPI were used to stain cytoplasm and nuclei, respectively. (403 and 1003 magnifications are provided).

(B) Protein cell lysates were obtained fromCXCR4+MM.1S cells present with modulation of EMT-related proteins, together with upregulation of pro-survival- and

migration/adhesion-related proteins compared to EV-infected cells used as control.

(C) CXCR4+ MM.1S cells display enhanced invasive properties compared to EV-infected cells used as control. Error bars indicate SD.

(legend continued on next page)
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Figure 4. CXCR4 Overexpression Enhances

MM Cell Ability to Disseminate to Medullary

and Extra-Medullary Sites

(A) Schematic diagram of SCID-murine experi-

ment. Four mice for each group were used.

CXCR4-overexpressing (CXCR4/OE) MM cells

carrying BFP and EV-transfected cells carrying

RFP were used.

(B) Flow-cytometry analysis of the injected cell

mixtures, showing equal distribution between the

CXCR4/OE and the EV cells. CXCR4 expression of

the cell populations was analyzed by gating BFP+

or RFP+ fractions.

(C) Number of CXCR4/OE and EV MM cells that

colonized the host bone and the liver was quanti-

fied by flow cytometry. Error bars indicate SD.
upregulation and E-cadherin downregulation, when CXCR4 was

overexpressed (Figures S3B and S3C).

CXCR4 Leads to Enhanced In Vivo Dissemination and
Development of EMD
We first used an in vivo xenograft model of MM cell dissemina-

tion (Roccaro et al., 2014): MM cells, either CXCR4/OE or EV-in-

fected (control), were loaded into femurs and implanted subcu-

taneously into recipient mice. CXCR4/OE cells presented with a

higher ability to metastasize from bone to bone compared to

control cells, as confirmed by using both immunohistochemistry

and quantification by flow cytometry in harvested host femurs

(Figures 3D and S4A). CXCR4 overexpression was confirmed

ex vivo on cells harvested from the host femur. Importantly,

lower expression of human (h)-E-cadherin, together with higher

mRNA expression of h-Twist, h-Snail, and h-Slug, was

confirmed within the BM of the host femur (Figure 3E). Taken
(D) Bone chips were loaded with either CXCR4+ MM.1S or EV-infected MM.1S and implanted subcutaneou

host femur was harvested and used for immunohistochemistry using anti-human CD138 for detecting meta

(E) Higher mRNA levels of CXCR4, Twist, Snail, and Slug, together with lower mRNA levels of E-cadherin,

femurs of mice implanted with CXCR4+-loaded femurs compared to those where EV-infected cells were us

p indicates p value. Average of experiments performed in triplicate is shown.

Cell Reports 12, 622–
together, these observations further

confirm that CXCR4 upregulates EMT-

like transcription factors, leading to

enhanced cell dissemination in vivo.

We further investigated whether

CXCR4 can enhance EMD development

by performing an in vivo competition

assay: MM cells, either blue fluorescent

protein (BFP)+/CXCR4/OE or red fluores-

cent protein (RFP)+/EV infected (control),

were mixed in equal numbers and inocu-

lated in syngeneic femurs that were trans-

planted unilaterally in the dorsum of

mice (Figures 4A and 4B). We observed

a significantly higher dissemination of

CXCR4/OE MM cells to the liver tissue

(EMD) compared to EV-infected MM cells

used as control (Figure 4C), indicating a
strong propensity of CXCR4/OE cells to disseminate to the liver,

thus leading to EMD.

CXCR4 Silencing Leads to Reduced MM BM Homing,
Tumor Growth, and Enhanced Survival
To corroborate the functional relevance of CXCR4 in supporting

MM cell dissemination, CXCR4 loss-of-function studies were

performed (Figure 5A). CXCR4 knockdown led to significant inhi-

bition of MM cell homing to the BM, as shown by using intravital

confocal microscopy (Figure 5B), together with inhibited MM tu-

mor growth in vivo, as shown by using bioluminescence imaging

(Figures 5C and 5D). Importantly, prolonged survival was docu-

mented in mice injected with CXCR4-silenced MM cells

compared to control mice injected with scramble probe-infected

MMcells (Figure 5E). Confirmation of CXCR4 k.d. was performed

ex vivo by using qRT-PCR on BM cells obtained from harvested

femurs (Figure 5F).
sly into SCID/Bg-recipient mice (n = 5/group). One

stasized MM.1S cells.

were observed in BM cells obtained from the host

ed. Error bars indicate SD.

635, July 28, 2015 ª2015 The Authors 627



Figure 5. CXCR4-Silenced MM Cells Present with Reduced Homing, Tumor Growth In Vivo and Improved Survival
(A) Validation of CXCR silencing at protein level by western blot on CXCR4 K.D. MM cells as compared to scramble cells.

(B)CXCR4silencing inMMcells led to inhibitedMMcell homing to the bonemarrow, as shownby using intravital confocalmicroscopy (day 34;GFP+MMcells, green

color; EvansBluepositive-bloodvessels, red color). High-resolution imageswith cellulardetail wereobtained through the intactmouseskull at depthsof up to250mm

fromthesurfaceof the skullusinga1030.45NAPlan-Apoobjective (CarlZeiss)andassembled together togenerateafinal image thatdepicts thewholebonemarrow.

(C and D) SCID/Bg mice were injected with either CXCR4-silenced MM cells or scramble probe-infected cells (n = 7/group). Detection of tumor growth was

performed by measuring bioluminescence imaging (BLI) intensity at different time points post-MM cell injection (days: 7; 14; 35; 39; and 42). CXCR4 silencing in

MM cells led to inhibited MM tumor growth in vivo.

(legend continued on next page)
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Figure 6. Ulocuplumab Inhibits the EMT

Phenotype Acquisition in MM Cells Both

In Vitro and In Vivo

(A and B) MM.1S cells were cultured in presence

or absence of ulocuplumab (0.025–1 mM; 6 hr).

MM.1S cells were then harvested, and cell lysates

were subjected to western blot using anti-

p-b-catenin, -b-catenin, -p-GSK3-b, -tubulin, -Snail,

-Twist, -Slug, and -E-cadherin antibodies. Adjusted

band intensity for each protein normalized to the

relative loading control is provided within Figures

S5A and S5B and expressed as fold of control

(control corresponds to untreated cells).

(C and D) Bone chips from donor mice were

loaded with CXCR4+ MM.1S and implanted sub-

cutaneously into SCID/Bg-recipient mice. Mice

were treated with either control Ab or ulocuplumab

(n = 5/group; 10 mg/kg; i.p.; 43 to 53/week).

Ulocuplumab led to inhibited MM cell growth

within the implanted bone (implanted bone is

shown in C), together with inhibited ability of MM

cells to metastatize from bone to bone (host bone

is shown in D).

(E) The ability of ulocuplumab to modulate EMT

was demonstrated ex vivo: decreased mRNA

levels of Twist, Snail, and Slug, together with

increased mRNA levels of E-cadherin, were

observed in BM cells obtained from the host fe-

murs of ulocuplumab-treated mice. No MM cell-

injected mice were used as control. p indicates p

value. Average of experiments performed in tripli-

cate is shown. Error bars indicate SD.
CXCR4 Inhibition by a Selective Monoclonal Antibody,
Ulocuplumab, Leads to ReducedMMCell Dissemination
Supported by EMT Inhibition
We further confirmed that CXCR4 is a critical regulator of EMT

activation by evaluating the effects of the selective monoclonal

antibody anti-CXCR4 (ulocuplumab) on the modulation of tumor
(E) Kaplan-Meier curve showing prolonged survival in CXCR4 K.D. cell-injected mice versus scramble probe

(log rank test).

(F) Detection of human CXCR4 level has been performed by qRT-PCR (DDCt method) on cells isolated ex vivo

Error bars indicate SD.

Bars indicate SD. p indicates p value.

Cell Reports 12, 622–
cell dissemination and EMT, using clini-

cally achievable concentrations (Kuhne

et al., 2013). MM cells were exposed to

increasing concentrations of the anti-

CXCR4 monoclonal antibody, ulocuplu-

mab. Ulocuplumab led to the regulation

of EMT transcription factors including

Snail, Twist, Slug, andE-cadherin (Figures

6A and S5A). Ulocuplumab also led to up-

regulation of p-GSK3b and p-b-catenin,

responsible for b-catenin degradation

(Figures 6B and S5B). b-catenin is consid-

ered amarker of EMT in the context of em-

bryonic development, fibrosis, and tumor

progression (Brabletz et al., 1998; Kalluri
and Neilson, 2003; Medici et al., 2006) and has been shown to

modulate gene expression related to EMT, such as Snail. Our

findings therefore suggest a possible role of CXCR4 in mediating

acquisition of the EMT phenotype through b-catenin modulation.

To further investigate whether CXCR4 blockade may lead to

an inhibition of MM cell dissemination to BM niches, we tested
cell-injected mice (n = 7/group). p indicates p value

from the bone marrow femurs. p indicates p value.
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Figure 7. Ulocuplumab Exerts Anti-MM

Activity, Either as Single Agent or in Combi-

natory Regimens In Vivo, and Induces

Toxicity on Primary MM Cells

(A) SCID/Bg mice were injected with 5 3 106

MM.1S-GFP+/Luc+ cells i.v. and treated with ulo-

cuplumab (10 mg/kg; 33 to 43/week; i.p.) or iso-

type control antibody (30 mg/kg; 33 to 43/week;

i.p.). Ulocuplumab led to inhibited MM cell homing

to the BM, as shown by using intravital confocal

microscopy at the 3rd week. (GFP+MM cells, green

color; Evans-Blue-positive blood vessels, red

color). High-resolution images with cellular detail

were obtained through the intact mouse skull at

depths of up to 250 mm from the surface of the skull

using a 103 0.45NA Plan-Apo objective (Carl

Zeiss) and assembled together to generate a final

image that depicts the whole bone marrow.

(B) SCID mice were implanted with RPMI-8226,

MM.1S cells and treated with ulocuplumab

(10 mg/kg; 33 to 43/week; i.p.), isotype control

antibody (30 mg/kg; 33 to 43/week; i.p.), or lenali-

domidealone (50mg/kg;daily; i.p.) or incombination

with ulocuplumab, starting 8 days post-implantation

(n = 8/group). Similarly, SCID mice were implanted

with OPM-2 cells s.q. and treated with ulocuplumab

(10 mg/kg; 33 to 43/week; i.p.), isotype control

antibody (30 mg/kg; 33 to 43/week; i.p.), borte-

zomib alone (0.8 mg/kg; 23/week), or in combina-

tion with ulocuplumab, starting 14 days post-

implantation.

(C) BM-derived primary CD138+ cells were

cultured in presence or absence of ulocuplumab

(50–400 nM; 48 hr). Cell toxicity was performed by

using MTT. Ulocuplumab exerted anti-MM activity

against primary MM cells. Error bars indicate SD.
the effect of ulocuplumab on tumor dissemination in vivo, using

clinically achievable concentrations (Kuhne et al., 2013). Ulocu-

plumab exerted an anti-MM activity in situ, within the s.q. im-

planted bones (Figure 6C), and also reduced MM cell dissemi-

nation/metastasis from the implanted bone to the host bone

(Figures 6D and S6A). We next examined whether ulocuplumab

modulated EMT-related gene expression in the MM cells

metastasized to the host bones. We found that higher mRNA

expression of h-E-cadherin, together with reduced mRNA

expression of h-Twist, h-Snail, and h-Slug was found in BM

cells harvested from the host bones of mice treated with ulocu-

plumab. These results confirm that the reduced MM cell

dissemination to the host bone is a result of the combinatory ef-

fect of ulocuplumab-dependent modulation of EMT in addition
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to ulocuplumab-dependent modulation

of tumor growth within the primary im-

planted bone. Non-MM-harboring mice

were used as controls (Figure 6E).

To further demonstrate that CXCR4 in-

hibition may lead to inhibited MM cell

homing to the BM, ulocuplumab was

tested in vivo. MM.1S GFP+/Luc+ cells

were injected i.v. into SCID/Bg mice and

treated with either control Ab or ulocuplu-
mab. Ulocuplumab-treated mice presented with reduced BM

homing, as shown by intravital confocal microscopy (Figure 7A).

In addition, using s.q. xenograft models, mice were treated with

control Ab or ulocuplumab: in all the three models in which three

different MM cell lines were used, ulocuplumab showed signif-

icant anti-MM activity compared to control Ab-treated mice. In

addition to the anti-MM effect of ulocuplumab used as single

agent, a more-significant MM tumor growth inhibition was

observed in vivo when ulocuplumab was used in combinatory

regimens with lenalidomide and bortezomib (Figure 7B). We

next validated the effect of ulocuplumab on targeting patient

BM-derived MM cells, showing induction of toxicity on primary

MM cells exposed to increasing doses of ulocuplumab (Fig-

ure 7C). The observed ulocuplumab-mediated anti-MM activity



in vivo was also supported by the demonstration of ulocuplu-

mab-dependent inhibition of MM cell proliferation in the context

of primary BM mesenchymal stromal (BM-MSC) cells, in vitro

(Figure S7A). We further corroborated these findings at protein

levels: primary MM BM-MSCs were cultured in the presence

of MM cells exposed to increasing concentrations of ulocuplu-

mab. We demonstrated that ulocuplumab inhibited the BM-

MSC-dependent upregulation of p-ERK, p-Akt, and p-Src in

MM cells (Figure S7B). Importantly, possible mechanisms of

ulocuplumab-induced MM cell apoptosis were studied,

showing the ability of ulocuplumab to target MM cells in a cas-

pase-dependent manner, as demonstrated by induced cleav-

age of both caspase-9 and PARP (Figure S7C).

DISCUSSION

CXCR4 has been considered a hallmark regulator of tumor

metastasis as demonstrated both in solid tumors (Müller

et al., 2001) and in hematological malignancies such as MM

(Azab et al., 2012a; Möller et al., 2003), AML (Brault et al.,

2014; Burger et al., 2003), and ALL (Juarez et al., 2009). How-

ever, none of these studies have previously implicated CXCR4

in the promotion of MM growth to EMD sites. The presence of

multiple lytic lesions is one of the main clinical features of pa-

tients with active MM, thus suggesting the ability of clonal

plasma cells to disseminate from bone to bone (Ghobrial,

2012; Kyle and Rajkumar, 2008). The BM-homing process of

MM cells has been shown to be supported by the activation

of the CXCR4/CXCL12 axis (Alsayed et al., 2007; Roccaro

et al., 2014). Recent evidence supports that CXCL12 is essen-

tial in favoring a pro-metastatic BM niche in MM, as well as in

bone metastatic solid tumors, including lung, gastric, medullary

thyroid, renal, and prostate carcinomas (Roccaro et al., 2014).

Type 3 epithelial-to-mesenchymal transition (EMT) represents

one of the main features of metastatic solid tumor cells, where

malignant epithelial cells display the ability to leave the primary

tumor nodule, migrate to distant tissue sites, and create a sec-

ondary metastatic tumor nodule (Kalluri and Weinberg, 2009;

Yang and Weinberg, 2008). In a small fraction of MM patients,

plasma cells are capable of infiltrating EMD sites including liver,

CNS, lungs/pleural fluid, and subcutaneous areas (Weinstock

and Ghobrial, 2013). These patients are usually refractory to

therapeutic agents and have a poor prognosis. This indicates

that there is an urgent need for understanding the molecular

mechanisms responsible for MM cell dissemination to EMD

sites, thus potentially allowing for the development of better

therapeutic modalities that target this unique subset of

patients.

Previous observations have demonstrated that induction of

the EMT phenotype leads to enhanced CXCR4 expression in

epithelial tumors (Jung et al., 2013; Müller et al., 2001). However,

no prior studies have shown that EMT may occur in hematologic

malignancies, such as MM, and that CXCR4 can possibly modu-

late the acquisition of an EMT-like phenotype in the context

of MM.

Here, we have generated BM- and EMD (liver)-prone MM

clones by serial in vivo selection using MM xenograft mouse

models, defined a significant EMT-related mRNA signature in
both clones as compared to the parental MM cells, and

confirmed the presence of CXCR4 at protein level in both the

BM- and the EMD-prone clones. Importantly, an EMT mRNA

signature was significantly enriched in MM patients with

advanced disease, according to ISS (Greipp et al., 2005). By

interrogating whether the CXCR4 levels may affect the EMT

signature, we stratified primary BM-derived plasma cells ob-

tained from MM patients according to their CXCR4 expression

and found that patient-derived plasma cells with high CXCR4

expression present with significant enrichment of EMT-related

pathways compared to those obtained from patients with low

CXCR4 expression, thus suggesting a potential role for CXCR4

in facilitating the acquisition of an EMT phenotype in MM. We

therefore interrogated whether CXCR4 may favor the ability of

MM cells to disseminate from bone to bone or to extra-medullary

sites, such as the liver, by modulating their EMT phenotype,

independently from the functional role of the CXCR4/CXCL12

axis. Our findings show that CXCR4 gain of function exerts a

pro-EMT-like phenotype in MM cells, with a higher degree of

cellular invasion and metastasis, as shown both in vivo and

in vitro, leading to MM disease progression. Importantly, the

presence of an EMT signature was also defined and confirmed

at the transcriptome level in liver-metastasizing MM clones. In

contrast, CXCR4-silenced MM cells presented with reduced tu-

mor growth in vivo together with enhanced survival. Importantly,

the novel monoclonal anti-CXCR4 antibody exerted a dual effect

against MM cells, as shown by inhibition of EMT both in vivo and

in vitro, supported by reduced cell survival and induced cell

apoptosis. Therefore, our data support the activity of CXCR4 in-

hibitors such as ulocuplumab in regulating tumor cell dissemina-

tion and metastasis through the inhibition of EMT transcriptional

regulation.

A previous study had shown that bortezomib-resistant murine

cell lines show reduced expression level of CXCR4 compared to

the bortezomib-sensitive counterpart (Stessman et al., 2013),

and this predicted poor survival in MM patients treated with

the proteasome inhibitor. The bortezomib-resistant murine MM

subclones may present with different genomic aberrations or

changes at transcriptome level, compared to the bortezomib-

sensitive murineMM subclones, and that may explain the results

in this report. However, recent clinical studies do not support an

increase in the incidence of EMD development post-bortezomib

therapy (Weinstock et al., 2015). Therefore, we hypothesize that

specific MM cell subclones may have differences in CXCR4

expression; it could also be postulated that a small subclone

within the BM that has specific mutations or copy number alter-

ations is more ‘‘fit’’ and capable of metastasis with specific

tropism to EMD sites. Alternatively, subclones that disseminate

to the BM or to EMD sites may upregulate CXCR4 by epigenetic

alterations or hypoxia-driven upregulation of CXCR4 to allow for

the proliferation and survival of these cells in a new host environ-

ment. Further studies are, therefore, necessary to define these

potential mechanisms that lead to upregulation of CXCR4.

Taken together, these studies indicate that EMD development

and cell dissemination and metastasis in MM is regulated by

an upregulation of EMT-like transcriptional activity that leads

to higher CXCR4 expression. Moreover, specific inhibition of

CXCR4 by a monoclonal antibody can serve as a therapeutic
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target of EMT activation and inhibition of tumor dissemination in

MM specifically in EMD.

EXPERIMENTAL PROCEDURES

Cells

Primary BM-MSCs were obtained from MM patients. BM mononuclear cells

were isolated using Ficoll gradient centrifugation. Primary plasma cells were

isolated using microbead (CD138)-positive selection. The remaining popula-

tion (CD138 negative) was cultured and selected in plastic flasks and used

at the third to fourth passage. Following with previous reports and International

Society for Cellular Therapy recommendations (Dominici et al., 2006; Garayoa

et al., 2009; Roccaro et al., 2013), BM-MSCs were devoid of hematopoietic

cells (CD34�, CD138�, CD45�, and CD14�) and positive for the remaining

markers (CD73+, CD90+, CD105+, and CD106+), indicating their multipotent

mesenchymal stromal cell phenotype. Approval for these studies was ob-

tained from the Dana-Farber Cancer Institute Institutional Review Board.

Informed consent was obtained from all patients and healthy volunteers in

accordance with the Declaration of Helsinki protocol. The luciferase (luc)-ex-

pressing MM.1S-GFP/luc cell lines were generated by retroviral transduction

with the pGC-gfp/luc vector (kind gift of Dr. A. Kung, Dana-Farber Cancer Insti-

tute). MM.1S, RPMI.8226, and IM9 cell lines were purchased from ATCC;

OPM2 cells were purchased from DMSZ. Primary MM-BM-derived CD138+

cells were purified using CD138-microbeads (Miltenyi Biotech).

Development of BM- and EMD-Prone MM Clones

BM-prone and EMD-prone MM cell lines were developed by serial in vivo se-

lection. A schematic representation of the experimental procedure is provided

in Figure S1. Briefly, a total of 5 3 106 GFP+MM.1S cells were injected into

mice by intravenous injection. After hind-limb paralysis development, MMcells

were harvested from either BM or liver from euthanized mice. To harvest BM

engrafted MM cells, femurs and tibias were resected and BM mononuclear

cells were collected. To harvest liver engrafted human MM cells, whole liver

was resected under sterile conditions. The resected livers were minced with

sterile razor blades and placed in RPMI 1640 media supplemented with colla-

genase/Dispase/DNase I enzyme mixture (Roche Diagnostics). Samples were

incubated at 37�C for 1 hr with gentle shaking. After enzyme digestion, cells

were washed three times with RPMI 1640 media and underwent Ficoll density

gradient centrifugation to remove dead cells and debris. Total number of hu-

manMMcells was calculated by counting GFP+ cells under an epi-fluorescent

microscope using hemocytometer. Cells were resuspended in culture medium

and allowed to grow. GFP+ cells were sorted for further propagation in culture

or for inoculation into new mice. After the first in vivo selection, MM cells har-

vested fromdifferent micewere pooled, and the resulting cell populationswere

subjected to the second round and third rounds of in vivo selection.

Fluorescent Imaging on Transparentized Mice

Mice injected with BM-prone or EMD-prone myeloma cells were observed for

their tumor localization after transparentizing the mice using ‘‘clear, unob-

structed brain imaging cocktails and computational analysis’’ (CUBIC) reagent

as previously described (Susaki et al., 2014). Briefly, mice were injected with

0.1ml of 1mg/ml DyLight594-labeled Lycopersicon Esculentum Lectin (Vector

Laboratories) for blood vessel staining. After anesthesia with isoflurane, the

mice were transcardially perfused with PBS, 4% (w/v) paraformaldehyde,

and CUBIC-1 reagent via heart left ventricle. Mice were subsequently

immersed in CUBIC-1 reagent for 5 days and further immersed in CUBIC-2 re-

agent for additional 5 days. Lower magnification images were obtained using

an OV100 whole-mouse imaging system (Olympus). Images were acquired

with 0.133, 0.273, and 0.563 objective lenses. All data were taken with a

monochrome digital charge-coupled device (CCD) camera (F-View II;

Olympus Soft Imaging Solutions). To observe the tumors with high magnifica-

tion, liver, femurs, and tibias were resected from transparentized mice

and observed using a confocal microscopy (FV-1000; Olympus). Images

were acquired using a 303 silicone immersion objective lens (NA 1.05). 3D

reconstruction was performed from z stack images using Volocity software

(PerkinElmer).
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Reagents

Ulocuplumab and the control human IgG4 isotype control were obtained from

Bristol-Myers Squibb. Bortezomib and lenalidomide were obtained from Sell-

eck Chemicals.

Immunohistochemistry and Immunofluorescence

Autopsy specimens of synchronous secondary extramedullary MM sites were

analyzed for the expression of CD138 and CXCR4. Murine BM tissues (femurs)

were analyzed for the expression of human CD138 and stained with hema-

toxylin-eosin. Imageswere takenusingNikonEclipse80imicroscope (objectives

203 and 1003). Immunofluorescence imagingwas performed on CXCR4-over-

expressing MM cells for evaluating actin cytoskeleton reorganization, using a

confocal microscope (Nikon TE2000-E; objectives 403 and 1003). DAPI was

used as nuclear staining. Anti-actin Alexa Fluor 594 conjugated was used (Cell

Signaling). Images were taken using the Hamamatsu OrcaER camera and the

NIS-Element software. Image J was used to merge the two different channels.

Immunoblotting

Cells were harvested and lysed using lysis buffer (Cell Signaling Technology)

supplementedwith 5mMNaF, 2mMNa3VO4, 1mMPMSF (polymethylsulfonyl

fluoride), 5 mg/ml leupeptin, and 5 mg/ml aprotinin. Whole-cell lysates were

subjected to SDS-PAGE and transferred to polyvinylidene fluoride (PVDF)

membrane (Bio-Rad). The antibodies used for immunoblotting included anti-

CXCR4, -E-cadherin, -N-cadherin, -Slug, -Snail, -Twist, phosphor (p)-ERK,

-p-Akt, -p-paxillin, -p-Src, p-b-catenin, -b-catenin, -p-GSK3-b, -caspase-9,

-PARP, -GAPDH, -tubulin, and -actin antibodies (Cell Signal). Protein band

quantification was obtained using Image J, as previously described (Kovaleva

et al., 2012).

In Vitro Studies

DNA synthesis was measured by [3H]-thymidine ([3H]-TdR; PerkinElmer) up-

take, or MTS, as previously described (Roccaro et al., 2010; Sacco et al.,

2011). Cell toxicity has been evaluated by measuring 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT; Chemicon International), as

described (Azab et al., 2012b; Roccaro et al., 2010; Sacco et al., 2011). Inva-

sion assay was assessed using a Matrigel invasion chamber assay (Corning).

Cell migration was determined using the transwell migration assay (Costar), as

previously described (Azab et al., 2012a).

In Vivo Studies

Intravital confocal microscopy was performed as previously reported (Col-

mone et al., 2008; Roccaro et al., 2013) using a Zeiss 710 confocal system

(Carl Zeiss) on an upright Examiner stand with a custom stage. Briefly, a

skin flap was made in the scalp of the mice to expose the underlying dorsal

skull surface. High-resolution images with cellular detail were obtained

through the intact mouse skull at depths of up to 250 mm from the surface of

the skull using a 103 0.45NA Plan-Apo objective (Carl Zeiss) and assembled

together to generate a final image that depicts the whole bone marrow. Multi-

ple imaging depths were acquired, and a maximum intensity z projection was

performed to merge the images. GFP was excited with the 488 nm line on an

argon laser. Blood vessels were imaged using Evans Blue (Sigma-Aldrich)

excited with a 633 nm laser. Emission signals were collected by using the Zeiss

internal confocal Quasar detectors.

In vivo tumor growth has been assessed by using in vivo bioluminescence

imaging. Mice were injected with 75 mg/kg of Luciferin (Xenogen), and tumor

growth was detected by bioluminescence 3min after the injection, using Xeno-

gen In Vivo Imaging System (Caliper Life Sciences), as previously reported

(Roccaro et al., 2009). The in vivo MM metastasis model was performed, as

previously reported (Roccaro et al., 2014). Briefly, bone chips were loaded

with human (GFP+ MM.1S) MM cells (23 106 cells/bone). Two bones were im-

planted subcutaneously into SCID/Bg mice (n = 5/group). Mice received either

isotype control antibody or ulocuplumab (intra-peritoneal [i.p.]; 10 mg/kg; 33

to 43/week). Mice were euthanized once signs or limb paralysis were evident.

MM cells have been harvested from one host femur and evaluated by flow cy-

tometry for GFP/human CD138 positivity. The remaining host femur has been

used for immunohistochemistry using human anti-CD138 for detecting metas-

tasized MM.1S cells. Six-week-old female SCID-beige mice (Taconic) were



treated, monitored, and sacrificed in accordance with approved protocol of

the Dana-Farber Cancer Institute Animal Care and Use Committee.

MM Xenograft s.q. Models

SCID mice were subcutaneously implanted with 10 million RPMI-8226,

MM.1S, or OPM-2 cells in 0.1 ml PBS and 0.1 ml Matrigel, as previously

described (Zhang et al., 2014). One day prior to dosing, mice were randomized

into groups of eight mice each according to tumor volume (L3W3H/2). Post-

implantation, mice were dosed with ulocuplumab (10 mg/kg; 33 to 43/week;

i.p.), human IgG4 isotype (30 mg/kg; 33 to 43/week; i.p.), bortezomib

(0.8 mg/kg; 23/week; i.p.), or Revlimid (50 mg/kg; daily; i.p.). Tumors and

body weights were measured twice weekly. Tumors were measured in three

dimensions with a Fowler Electronic Digital Caliper (model 62379-531;

Fred V. Fowler), and data were electronically recorded using StudyDirector

software from Studylog Systems. Animals were checked daily for postural,

grooming, and respiratory changes, as well as lethargy. Mice were euthanized

when the tumors reached the 2,000 mm3 endpoint or appeared ulcerated.

All antibody doses were well tolerated, and no body weight losses were

observed.

CXCR4 Gain and Loss of Function

CXCR4 was silenced in MM.1S cells using shRNAs and lentivirus-medi-

ated infection; scramble probe has been used as control (G9 clone;

TRCN0000256866; Broad Institute RNAi Consortium), according to manufac-

turer’s specifications. Transduction efficiency was performed by using qRT-

PCR and western blot (Livak and Schmittgen, 2001). Overexpression of

CXCR4 was obtained in MM.1S and RPMI.8226 cells using precision

LentiORF/CXCR4 (CXCR4+) or EV used as control (Thermo Scientific). Overex-

pression efficiency was performed by using qRT-PCR and western blot (Livak

and Schmittgen, 2001).

mRNA Studies

We utilized a public MM gene expression data set GSE24080 to explore the

pathways potentially regulated by CXCR4. We ranked all 577 MM samples

by their normalized CXCR4 expression levels and compared gene expression

between top 100 samples with highest CXCR4 expression and top 100 sam-

ples with lowest CXCR4 expression. Gene set enrichment analysis (GSEA)

was used to identify significantly enriched pathways (Subramanian et al.,

2005). Gene sets were downloaded from the Broad Institute’s MSigDB

(http://www.broadinstitute.org/gsea/index.jsp).

RNA Sequencing Analysis

Total RNA was isolated from EMD-prone and BM-prone cell lines using

RNeasy Mini kit (QIAGEN). During isolation step, RNA was treated with

DNase I according to the manufacturer’s protocol. For RNA sequencing,

poly-A selection and cDNA synthesis were performed, followed by library

preparation using Illumina TruSeq RNA Sample Prep Kit, sequencing (75-bp

paired reads), and sample identification for quality control. We used Bcbio_

nextgen (https://github.com/chapmanb/bcbio-nextgen/) to process the

RNA-seq data. Briefly, cutadapt (https://github.com/marcelm/cutadapt/)

was used to trim adapters, trimmed reads were aligned to human reference

genome (GRCh37) with tophat2 (Kim et al., 2013), and read count for each

gene was calculated by HT-seq (Anders et al., 2015). Genes with low expres-

sion (FPKM < 1 across all samples) were filtered out. GSEA was used to iden-

tify differentially expressedmRNA signatures, with false discovery rate (FDR) <

0.25 and p value < 0.05.

Statistics

The p values described in the in vitro assays are based on t tests (two-tailed;

a 0.05). p values are provided for each figure. The average of experiments per-

formed in triplicate is shown. The Kaplan-Meier curve was obtained using

GraphPad Prism, and the p value was calculated based on log rank test.
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Boccadoro, M., Child, J.A., Avet-Loiseau, H., Kyle, R.A., et al. (2005). Interna-

tional staging system for multiple myeloma. J. Clin. Oncol. 23, 3412–3420.

Gupta, P.B., Mani, S., Yang, J., Hartwell, K., and Weinberg, R.A. (2005). The

evolving portrait of cancer metastasis. Cold Spring Harb. Symp. Quant. Biol.

70, 291–297.

Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100,

57–70.

Juarez, J.G., Thien, M., Dela Pena, A., Baraz, R., Bradstock, K.F., and Bendall,

L.J. (2009). CXCR4 mediates the homing of B cell progenitor acute lympho-

blastic leukaemia cells to the bone marrow via activation of p38MAPK. Br. J.

Haematol. 145, 491–499.

Jung, Y., Kim, J.K., Shiozawa, Y., Wang, J., Mishra, A., Joseph, J., Berry, J.E.,

McGee, S., Lee, E., Sun, H., et al. (2013). Recruitment of mesenchymal stem

cells into prostate tumours promotes metastasis. Nat. Commun. 4, 1795.

Kalluri, R., and Neilson, E.G. (2003). Epithelial-mesenchymal transition and its

implications for fibrosis. J. Clin. Invest. 112, 1776–1784.

Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal

transition. J. Clin. Invest. 119, 1420–1428.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L.

(2013). TopHat2: accurate alignment of transcriptomes in the presence of

insertions, deletions and gene fusions. Genome Biol. 14, R36.

Kovaleva, V., Mora, R., Park, Y.J., Plass, C., Chiramel, A.I., Bartenschlager, R.,
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