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SUMMARY

Reprogramming of somatic cells to induced pluripo-
tent stem cells (iPSCs) is typically an inefficient and
asynchronous process. A variety of technological ef-
forts have been made to accelerate and/or synchro-
nize this process. To define a unified framework to
study and compare the dynamics of reprogramming
under different conditions, we developed an in silico
analysis platform based on mathematical modeling.
Our approach takes into account the variability in
experimental results stemming from probabilistic
growth and death of cells and potentially heteroge-
neous reprogramming rates. We suggest that re-
programming driven by the Yamanaka factors alone
is a more heterogeneous process, possibly due to
cell-specific reprogramming rates, which could be
homogenized by the addition of additional factors.
We validated our approach using publicly available
reprogramming datasets, including data on early re-
programming dynamics as well as cell count data,
and thus we demonstrated the general utility and
predictive power of our methodology for investi-
gating reprogramming and other cell fate change
systems.
INTRODUCTION

Somatic cells can be experimentally reprogrammed into induced

pluripotent stem cells (iPSCs) through overexpression of the four

transcription factors Oct3/4, Sox2, Klf4, and c-Myc (OSKM)

(Takahashi et al., 2007; Takahashi and Yamanaka, 2006; Yama-

naka, 2009). The reprogramming process usually takes weeks,

yielding iPSCs at extremely low efficiency (Hanna et al., 2007,

2009; Rais et al., 2013; Takahashi et al., 2007; Takahashi
Cell Repo
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and Yamanaka, 2006; Yamanaka, 2009). Several efforts have

improved the efficiency of the reprogramming process; for

example, Hanna et al. (2009) reported that inhibition of the

p53/p21 pathway or overexpression of Lin28 resulted in an ac-

celeration of reprogramming by increasing cell proliferation,

whereas Nanog overexpression improved reprogramming in a

cell division-independent manner. Subsequently, reduction of

the methyl-binding protein Mbd3 during reprogramming also

was shown to ensure that almost all responding somatic lineages

form iPSCs within 8 days, consistent with a deterministic pro-

cess (Rais et al., 2013). Similarly, another study argued that a

subset of privileged somatic cells appear to acquire pluripotency

in a deterministic manner, indicating a latent intrinsic heteroge-

neity within the starting population either prior to or following

OSKM induction (Guo et al., 2014). Induction of C/EBPa in B cells

expressing OSKM provides another approach to activate the

Oct4-GFP transgene in the majority of responding cells within

a few days (Di Stefano et al., 2014). Most recently, two different

studies optimized extrinsic conditions that facilitate iPSC forma-

tion from somatic progenitor cells within 1 week, thus avoiding

the need for additional genetic manipulation (Bar-Nur et al.,

2014; Vidal et al., 2014). For example, exposing somatic cells

expressing OSKM to ascorbic acid and a GSK3-b inhibitor

(AGi) was demonstrated to result in synchronous and rapid

reprogramming (Bar-Nur et al., 2014).

Mathematical modeling has been a valuable approach to bet-

ter understand the reprogramming process. For example, Hanna

et al. (2009) used a simple death process model to explain the

dynamics under different conditions of reprogramming (Fig-

ure 1A). Cell cycle modeling previously used to describe isotype

switching in immune system development, in particular B cell

development and lineage commitment (Duffy et al., 2012),

also can provide a good fit to experimental data in the induced

reprogramming setting using Mbd3 knockdown (Rais et al.,

2013). In conditions using OSKM overexpression only, however,

neither the cell cycle model nor a model assuming deterministic

reprogramming can explain the complex lineage histories that

lead to iPSCs (Rais et al., 2013). Alternatively, the iPSC dynamics
rts 17, 3395–3406, December 20, 2016 ª 2016 The Authors. 3395
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Figure 1. A Schematic Illustration and Comparison between Alternative Modeling Approaches

(A) Previousmodeling approachesmainly include the following: (1) a one-step process, in which themodel considers the reprogramming event from a somatic cell

state to the iPSC state as a single switch-like transition; (2) a phase-type model, in which the model assumes an unknown number of intermediate cellular states

between the somatic cell and iPSC states; and (3) a Fokker-Plank equation-based model, which assumes aWaddington epigenetic landscape between different

cellular states, derived using a potential function to establish transition barriers.

(B) A probabilistic logistic birth-death process that accounts for proliferation and apoptosis events of both the founding somatic and iPSC states, as well as the

transition between states during reprogramming. The carrying capacity reflects the number of cells in the cultured plate at confluence without passaging.

(C) Previous modeling efforts to describe the reprogramming process primarily consider the time of the first appearance of Oct4-GFP+ signals in each well or

colony by setting a binarizing score for reporter activation, and there is no universal standard for how to choose this threshold. Here we focus directly on the

percentage of Oct4-GFP cells in each well or colony as a measure of the percentage of iPSCs generated over time.
can be explained with a phase-type model (Figure 1A) (Rais

et al., 2013), assuming a finite number of intermediate phases

between the initial somatic cell and the final iPSC state. In

this type of model, the number of parameters linearly depends

on the number of phases, and their values are difficult to select

using underlying biological knowledge; this model also ignores

the effects of proliferation and apoptosis of different cell types

on the population dynamics. However, it is difficult to interpret

the number of phases inferred from this type of model and

more difficult to verify such result experimentally. Lastly, from a

statistical physics perspective, Fokker-Planck equations also

were employed to construct the probability density function of

the latency time to reprogramming, and then an inverse problem

was solved to estimate the parameters from experimental data

(Morris et al., 2014). Though these predictions led to a good fit

to the data with out-of-sample validation, the choice of the func-

tional form for the potential is quite ad hoc and not subject to

experimental validation based on currently available technology

(Figure 1A).
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The framework of continuous-time birth-death processes

(Parzen, 1999) provides an alternative perspective to describe

cellular reprogramming, including essential elements of the dy-

namics, such as cell growth, death, and cell fate change (i.e.,

transition). One advantage of the birth-death transition process

approach is that it appreciates probabilistic effects of division,

death, and reprogramming on the final outcome, either repre-

sented by the distribution of first passage times or the percent-

age of iPSCs at a certain time point. Another advantage is that

the birth-death transition process helps us better understand

the sources of the variation observed from the data. Here we

designed a generalizable probabilistic model with simple and

explicit interpretations of all parameters to explore alternative

explanations of the dynamics of reprogramming. Using this

approach, we explicitly modeled reprogramming dynamics

to analyze the cell dynamic data from different experimental

setups. We first utilized cell proliferation data from Bar-Nur

et al. (2014) to parameterize the probabilistic model. We found

that the use of a low and heterogeneous reprogramming rate,



in the context of our mathematical model, could explain the

OSKM data, while a high and homogeneous reprogramming

rate recapitulated the OSKM+ AGi results. Data from other sour-

ces (Rais et al., 2013; Vidal et al., 2014) were then used to further

validate our approach and test its ability to also recapitulate

early-phase reprogramming dynamics (Hanna et al., 2009; Smith

et al., 2010). A summary of the data used in this paper is listed

in Table S1. Our approach allows quantification of reprogram-

ming dynamics using the widely variable experimental setups

of different studies (Table S1; Figure 1A). For example, Rais

et al. (2013) collected data on the first passage time of the per-

centage of Oct4-GFP signal in each well surpassing some

threshold, whereas Bar-Nur et al. (2014) recorded the percent-

age of Oct4-GFP-positive cells in each well at several time

points. To obtain as much information as possible from these

types of experiments, we recommend collecting the full time

course of the reprogramming signal instead of the first passage

time only.

Our flexible approach provides a theoretical framework for

describing cellular reprogramming under any condition. Impor-

tantly, it also establishes a quantitative method to compare be-

tween reprogramming systems. From a practical perspective,

our modeling approach provides a platform to determine both

the rate and homogeneity of any given cell fate conversion.

Quantitative assessment of these parameters is particularly

important for large-scale mechanistic studies that demand

large cell numbers or for the design of differentiation protocols

generating therapeutic cell types. For example, global transcrip-

tomic or proteomic analyses often require bulk cell culture; our

modeling approach could be used to identify reprogramming

systems or time points well suited for these applications based

on the reprogramming rate and its uniformity. Alternatively,

such a model could be employed as an empirical standard to

quantify the uniformity and kinetics of any given cell fate conver-

sion under different conditions to optimize improved protocols or

understand the contributions of specific growth factors. Thus, in

addition to the more fundamental modeling role, we anticipate

that our approach will be useful for mapping the precise molec-

ular trajectories of somatic cells acquiring pluripotency and

for identifying novel reprogramming intermediates.

RESULTS

InducedReprogrammingCanBeModeledasaTwo-Type
Continuous-Time Markov Process
Webegan to explore the kinetics of iPSC generation by analyzing

previous data obtained from a doxycycline-inducible, polycis-

tronic reprogramming system (Bar-Nur et al., 2014). In this study,

granulocyte-macrophage progenitors (GMPs) were exposed to

doxycycline for varying time periods before being scored for

activation of an OCT4-GFP reporter (Bar-Nur et al., 2014). Using

this dataset, we designed a two-type probabilistic logistic birth-

death transition process with a carrying capacity to model the

dynamics of cellular reprogramming (Figure 1B). Such a process

describes the growth and death of individual cells, while the pop-

ulation as a whole initially expands exponentially but then rea-

ches a maximum cell number, the carrying capacity, due to the

resource limitation of the in vitro cell culture system. In this
model, we ignore any spatial interactions between different cells

(Pour et al., 2015).

The population of cells is composed of two different cell types,

somatic cells and iPSCs, whose numbers at time t are denoted

by XS(t) and XI(t), respectively. Initially, somatic cells and iPSCs

proliferate with rates l1 and l2 and die with rates 41 and 42 per

day per cell, respectively, when population sizes are sufficiently

small such that they are not yet impacted by the carrying capac-

ity. The maximum total number of cells for each well is M, i.e.,

XS(t) + XI(t) % M if the culture is not split after the exponential

growth phase. Therefore, as the population of cells increases,

the growth pattern of cells depreciates according to the logistic

function (see the Experimental Procedures). The reprogramming

rate from somatic cells into iPSCs is given by g per day per cell. In

one infinitesimally small time interval, only the following events

can occur: one somatic cell may divide or die, one iPSC may

divide or die, or one somatic cell may transition to one iPSC;

all other events have very small probabilities of occurrence.

Detailed mathematical definitions are provided in the Experi-

mental Procedures and Supplemental Experimental Procedures.

Without a carrying capacity, the numbers of cells at day 8 in the

OSKM+ AGi and at day 12 in the OSKMconditions are predicted

to be much larger than M (Table S2), which is inconsistent with

experimental results; therefore a carrying capacity was included

in the model. All results considering a carrying capacity shown in

the main text are based onM= 100; 000, but sensitivity analyses

(see the Supplemental Experimental Procedures) demonstrated

that perturbations of this and other parameters did not signifi-

cantly change the dynamics. Our probabilistic model explicitly

distinguishes the effects of cell growth, death, and fate change

on the reprogramming dynamics.

Using this approach, we then aimed to predict the percentage

of iPSCs at time t. We approximated the expected proportion

of iPSCs at a certain time point t as E½XIðtÞ=ðXSðtÞ+XIðtÞÞ�
zE½XIðtÞ�=E½XSðtÞ+XIðtÞ�+ gðE½XSðtÞ�;E½XIðtÞ�Þ obtained from

multivariate Taylor expansion, where the form of gðE½XSðtÞ�;
E½XIðtÞ�Þ can be found in Supplemental Experimental Procedures

Equation 10.With the probability-generating function for the pro-

cess, we obtained a system of two coupled first-order ordinary

differential equations for the following quantities: k1(t) = E[XS(t)],

k2(t) = E[XI(t)], k3(t) = E[XS(t)
2], k4(t) = E[XI(t)

2], and k5(t) = E[XS(t)

XI(t)] (see the Supplemental Experimental Procedures for

details and derivations). We then obtained the following:

dk1ðtÞ
dt

= ðl1 � 41 � gÞk1ðtÞ � l1

M
ðk3ðtÞ+ k4ðtÞÞ;

dk2ðtÞ
dt

=gk1ðtÞ+ ðl2 � 42Þk2ðtÞ �
l2

M
ðk4ðtÞ+ k5ðtÞÞ;

where at time t = 0 (i.e., the start of the experiment), we have

initial conditions k1(0) = 1, k2(0) = 0, k3(0) = 1, k4(0) = 0, and

k5(0) = 0. This system of differential equations was solved using

the moment closure approximation (Murrell et al., 2004; Nåsell,

2003), followed by Euler’s method to solve the approximate sys-

tem of differential equations numerically (Smith, 1965); the com-

plete formula for this system of differential equations involving

higher-order moments as well as the R code for solving such
Cell Reports 17, 3395–3406, December 20, 2016 3397



systems can be found in Supplemental Experimental Pro-

cedures Equation 9. To demonstrate the utility of this analytical

approximation and the numerical method, we examined the con-

sistency between the analytical approximation and exact numer-

ical computer simulations of the process, and we concluded that

the analytical approximation is sufficiently accurate to be used in

our setting (Figure S1). The utility of this approximation is to aid in

our parameter estimation procedure (Experimental Procedures).

Unfortunately, no approximation of the variance of the iPSC

proportion Var½XIðtÞ=ðXSðtÞ+XIðtÞÞ� is available, and therefore

this quantity was investigated based on computer simulations

(Experimental Procedures).

Mathematical Modeling Reveals Different Modes of
Reprogramming Dynamics
We then utilized our mathematical model to analyze the time

course Oct4-GFP percentage data from Bar-Nur et al. (2014),

with the goal of studying the dynamics of reprogramming under

two growth conditions: somatic cells cultured in the presence

of ascorbic acid and a GSK3-b inhibitor in addition to ectopic

expression of the OSKM factors (the OSKM + AGi con-

dition) and cells cultured with OSKM overexpression alone (the

OSKM condition, Figure 2A). We first obtained the parameter

values for the proliferation and apoptosis rates of somatic cells

under these two conditions from the proliferation data provided

in Table 1 (Experimental Procedures); note that we do not pro-

vide a confidence interval for these estimates because the sam-

ple size is too small (n = 3). To this end, we counted the number of

cells in wells of a 12-well dish at day 1 and day 2 as well as the

percentage of live and dead cells. In particular, we used annexin

staining with DAPI as a viability dye to determine cells that were

apoptotic in order to directly estimate the apoptosis rate from the

dead cell count. We then estimated proliferation and apoptosis

rates together with the mean and SD of cell counts at day 2

(Table 1). The net growth rate of iPSCs was calculated from an

empirically derived iPSC doubling time of �10.2 hr. However,

since the cell doubling time might not be a very accurate way

to estimate the proliferation rate, sensitivity analyses were con-

ducted (Supplemental Information). The apoptosis rate of iPSCs

was considered equal to that of somatic progenitor cells. Sensi-

tivity analyses to account for imprecise estimation showed that

slight perturbations of the proliferation and apoptosis rates did

not modify our results (Figures S3–S5).

We then estimated the reprogramming rate g from the exper-

imental data by identifying the value that minimized the mean

squared difference between themodel-predictedmean percent-

age of iPSCs and the experimentally observed empirical mean

of the percentage of cells with the Oct4-GFP signal. For the

OSKM + AGi condition, we used the first measurement as the

initial time point because only eight of 96 wells showed any

signal. Using the estimation strategy detailed in the Experimental

Procedures, we identified g = 0.55 day�1 (with a 95%confidence

interval [0.50, 0.61] day�1), obtained from a nonparametric boot-

strap (Efron and Tibshirani, 1993) in the OSKM + AGi condition.

Next, we evaluated the consistency for the model prediction

compared to the data using the maximum squared distance

between model-predicted mean and sample average proportion

of iPSCs over all six measurement occasions (0.0074), and we
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found a correlation coefficient of R2 = 0.99, suggesting consis-

tency between the model predictions and the observed data

(Figure 2B). The relative overestimation of the model-predicted

iPSC percentage on day 2 could potentially be explained by

the results in Smith et al. (2010). Furthermore, to evaluate

whether the model-based variability of the percentage of iPSCs

at each time point was significantly different from the empirical

variability, we calculated both the model-based and empirical

Fano factors (defined as the ratio between the variance and

mean), and we performed a linear regression (adjusted R2 =

0.9386), finding that the intercept of the linear regression output

(�0.0177 with SE 0.0122) was not significantly different from

zero and the slope was not significantly different from one

(0.833 with SE 0.0947) (Figure 2C). We thus demonstrated that,

in the OSKM + AGi condition, the model prediction did not

underestimate the variability of the observed data. These find-

ings indicate that, even when assuming constant proliferation,

apoptosis, and reprogramming rates across time and individual

cells, the level of variability observed in this condition can be

determined by the probabilistic nature of the model itself, and

it is not necessarily due to any heterogeneous properties of the

cells or reprogramming process.

We then sought to utilize the same approach to analyze

data from the OSKM condition (Figure 2D). Using constant

per-cell proliferation, apoptosis, and reprogramming rates, we

found that the reprogramming rate for the OSKM condition (g =

0.080 day�1 with a 95% confidence interval [0.073, 0.088]

day�1, again computed from a nonparametric bootstrap) was

significantly lower (p value < 0.05) than for the OSKM + AGi con-

dition (g = 0.56 day�1 with a 95% confidence interval [0.50, 0.61]

day�1), indicating that AGi exposure induces a dramatic increase

in reprogramming efficiency (Figure S2A; Figure 2B). Similarly,

we evaluated the consistency of the model prediction compared

to the data using the maximum squared distance between the

model-predicted mean and the average proportion of iPSCs

over all 11 measurements (0.045, mainly driven by the fifth

[day 20] and sixth [day 24] measurements during which the cell

culture was split randomly; when removing these two points,

the maximum squared distance was 0.0025) and correlation

coefficients (R2 = 0.96) (Figure S2A). We also found similar pro-

liferation and apoptosis rates between the two conditions, which

are thus unlikely to contribute significantly to the different re-

programming efficiencies between them (Table 1). Interestingly,

the model-predicted variability did not provide as good a match

to the data in the OSKM condition as in the OSKM + AGi condi-

tion. A visualization of Fano factors between the model predic-

tion and the data demonstrate that only four time points of

11 are localized on or below the 45-degree line (Figure 2E;

Figure S2B).

We decided not to evaluate the linear model between pre-

dicted and empirical Fano factors in this comparison, because

of the lack of fit of linear regression (adjusted R2 = 0.06). In addi-

tion, the average squared distance between model-based and

data-based Fano factors in the OSKM condition is 0.0140, which

is larger than that in the OSKM + AGi condition (0.006). There

exist multiple explanations for the underestimated variability by

the model. Measurement errors in the GFP readout could be

one possibility. However, to estimate the measurement errors,
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Figure 2. Probabilistic Modeling of Oct4-GFP Activation Reveals Distinct Dynamics between the OSKM versus OSKM + AGi Conditions

(A) A schematic illustration of the modeling results. In both the OSKM and OSKM + AGi experiments, the proliferation and apoptosis rates for somatic cell and

iPSC states are considered to be a fixed homogeneous variable. Due to the probabilistic nature of the model, the waiting time of cellular division and death are

random variables, reflected by the variable lengths of the black solid (division) and dashed (death) arrows in the figure. In the OSKM + AGi experiment, a single

reprogramming rate (0.55/day) from the somatic cell to iPSC state best fit the data, which is greater than that estimated for the OSKM experiment (0.08/day) and

reflected by the overall shorter waiting time for successful reprogramming events or shorter purple arrows in the figure. In the OSKM + AGi condition, a fixed

homogeneous reprogramming rate can recapitulate the variability observed from the data, whereas a fixed homogeneous reprogramming rate underestimates

the variability in OSKM only. Instead, a log-normal distribution with mean 0.08 and SD 0.75 recapitulates the variability observed in the latter, and this hetero-

geneity is reflected by the dashed purple arrows in the figure.

(B and D) A comparison between the model-predicted mean percentage iPSC trajectory (B) OSKM + AGi and (D) OSKM conditions. The curves indicates mean

percentage iPSC dynamics generated by analytical approximation in (B) or by 1,000 simulations in (D). The error bar corresponds to mean ± SD, where SDs are

based on 1,000 simulations, and observed Oct4-GFP percentage in each well over time (dots are the Oct4-GFP percentage in each well at each time point; in

each box, the two ends of the dashed line are the maximum and minimum of the percentage iPSCs at each time point; the edges of the box correspond to the

mean ± SD of the percentage iPSCs computed from the data; and the horizontal line within the box is the mean percentage iPSC at each time point). In both

experiments, we obtain a correlation between model prediction and observed data of above 0.95, indicating a good fit of our model.

(C and E) A comparison of the Fano factors (dispersion of the data over themean) between the observed percentageOct4-GFP in eachwell andmodel prediction.

The black line corresponds to the 45-degree y = x curve. In (C), the yellow dots correspond to the Fano factors predicted from a homogeneous reprogramming

rate of 0.55/day. In (E), the brown dots are Fano factors corresponding to a heterogeneous reprogramming rate drawn from a log-normal distribution with mean

0.08/day and SD 0.75, whereas the yellow dots are Fano factors corresponding to the constant reprogramming rate with mean 0.08/day.
more experimental data obtained in different laboratories are

necessary. Here we propose another biologically plausible

possibility: if the reprogramming rate g is a heterogeneous

random variable instead of a homogeneous constant, the under-

estimation also can be compensated. As an example, consid-

ering a log-normal distribution of g in the OSKM condition, we

identified the parameters (a log-normal distribution with mean
0.08 and SD 0.75) such that the variance of the model prediction

based on 1,000 simulations matched the empirical data

with mean squared distance 0.007 (Figure 2E; Figure S2). The

maximum squared distance between simulation-based and

data-based mean percentage iPSCs was 0.035 (when not

considering days 20 and 24, decreasing to 0.01). A similar

Fano factor comparison (Figure 2E) showed that more than half
Cell Reports 17, 3395–3406, December 20, 2016 3399



Table 1. The Number of Live Cells on Days 1 and 2, Together with the Percentage of Live and Dead Cells, and the Estimated

Proliferation and Apoptosis Rates for GMPs in the OSKM and OSKM + AGi Conditions, Data from Bar-Nur et al., 2014

Parameter

OSKM OSKM + AGi

Cell Counts

on Day 1

Live Cell Counts

on Day 2

Percentage Live

Cells at Day 2

Cell Counts

on Day 1

Live Cell Counts

on Day 2

Percentage Live

Cells on Day 2

Replicate 1 13,000 63,900 96.2 10,400 52,200 96.0

Replicate 2 11,700 66,600 92.6 10,100 58,200 88.3

Replicate 3 13,300 75,900 86.1 13,400 59,100 96.9

Mean 12,666.67 68,800 91.63 11,300 56,500 93.73

SD 850.49 6,295.24 5.12 1,824.83 3,751.00 4.73

Mean model prediction 69,223.00 55,927.98

SD model prediction 4,451.80 8,619.29

Proliferation rate for GMPs l1 1.84 1.71

Apoptosis rate for GMPs 41 0.09 0.06
of the data points were located below the 45-degree line, sug-

gesting that a heterogeneous reprogramming rate can capture

the variability observed in the data better than a homogeneous

reprogramming rate.

It is possible that a heterogeneous proliferation and/or

apoptosis rate also can contribute to the increased extent of

variability observed in the experiments compared to the model

prediction. For instance, Figures S4 and S5 show that a hetero-

geneous proliferation or apoptosis rate also can provide model

predictions with a good fit for the data in terms of both mean

and variance of the time trajectory, and hence the source of ex-

tra variability must be identified using additional data. We thus

used the proliferation data (Table 1) and compared the model

predictions, based on different assumptions about the vari-

ability of the proliferation and death rates, to the experimental

data (Tables S3 and S4). These investigations indicate that

the proliferation and/or apoptosis rates are not heterogeneous,

hence supporting a heterogeneous reprogramming rate in or-

der to explain the data if assuming that the additional variability

is due to a heterogeneous property of the cells themselves.

Together, these observations might suggest a heterogeneous

reprogramming process in the OSKM condition but a homoge-

neous process during OSKM + AGi treatment when using

GMPs as starting cells. However, other possibilities still exist,

such as measurement error or lineage priming. We also per-

formed sensitivity analyses based on analytical approximations

to test the robustness of our results; we obtained consistent

results when considering data variability such as potential

counting inaccuracies and insufficient data to estimate the

iPSC apoptosis rate (Figure S3). Finally, we performed sensi-

tivity analyses for the OSKM condition by changing the magni-

tude of proliferation and apoptosis rates of iPSCs but fixing

the net growth rate of iPSCs to test whether that approach

would increase the intrinsic variability of the reprogramming

dynamics, when considering a homogeneous reprogramming

rate. Figures S6A and S6B show that, even when increasing

the apoptosis rates of iPSCs from 0.1 to 1.0, the empirical vari-

ance was still underestimated. We want to again emphasize

that such additional analyses cannot rule out other possibilities

without further experiments.
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The Probabilistic Two-Type Logistic Process Modeling
Reprogramming Dynamics Has Predictive Power
One criterion for assessing the generalizability and utility of a

quantitative model is to evaluate its out-of-sample predictive

power (Gelman andHill, 2006). To this end, we first used a subset

of time points from the experiments in Bar-Nur et al. (2014) to

predict the iPSC trajectories, in an approach similar to that

used in Morris et al. (2014). We then investigated whether the

model predictions based on a subset of time points was similar

to that based on all time points. In the OSKM + AGi condition,

the estimated reprogramming rate based on only the first three

of seven time points (0.52 day�1) was similar to the estimate us-

ing all time points (0.55 day�1) (Figures S6C–S6E); in the OSKM

condition, we observed similar results (Figures S6F–S6I).

We next aimed to evaluate the model with an independent da-

taset (Vidal et al., 2014) in which somatic cells were exposed to

either OSKM overexpression alone or in combination with ascor-

bic acid treatment, TGF-b inhibition, and GSK3-b inhibition.

There were insufficient data available for the OSKM experiment

to evaluate the model fit; the other growth condition, however,

was amenable for analysis. We thus compared this dataset

with the model prediction using parameters obtained from the

investigation of data from Bar-Nur et al. (2014) and achieved

an excellent fit (R2 = 0.96, Figure 3A). We also estimated the re-

programming rate (0.52/day, with a confidence interval [0.42,

0.61]) from this new dataset, which was very similar to the one

estimated from the OSKM + AGi experiment. Our model thus

has significant predictive power when applied to independent

datasets. In addition, when comparing the Fano factors calcu-

lated from model predictions and the data (Figure 3B) using

linear regression (adjusted R2 = 0.81), we found again that the

intercept was not significantly different from 0 (�0.02 with SE

0.050) and the slope was not significantly smaller than 1 (1.85

with SE 0.40), respectively, indicating that a constant reprogram-

ming rate can capture the variability of the observed data.

The Probabilistic Two-Type Birth-Death Process Can
Model the First Appearance Time of the iPSC Signal
Aside from collecting the time series percentages of certain

markers (such as Oct4-GFP or Nanog-GFP) representing the
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Figure 3. Model Validation Using Time Series Oct4-GFP Percentage in Different Colonies

(A) A comparison between the model-predicted mean percentage iPSC trajectory using the data in the OSKM + AGi experiment from Bar-Nur et al. (2014) and

observed percentage Oct4-GFP in each colony over time in the OSKM + 3C experiment from Vidal et al. (2014). Again, we obtain a correlation between the

observed data and model prediction >0.95.

(B) Comparison between Fano factors of percentage Oct4-GFP in each colony over time in the OSKM + 3C experiment from Vidal et al. (2014) and model-

predicted Fano factors based on data from the OSKM + AGi experiment from Bar-Nur et al. (2014). The black line corresponds to the 45-degree y = x curve.
level of iPSC formation, another common approach is to mea-

sure the time of the first appearance of some signal of these

markers across multiple replicates (wells or colonies) (Hanna

et al., 2009; Rais et al., 2013) (Figure 1C). We thus also utilized

the multi-type birth-death transition process to analyze such da-

tasets (Hanna et al., 2009; Rais et al., 2013) to further demon-

strate the generalizability of our approach. We did not consider

a carrying capacity due to the frequent plate splitting in the ex-

periments (Hanna et al., 2009; Rais et al., 2013), which was

nearly equivalent to our logistic birth-death process when M

became very large (Supplemental Information). To find out the

first passage time when the percentage of iPSCs reached a

certain threshold (0.5%), we performed Monte Carlo simulations

to generate 1,000 replicates for a range of reprogramming rates,

and we searched for the rate that minimized the maximum

squared distance between the simulation and the observed

data over all measurements.

We first studied the Mbd3 knockdown experiment (Rais et al.,

2013), which was interpreted by the authors to lead to a relatively

fast and deterministic transition. Assuming exponential growth,

the proliferation rate (0.853 day�1) for MEF cells was directly

estimated from the raw cell doubling time (19.5 hr) shared by

the authors. Unfortunately, no other information was available

to estimate the apoptosis rate. We found that a delayed constant

reprogramming rate explained the data (Figure 4A, R2 = 0.98 for

both replicate experiments), where the delayed reprogramming

rate was a step function equal to zero before day 1 and equal

to 0.344 week�1 after day 1. Otherwise, without this delayed

effect, the predicted percentage of wells with more than 5%

iPSCs at day 2 is larger than zero. Here we again used the pro-

cedure described in the Experimental Procedures by identifying
the reprogramming rate that minimizes the maximum squared

distance between the model prediction based on the simulation

and the experimental data. Such delayed effects might be

observed due to multiple reasons; it could be due to the

detection sensitivity (Hanna et al., 2009; Rais et al., 2013) or

because cells in culture need to pass through unobserved inter-

mediate states before dividing or reprogramming. Unfortunately,

there was no higher-resolution time series data available to

address such questions. Furthermore, we found that our multi-

type birth-death transition process model without delayed re-

programming can explain the relatively low-efficiency NGFP1

control experiment (Rais et al., 2013) (Figure 4B, reprogramming

rate is 8.57 3 10�6 week�1, R2 = 0.99) as well as the NGFP1-

Nanog(OE) experiment performed by Hanna et al. (2009) (Fig-

ure 4C, reprogramming rate is 6.4 3 10�4 week�1, R2 = 0.99).

A similar result is shown in Figures S7A–S7C for a heterogeneous

reprogramming rate drawn from a log-normal distribution with

SD 0.75 and mean equal to the same estimated reprogramming

rates as above. Unfortunately, the SD could not be inferred due

to an insufficient number of replicates.

The Probabilistic Birth-Death Transition Process Can
Model the Colony Cell Count Data
We then collected data of three distinct cell fate types defined

by Smith et al. (2010), in which cells were not selected for iPSC

potency and were categorized into fast-dividing (FD), slowly

dividing (SD), and iPSC-forming lineages after doxycycline in-

duction (Figure 5A). We observed that the cellular growth pat-

terns satisfied an exponential growth model without reaching

confluence (Figure 5B), and, therefore, we used a linear birth-

death process without a carrying capacity to model the cellular
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Figure 4. Modeling the Time of First Appearance of iPSC Signals

The figure shows the model-predicted percentage of replicates having surpassed a certain threshold of percentage iPSCs at each time point (red line) and the

corresponding quantity measured from data (blue dots).

(A) NGFP1 Mbd3 knockdown experiments are shown.

(B) NGFP1 control experiment is shown.

(C) NGFP1-NanogOE experiment is shown.
growth based on the cell count data described above. Since the

cell count data over multiple time points for the three cell fates

were measured retrospectively and conditional on lineage non-

extinction, i.e., colony formation (Figure 5C), we first calculated

the theoretical mean and variance of cell counts at different

time points conditional on population non-extinction (Supple-

mental Information). We then used the empirical mean and vari-

ance computed from the data halfway to the end of follow-up

to estimate the growth and death rates of the three cell types

(Table 2). Based on these rates, we then compared the model

prediction and the empirical data in terms of both mean and

SD of the cell count trajectory over time (Figures 5B and 5C),

demonstrating that our approach also can be used to model

cellular growth data in this experimental setup. Finally, using

the estimated birth and death rates for FD cells and iPSCs and

the estimated reprogramming rate for iPSCs (0.01/day) from

Pour et al. (2015) and for FD (�10�8/day) from Hanna et al.

(2009), we simulated the reprogramming dynamics for a mixture

of FD cells and iPSC-forming lineages with the empirically deter-

mined mixture ratios of FD:iPSC = 6:58 and FD:iPSC = 6:19.

Using this approach, we obtained lower predicted early-phase

iPSC dynamics for admixtures as compared to homogeneous

iPSC populations (Figure 5D). This population admixture effect

captured in the early phase of reprogramming in Smith et al.

(2010) and Pour et al. (2015) might explain the overestimation

of ourmodel prediction for the percentage of iPSCs in the earliest

measured time points of the OSKM + AGi condition in Bar-Nur

et al. (2014) (Figure 2B) and possibly also the overestimation of

the model proposed in Hanna et al. (2009) for the early phase

Nanog-GFP+ well percentages.

Identification of the Reprogramming Dynamics for Any
Culture Condition
Finally, we sought to investigate the ability of our model to iden-

tify the reprogramming dynamics for any culture condition used
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in potential future studies. To this end, we tested the ability of our

model to identify the reprogramming rates based on simulating

realistic experimental settings. The input of our approach in-

cludes the proliferation and apoptosis rates of somatic cells

and iPSCs in addition to the time course trajectory of the per-

centage of iPSCs. We first examined whether our approach

could robustly identify the reprogramming rate when the number

of measurements during the experiment decreases. In Fig-

ure S7D, we compared the consistency between the identified

reprogramming rates when very sparse measurements were

performed. The correlation between the model prediction and

the mean percentage of iPSCs from the simulation was �0.96,

suggesting that our method can be applied even when very

few time points are available. We then explored two efficient

hypothetical reprogramming regimes, one with a higher reprog-

ramming rate and the other with a higher proliferation rate of

iPSCs (Figure S7E), and we found that our model was able to

distinguish between these two situations and render model pre-

dictions consistent with the data (correlations of 0.99 and 0.97,

respectively). We are thus very confident that our analysis

approach will prove useful for the investigation of any future

reprogramming experiments.

DISCUSSION

Here we designed a two-type probabilistic logistic process

model to investigate the dynamics of induced reprogramming

from somatic cells into iPSCs. We found that this birth-death

transition process with a constant (or homogeneous) reprogram-

ming rate can recapitulate the dynamics of iPSCs after exposure

to chemical supplements in addition to OSKM overexpression

from two independent datasets (Bar-Nur et al., 2014; Vidal

et al., 2014). For experiments with only ectopic expression of

OSKM, the same process applies but with a heterogeneous

instead of constant reprogramming rate. Our investigations
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Figure 5. Validation of the Model Utility When Cell Count Data Are Available

(A) A schematic description of a lineage-tracing experiment (Smith et al., 2010) that assigned different morphological responses to OSKM induction in a standard

reprogramming experiment using clonally inducible fibroblasts (fast dividing, FD; slowly dividing, SD; and iPSC generating, iPSC). Initially, labeled cells are

tracked over time. Then, conditioning on colony formation or non-extinction, cell lineages are retrospectively assigned as FD (green), SD (black), or iPSC (blue)

and characterized as distinct groups.

(B) The mean cell count dynamics of FD, SD, and iPSC are accurately described by our model. Since in the experiment no confluence was observed, the carrying

capacity is set to infinity. The model prediction (lines) fit the observed cell counts very well (correlation above 0.95 in all three types of cells). Solid line, model-

predicted cell counts over time; dots, mean cell count dynamics averaging over all colonies belonging to each cell type; dashed lines, cell counts for each colonies

obtained from the data.

(C) The SD of cell count dynamics of FD, SD, and iPSC also is consistent with our model. Again the correlation betweenmodel prediction and data is above 0.95 in

all three types of cells. Solid line, model-predicted SD of cell counts over time; dots, SD of cell counts obtained from the data.

(D) Population admixture of FD and iPSC cells can decrease the iPSC level dynamics compared to a homogeneous iPSC population. Blue solid line, uniform iPSC

population; green solid line, uniform FD population; black dashed line, FD:iPSC = 6:58 mixture; red dashed line, FD:iPSC = 6:19 mixture.
thus reveal two different modes of cellular reprogramming

dynamics: OSKM expression alone leads to heterogeneous

reprogramming while OSKM plus certain other factors homoge-

nize the dynamics.

Unlike previous methods focusing on statistics such as the

first passage time (Hanna et al., 2009; Morris et al., 2014; Rais
et al., 2013; Yan et al., 2014), our approach explicitly models

the reprogramming rate and thus can be used to make direct

computational inferences about the heterogeneity of cellular

populations with regard to induced reprogramming. Further-

more, by carefully considering the effects of proliferation,

apoptosis, reprogramming, and the carrying capacity, we were
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Table 2. Growth and Death Rates with Their 95% Confidence

Intervals, Based on Nonparametric Bootstrapping, Estimated for

FD, SD, and iPSC Fates, Data from Smith et al., 2010

Fate Proliferation Rate (day�1) Apoptosis Rate (day�1)

FD cells 1.724 (1.612, 1.836) 0.553 (0.441, 0.665)

SD cells 0.964 (0.825, 1.103) 0.330 (0.191, 0.469)

iPSCs 1.567 (1.454, 1.680) 0.483 (0.370, 0.596)
able to identify differences in the reprogramming rate itself that

resulted in the acceleration of reprogramming in the OSKM +

AGi condition as compared to the OSKM condition. We further

explored the source of variability leading to the increased vari-

ance observed in the OSKM data. However, due to a lack of

sufficiently many replicates and longer follow-up times when

counting the cell numbers, further work is warranted to better

assess the variability of cell growth and death in different condi-

tions. It also will be necessary to conduct follow-up experiments

to further address whether the additional variability comes

from measurement errors or a heterogeneous cell population.

In addition, the log-normal distribution of the reprogramming

rate used in our paper is only one of many possibilities based

on the current data. A recent paper (Tran et al., 2015) also

showed that combining ascorbic acid (AA) and 2i (MAP kinase

and GSK inhibitors) can synergize reprogramming. Even though

our approach does not directly model the first passage time, it is

not difficult to use our model to study such data (Figure 4). Since

we can always transform the time course percentage iPSC data

into first passage time data, we argue for collecting time course

percentage iPSC whenever possible, since such data allow for

more detailed characterization of the reprogramming dynamics.

Although our current framework is promising for modeling

induced reprogramming or more general cellular fate change

phenomena, several caveats apply. First, we do not have enough

information to distinguish between different OKSM systems. For

instance, Hanna et al. (2009) used OSKM while Bar-Nur et al.

(2014) used OKSM; however, we cannot directly compare the

data because of different data collection processes employed

by these two laboratories. As a result, we used the same termi-

nology, OSKM, to indicate the overexpression of Yamanaka fac-

tors. Second, we estimated the parameters in the two-type

model by minimizing the squared distance between the model

prediction and observed data; an alternative inference strategy

would include likelihood-based methods to obtain the maximum

likelihood estimator with good statistical properties (Crawford

et al., 2014). Though some recent advances have been reported

(Ho et al., 2016), the tools needed to make inferences about the

reprogramming rate in the two-type case, however, are currently

unavailable. Furthermore, likelihood-based methods such as the

expectation-maximization (EM) algorithm are usually computa-

tionally intensive when applied to situationswith population sizes

at the scale of millions (Crawford et al., 2014).

More carefully designed experiments (Dinh et al., 2014) and

advanced technology to collect single cell as well as molecular

data also would allow for better model design and parameteriza-

tion. Another implication of our model is that there is a positive

probability of acquiring pluripotency immediately after the start
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of the experiment, when AGi is added, which might suggest

acceleration of the transition from an early population with a het-

erogeneous capacity of acquiring pluripotency toward a more

deterministic or homogeneous process occurring later (Buganim

et al., 2012). To delineate these possibilities and to retrace the

early events in relatively fast regimes such as with addition of

AGi, data need to be collected frequently in the very early phases

of the experiment. Also, when analyzing the data from Rais et al.

(2013), we observed time-delayed reprogramming rates, espe-

cially in the relatively slow reprogramming regimes. These results

might be partly due to the use of different biomarkers for tracing

reprogramming events (Table S1), thus emphasizing the need to

standardize approaches and biomarker usage in the field to

enable a quantitative comparison of results and processes.

Furthermore, it is possible that the conversion to iPSC does

not represent the immediate acquisition of all iPSC characteris-

tics but rather the symmetrical transmission of iPSC compe-

tence to all subsequent progeny, i.e., the switch to deterministic

acquisition of pluripotency after an initially probabilistic event

(Buganim et al., 2012; Pasque et al., 2014; Polo et al., 2010,

2012).

To robustly test the assumptions and the consequences of the

multi-type birth-death transition process model exploited in this

paper, experiments from different laboratories will be necessary

to account for potential confounders, such as batch effects

of these cellular dynamic/kinetic experiments. Also, to test the

assumption of the model given in the Experimental Procedures,

one needs cell count measurements for more time points instead

of just two time points to test the relation between the population

cell growth and the current population size. In addition, to test

heterogeneity in reprogramming rate versus measurement error,

the same 96-well-plate experiment repeated multiple times will

be important to infer the well-to-well variability in different

batches. Our approach can be further extended to explicitly

study the effects of cell cycle times on reprogramming dy-

namics. For instance, Guo et al. (2014) reported that fast-cycling

cells tend to reprogram more efficiently than slow-cycling ones.

To directly test such a hypothesis in our system, data on cell di-

vision kinetics for both fast- and slow-cycling cells are required

together with data for dissecting the time ordering between

reprogramming and proliferation; but, unfortunately such data

are not currently available.

Apart from the probabilistic birth-death transition process

framework, several studies have explored different modeling

perspectives for studying reprogramming dynamics (Duffy

et al., 2012; Hanna et al., 2009; Morris et al., 2014; Rais et al.,

2013; Yamanaka, 2009; Yan et al., 2014). Most of these directly

model the reprogramming latency time. In this paper, we also

demonstrated that the current probabilistic logistic birth-death

transition process model can be applied to study the latency

time distribution by calculating, at each time point, the fraction

of wells surpassing a certain threshold. However, to our best

knowledge, there is no available standard of choosing such

a threshold, and, therefore, we suggest that experimentalists

collect the iPSCpercentage for all wells rather than discontinuing

to follow the dynamics when the signal first appears.

In summary, we have developed a new two-type probabi-

listic logistic birth-death model to interrogate the dynamics of



transcription factor-induced reprogramming of somatic cells into

iPSCs following different genetic or environmental perturbations

by independent laboratories. We anticipate that our methodol-

ogy will be applicable to other reprogramming systems utilizing

different transcription factor combinations and cell fate conver-

sion systems, such as the reprogramming of epiblast stem cells

into embryonic stem cells or cellular transdifferentiation. Like-

wise, our approach is useful for interrogating the dynamics of

forward differentiation approaches using pluripotent stem cells.
EXPERIMENTAL PROCEDURES

Two-Type Stochastic Logistic Process

Our two-type stochastic logistic process is a continuous-time Markovian pro-

cess suggesting that (1) events can happen at any point in time (i.e., contin-

uous time) and (2) the future state of the system is independent of the past

when conditioning on the present (i.e., Markovian property). Our model con-

tains two types of cells (somatic cells and iPSCs), and each can divide and

die with a certain proliferation and apoptosis rate, respectively. Furthermore,

a somatic cell state can transition to an iPSC state, which then cannot change

back into a somatic cell. The two-type stochastic logistic process is defined

using infinitesimal transition probabilities (Equation 6 in the Supplemental

Experimental Procedures). At time t, with XSðtÞ somatic cells and XIðtÞ iPSCs
in the system, the following possible events may occur during the next infini-

tesimally small time interval Dt:

(1) With probability l�,ð1� ðXSðtÞ+XIðtÞÞ=MÞ,X�ðtÞ,Dt+oðDtÞ, one of the

type * cells (where * refers to either somatic cells or iPSCs) divides into

two, where l� is the per-cell intrinsic proliferation rate when population

sizes are sufficiently small such that they are not yet impacted by the

carrying capacity. If the number of somatic cells is large, then the prob-

ability of one somatic cell dividing is also large, and this probability in-

creases if the time interval becomes longer. The term ð1� ðn+mÞ=MÞ
penalizes the proliferation dynamics such that the total number of

somatic cells and iPSCs does not exceed M. The term oðDtÞ is an

extremely small quantity compared to Dt.

(2) With probability f�,X�ðtÞ,Dt+oðDtÞ, one of the type * cells dies and the

population size decreases by one.

(3) With probability g,XSðtÞ,Dt+oðDtÞ, one of the somatic cells transitions

to an iPSC and the size of the population stays constant.

(4) The probability of no events in the next Dt time interval is the comple-

ment of the sum of the above probabilities.

(5) The probability of all other possible events is of a much smaller order

than Dt.

With the infinitesimal transition probabilities outlined above as a building

block, we can derive important quantities, such as the master equation, the

probability-generating function, moment-generating function, sojourn time,

and others (Taylor and Karlin, 2014). More detailed explanations can be found

in the Supplemental Experimental Procedures. Note that all rate parameters

can, in principle, be time dependent and random variables instead of

constants.

Parameter Estimation

To estimate the proliferation and apoptosis rates of somatic cells provided in

Table 1, we first divided the real line into fixed size grids. We then searched

within the grid to obtain a value of the proliferation rate that minimized

the maximum squared difference over all measurements between the analytic

approximation of the mean cell number trajectory predicted using the

one-type probabilistic logistic process (details in the Supplemental Experi-

mental Procedures) and the mean cell counts while assuming an apoptosis

rate of 0. The mean cell counts were calculated from taking the product

of the mean live cell counts and the mean live cell percentage from Table 1.

Using this identified proliferation rate, we then chose the value of the

apoptosis rate that minimized the maximum squared difference over all
measurements between the analytic approximation and the mean live cell

counts shown in Table 1. In particular, the proliferation rate estimator is of

the form

bli = argminl˛R>0
maxk˛f1;2;/;Kg

�� bEðX�;liveðtkÞÞ � �EðX�;liveðtkÞÞ
�2

�
;

where bEðX�;liveðtkÞÞ is the average live cell count of type * cells at time tk , and
�EðX�;liveðtkÞÞ is the model-based mean cell count for type * cells at time tk
assuming no death rate. Here the initial cell count is set as the average cell

count at day 1, listed in Table 1. The death rate estimator is of a similar form

by plugging in bli as follows:

b4i = argminl˛R>0
maxk˛f1;2;/;Kg

(� bEðX�ðtkÞÞ � �Ebli ðX�ðtkÞÞ
�2

)
;

where bEðX�ðtkÞÞ is the average total cell count of type * cells at time tk , and
�EðX�ðtkÞÞ is the model-basedmean cell count of type * cells at time tk . We used

the same strategy for the estimation procedure for the results in Figure 5

involving cell count data from Smith et al. (2010) as well as for the reprogram-

ming rate, which was identified by

bg = argming˛R>0
maxk˛f1;2;/;Kg

3 f� bE ½XIðtÞ=ðXSðtÞ+XIðtÞÞ� � �E½XIðtÞ=ðXSðtÞ+XIðtÞÞ�
�2

o
where K is the number of measurements in each experiment, bE ½XIðtÞ=
ðXSðtÞ+XIðtÞÞ� is the empirical average proportion of iPSCs at time tk , and
�E½XIðtÞ=ðXSðtÞ+XIðtÞÞ� is the model-based prediction of the average iPSC pro-

portion at time tk . With such an estimation strategy, the parameters are deter-

mined such that the difference between the model-based prediction and the

empirical observation is small over all measurements.

To obtain the confidence interval of these rates when the sample size is

reasonably large (excluding the cell count data in Table 1), we employed the

nonparametric bootstrap resampling approach (Efron and Tibshirani, 1993)

by sampling with replacement from the replicates and repeating the above

procedures for 1,000 bootstrap samples. Then the 95% confidence interval

can be obtained from computing the 2.5% and 97.5% quantiles of the 1,000

bootstrap estimates.

Numerical Modeling

All computer simulations (Gillespie, 1977) were performed using C++, and we

used 1,000 replicates to obtain the summary statistics of the simulations. We

used the open source R deSolve (Soetaert et al., 2010) function to numerically

solve the differential equations (Equation 1 and those in the Supplemental

Experimental Procedures) with Euler methods (Smith, 1965), discretizing the

time into 0.001-day unit intervals.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2016.11.080.
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