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Abstract

Coarctation of the aorta (CoA) is one of the most com-
mon congenital heart defects in the United States, and de-
spite treatment, patients have a decrease in life expectancy.
Computational fluid dynamics simulations can provide the
physician with a non-invasive method to measure the pres-
sure gradient. With HARVEY, a massively parallel hemo-
dynamics application, patient specific simulations can be
conducted of large regions of the vasculature. The pres-
sure across the stenosis is impacted by flow from nearby
vessels. The purpose of this study was to study the impact
of including these distal vessels in the simulation on the
resulting pressure measurements. Computational fluid dy-
namic simulations were conducted in three subsets of one
patient’s vasculature. We demonstrate up to a 29% differ-
ence in calculated pressure gradient based on the number
of vessels included in the simulation. These initial results
are positive but need to be substantiated with further pa-
tient studies.

1. Introduction

Coarctation of the aorta (CoA) is characterized by a se-
vere narrowing of the aorta that can lead to congestive
heart failure. It accounts for 5-8% of congenital heart de-
fects in the United States each year [1]. Current clinical
practice is to take a course of action that reduces the pres-
sure gradient across the narrowing, or stenosis, to below 20
mmHg as a high gradient can result in an increased cardiac
workload [2]. Treatment options such as surgical repair,
balloon angioplasty, and stent implantation have proven
successful in the short term; however, long term results re-
veal decrease in life expectancy and predilection for hyper-
tension, early onset coronary disease, stroke and aneurysm
formation [3].

Image-based computational fluid dynamics (CFD) have
started to be widely used to study the localization and pro-
gression of vascular diseases, such as atherosclerosis and
aneurysms [4, 5]. Recent efforts have targeted the devel-

opment of models that capture the impact of stress condi-
tions on patients presenting CoA [6]. Most research has
focused on prognostic and diagnostic methods and there is
little work studying the impact of the size of the circula-
tory region included in the simulation. There is a need for
an analysis of key macroscopic risk factors and the impact
of including flow from distal vessels.

By developing a highly efficient computational tool for
image-based flow simulation, studies of large regions of
the circulatory system can now be studied at high reso-
lutions. In this paper, we present a method for obtain-
ing pressure measurements in patient-based models. We
compare the results for three different subsections of one
patient’s vasculature. Unlike previous studies that either
model simply the region around a stenosis or focus on
the large network of vessels, our approach focuses on the
pressure gradient across the identical coarctation while in-
cluding a range of extra vessels. We demonstrate up to
a 29% difference in calculated pressure gradient based on
the number of vessels included in the simulation. The re-
mainder of this paper illustrates the impact that large-scale
parallel simulations can have even when assessing the risk
factors across small distinct regions of the human vascula-
ture.

2. Methods

Conventional medical imaging modalities like CT or
MRI scans are used to acquire medical imaging data which
are then segmented to create a triangular mesh representing
the geometry of the vessels. A computational grid is ini-
tialized to describe the volume enclosed by this mesh and
serve as input to the CFD algorithm. The mesh can also be
anatomically edited to enable virtual surgery before flow
simulation. A feedback loop is in place to optimize the
outcome and guide treatment planning.

The geometry used in this paper is from de-identified
pre-existing imaging studies provided as part of the Vas-
cular Model Repository [7]. The geometry of the vessels
was obtained through gadolinium-enhanced MR angiogra-
phy (MRA) with a 1.5-T GE Signa scanner. A segmented
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mesh file was created using customized SimVascular soft-
ware (Simtk.org). Flow rates were measured by PC-MRI
sequence encoding and provided for the duration of a car-
diac cycle [8].

2.1. Patient-Specific Computational Fluid
Modeling

To enable personalized simulations of blood flow in the
aorta, we have developed a massively parallel computa-
tional hemodynamics application, HARVEY, based on the
lattice Boltzmann method (LBM). The LBM is an alterna-
tive to the traditional Navier-Stokes equation for modeling
fluid flow. The volume of a 3-dimensional mesh is filled
with a regular array of lattice points on which a minimal
form of the classical Boltzmann equation is simultaneously
solved for a set of fictitious particles. We use an embedded
boundary method to convert the triangular mesh of the ves-
sel geometry to the regular Cartesian grid needed for the
LBM simulation. We create an axis-aligned bounding box
of the mesh and discretize its volume into a grid of the nec-
essary resolution. As the vascular geometries are typically
non-convex, we base our property testing on Bærentzen
and Aanæs’ angle weighted pseudo normal approach [9]
that allows us to classify grid points as fluid, inlet, outlet,
wall, or exterior nodes using the pseudo normal at the cor-
responding closest point on the vessel manifold [10].

To obtain 3-dimensional flow information we apply the
LBM to the aortic domain calculated and prescribe person-
alized inflow and outflow boundary conditions. The LBM
is a low-Mach, weakly compressive solver that can effi-
ciently model flow through complex geometries such as
the human vasculature [11], [12]. At the tradeoff of small
time steps and use of a high-resolution grid, such explicit
finite difference schemes lend themselves to highly effi-
cient parallel implementations.

The fundamental quantity is the particle distribution
function, denoted fi(~x, t), representing the likelihood that
a particle is at grid point x, at time t, and traveling with dis-
crete velocity ξ. The fluid dynamics are resolved through
the evolution of fi(~x, t) with time:

f(~x+ξi∆t, t+∆t) = f(~x, t)−ω∆t(f(~x, t)−feq(~x, t)).
(1)

There are two key components of the algorithm: advec-
tion and collision. In the advection portion of each time
step, the particles are propagated along the velocity paths
defined by the lattice discretization. Fluid-fluid collisions
are then handled through a relaxation towards a local equi-
librium, shown on the right side of Eq. 1. We leverage the
Bhatnager-Gross-Krook (BGK) operator, a collision oper-
ator that relaxes to equilibrium on a single time scale. The

Figure 1. Dataset Definitions. The three dataset sizes
used in these studies are defined. The green region high-
lights a small dataset containing only the stenosis. The
gold region depicts the medium dataset containing a large
portion of the aorta and the purple region shows the large
dataset including a large section of the aorta femoral vas-
culature.

relaxation frequency ω is related to the kinematic viscosity
of the fluid ν = c2s∆t( 1

ω−
1
2 ). The equilibrium distribution

is defined with density ρ and speed u as:
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where w denotes the quadrature weight normalized to
unity and the speed of sound is a lattice constant: c2s = 1

3 .
Another advantage of the LBM is that macroscopic

quantities such as density are moments of the distribution
function. This means that they can be calculated based on
its summation and therefore are available entirely locally.
Pressure is calculated locally through the ideal gas relation:
P = c2sρ.

3. Small Case Study

To study the impact of the vasculature region included
in the simulation on the resulting pressure gradient across
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the coarctation, we selected one patient arterial geometry
as shown in Fig. 1.

This geometry was then separated into three distinct data
sets: (1) small dataset representing the conventional model
of including only the stenosed region (green) (2) medium
dataset including the full aortic arch (gold) (3) large dataset
including a large portion of the aortofemoral vasculature
(purple). We use Blender software (open source share-
ware, www.blender.org), a modeling and animation appli-
cation, to modify the triangular mesh and enforce a closed
mesh after vessel extraction. We chose Blender because
it is free and compatible with our mesh representations,
but we expect most mesh editing and CAD software to be
sufficient for the task of anatomical editing. Each dataset
presents an increasingly computationally expensive prob-
lem. In this paper, we used a 10 micron resolution grid
as bulk-fluid simulations have been shown to demonstrate
convergence with (at most) this resolution [13]. The result-
ing grid sizes are shown in Table 1.

Table 1. Number of Fluid Nodes Per Dataset.

Small 821,242
Medium 652,331
Large 198,887

In order to model the flow in the largest set, we used
16,384 processors of the IBM Blue Gene/Q supercom-
puter; taking advantage of the parallel optimizations de-
scribed in [14]. A Newtonian behavior of the blood was
assumed with a density of 0.001 gr/mm3 and a dynamic
viscosity of 0.004 gr/mm/sec. The Zou-He boundary con-
ditions were implemented in which a patient-specific in-
flow velocity was prescribed at the inlet and a constant
pressure gradient was applied out the outlets. The inflow
velocity was obtained via a 2D, phase-contrast (PC) MRI
sequence with through-plane velocity encoding [8].

4. Results

Detailed pressure distribution maps were generated for
each of the three datasets. The result for the large set is
shown in Fig. 2.

The risk factor of interest in this study as the pressure
gradient across the coarctation. The blue lines depict the
planes across which this factor was measured. The aver-
age and maximal pressure gradients for each dataset were
measured and are shown in Fig. 2. The effect of account-
ing for larger regions of the vasculature is highlight in Fig.
3, showing a greater than 29% increase in calculated pres-
sure gradient for the small dataset as compared to the large
dataset. The change in both the mean and maximal pres-

Figure 2. Pressure Map. The pressure profile map is
shown from the large dataset simulation. Regions of high
pressure are shown in red. The slices from which the pres-
sure gradient is calculated are indicated by the blue lines.

sure gradient between the medium and large datasets were
both approximately 3%. These results highlight the fact
that the pressure is not only dependent on the severity of
the coarctation but also the flow profile and geometry of
the vasculature feeding into the stenosis. It is therefore
necessary to simulate the hemodynamic outcome rather
than simply measuring the degree of narrowing to deter-
mine the severity of the coarctation.

5. Conclusion

We have presented here a tool for patient-specific assess-
ment of risk factors associated with cardiovascular disease.
Through a case study of one patient with a severe CoA,
we investigated the impact of including large regions of
the vasculature. The pressure metrics showed that the flow
coming from distal vessels can have a dramatic impact on
the pressure gradient across a stenosis, making it neces-
sary to include them in image-based simulations. Such
models increase the computational intensity of the problem
and require large-scale models for accurate modeling. Fur-
ther studies including a larger patient cohort and spanning
a range of physiological conditions are needed to further
quantify the regions required for accurate modeling.
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Figure 3. Pressure Gradient. The mean and maximal
pressure gradient measured across the stenosis is shown
for each dataset.
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