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Abstract

Purpose: Since the pioneering work of Salmon and Durie,
quantitative measures of tumor burden in multiple myeloma
have been used to make clinical predictions and model tumor
growth. However, such quantitative analyses have not yet been
performed on large datasets from trials using modern chemo-
therapy regimens.

Experimental Design: We analyzed a large set of tumor
response data from three randomized controlled trials of borte-
zomib-based chemotherapy regimens (total sample size n ¼
1,469 patients) to establish and validate a novel mathematical
model of multiple myeloma cell dynamics.

Results: Treatment dynamics in newly diagnosed patients were
most consistent with a model postulating two tumor cell sub-
populations, "progenitor cells" and "differentiated cells." Differ-

ential treatment responses were observed with significant tumor-
icidal effects on differentiated cells and less clear effects on
progenitor cells. We validated this model using a second trial of
newly diagnosed patients and a third trial of refractory patients.
When applying our model to data of relapsed patients, we found
that ahybridmodel incorporatingboth adifferentiationhierarchy
and clonal evolution best explains the response patterns.

Conclusions: The clinical data, together with mathematical
modeling, suggest that bortezomib-based therapy exerts a selec-
tion pressure on myeloma cells that can shape the disease phe-
notype, thereby generating further inter-patient variability.
Thismodelmay be a useful tool for improving our understanding
of disease biology and the response to chemotherapy regimens.
Clin Cancer Res; 22(16); 4206–14. �2016 AACR.

Introduction
Multiple myeloma was the first metastatic malignancy for

which quantitativemeasurements of tumor burden became avail-
able, allowing for mathematical and statistical approaches to
studying this disease (1–4). Unlike other cancers for which serial
measurements of tumor size are a challenging problem, it was
shown in multiple myeloma that serum levels of myeloma
protein (M-protein) are strongly correlated with tumor burden,

which allowed for study of the kinetics of this disease (3).
Sullivan and Salmon proposed a mathematical model where
tumor growth rate is dependent on the total cell mass (4), and
Hokanson and colleagues compared this model with a constant
growth rate model, using two cell populations with differing
drug sensitivities, to describe the dynamics of treatment
response in multiple myeloma patients (1). Furthermore, Swan
and Vincent suggested an optimal dosing strategy based on
these models, demonstrating the potential for clinical applica-
tion of these techniques (5). However, such quantitative anal-
yses have not yet been performed on large datasets from trials
using modern chemotherapy regimens.

Therapywithmelphalan and prednisone has been the standard
of care for elderly patients with newly diagnosed multiple mye-
loma for more than 40 years (6, 7). In 2008, the proteasome
inhibitor bortezomib (VELCADER)was approved in combination
withmelphalan andprednisone for treatment of newly diagnosed
multiple myeloma patients not eligible for high-dose chemother-
apy, based on the results of the randomized phase III VISTA trial
(8) comparing bortezomib-melphalan-prednisone to melpha-
lan-prednisone treatment. Earlier, bortezomib was approved for
treatment of relapsed multiple myeloma based on the results of
the randomized phase III APEX trial (9, 10) comparing bortezo-
mib monotherapy to dexamethasone treatment. Although in
both phase III studies, bortezomib had been able to induce
complete tumor responses and significantly prolong survival
(10–12), myeloma relapses eventually occurred and the patients
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could not be considered cured. Recently the randomized phase II
MMY-2001 trial investigating the safety and efficacy of the addi-
tion of siltuximab to the bortezomib-melphalan-prednisone reg-
imen showed no survival difference associated with the siltux-
imab addition (13). The dynamics of treatment response in these
trials have not previously been studied but such effortswould lead
to a better understanding of disease mechanisms, which would in
turn help inform treatment strategies. Furthermore, the existence
of a differentiation hierarchy of multiple myeloma cells has been
suggested (14), but the effects of chemotherapies on different
subpopulations in vivo remain largely unexplored. Here, we
analyzed the treatment response of multiple myeloma patients
and sought to identify amechanistic model capable of explaining
the trial response data in both newly diagnosed (11, 13) and
relapsed multiple myeloma patients (8–10).

Materials and Methods
To develop a model for multiple myeloma tumor cell dynam-

ics, we utilized data from682newly diagnosedmultiplemyeloma
patients who were treated with first-line melphalan and predni-
sone with bortezomib (the 'VISTA VMP' cohort) or without (the
'VISTA MP' cohort) within the randomized phase III VISTA trial
(ref. 11; see SI, 'Patient cohorts'). SerumM-proteinmeasurements
(g/dL) were analyzed uniformly by a central laboratory and were
determined as surrogates for disease burden (15). By VISTA trial
design, patients were to be treated in both cohorts for amaximum
duration of 54 weeks, unless treatment was discontinued earlier
due to toxicity or myeloma progression. Of the 682 randomized
patients, 299 patients in the VISTAMP cohort and 300 patients in
the VISTA VMP cohort were evaluated for their disease kinetics
(Fig. 1A, SI, 'Patient selection' for exclusion criteria). To investigate
the treatment effects of melphalan, prednisone, and bortezomib,
we first utilized a statistical modeling approach to identify trends
within the treatment response data (SI, 'Statistical modeling'). We
then aimed to design simple mathematical models, developed in
a biologically intuitive way, to investigate the treatment dynamics
of the disease; similar approaches have previously led to a mech-
anistic understanding of infectious diseases (16). Finally, we

validated our model using M-protein data from two independent
trials, the MMY-2001 and APEX trials, which include both newly
diagnosed (11, 13) and relapsed multiple myeloma patients (8–
10). The SI contains details on all patient cohorts, analyses, and
models.

Results
We analyzed the observed tumor burden trajectories from the

three trials in the following order: (i) we applied statistical
modeling to determine the trends in longitudinal tumor trajec-
tories from newly diagnosed multiple myeloma patients in the
VISTA trial, (ii) we built two biologically sound mathematical
models in an attempt to recapitulate the observed trends, (iii) we
compared our models' predictions against observed results, and
(iv) we validated our model with external data from the inde-
pendent MMY-2001 and APEX trials and expanded our model to
explain trends in refractory patients.

Statistical modeling of VISTA trial data
Before biology-based mathematical modeling, we first investi-

gated different statistical approaches to identify the shape of the
treatment response data, that is, the statisticalmodel with the best
fit to the M-protein data (Fig. 1D and E, SI, 'Statistical modeling,'
Supplementary Fig. S1). We began with the data from the VISTA
trial, which demonstrated a clear survival advantage for bortezo-
mib, melphalan, and prednisone (VMP) versus melphalan and
prednisone alone (MP) in newly diagnosed elderly patients (11).
When studying the cohort-level patient dynamics of treatment
response in both the VISTA MP and VMP cohorts, we identified a
2-phasic exponential model (i.e., a curve with a bend, or turning
point; Supplementary Fig. S1) to be the best-fitting statistical
model among 1-phasic exponential and 2-phasic exponential
models for both cohorts (SI, 'Treatment phase model
fitting,' Table 1). The summary statistics for the first slopes
(b1), second slopes (b2), and turning points (t) when fitting 2-
phasic exponentialmodels to all patients in each cohort are shown
in Table 2. First, we found that patients in the VISTA VMP cohort
had a significantly steeper first slope on average than patients in
the VISTA MP cohort (P ¼ 3 � 10�15 Wilcoxon rank-sum test),
corresponding to a faster initial response rate in the VMP cohort.
Second, the difference between the cohorts' second slopeswas not
statistically significant (P¼ 0.2439,Wilcoxon rank-sum test), and
both cohorts were not significantly different from zero (MP P ¼
0.2645 and VMP P ¼ 0.08, t-statistics). Third, the difference
between the cohorts' turning points was also not statistically
significant (P ¼ 0.3852, Wilcoxon rank-sum test).

We then performed individual patient analyses to ensure that
the observed patterns at the cohort level are representative of
sufficientlymany individual patients such thatwe arenot focusing
only on a small subset of patients. Comparing between patients
who displayed 1- versus 2-phasic exponential declines, we found
that therewas a significantly larger proportionof 2-phasic patients
in the VISTA VMP cohort as compared to the VISTA MP cohort
(P � 10�16, Fisher exact test). Furthermore, 2-phasic patients in
the VISTA VMP cohort had a significantly steeper first slope than
such patients in the VISTA MP cohort (P ¼ 3 � 10�15 for all
patients with b1 < 0, Wilcoxon rank-sum test), again indicating a
faster initial response rate in the VMP cohort. The difference
between cohorts in the second slope was not statistically signif-
icant. Finally, 2-phasic patients in the VISTA VMP cohort had a

Translational Relevance

Relapse inmultiplemyelomapatients suggests the existence
of progenitor cells responsible for tumor regrowth, but this
population has never been confirmed. Here, we used math-
ematical modeling to show that the combined data from three
clinical trials of bortezomib-based chemotherapy are consis-
tent with a differentiation hierarchy where a myeloma pro-
genitor cell population that is relatively resistant to therapy
gives rise to a differentiated cell population that is sensitive to
therapy. Thus, we conclude that bortezomib-based therapy
exerts a selection pressure on myeloma cells, and the admin-
istration of rational combination treatments may reduce
expansion of resistant clones, leading to more prolonged
remissions. Our model could be used to improve future
clinical trial design for multiple myeloma by using treatment
effects of therapeutic agents on both differentiated and pro-
genitor cells populations in order to predict how patients will
respond to treatment.
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smaller turning point than patients in the VISTA MP cohort,
indicating that the time at which the response rate changes was
shorter in the VMP cohort than the MP cohort (P¼ 0.02 for all 2-
phasic patients with b1 < 0 and P ¼ 0.01 for all 2-phasic patients
with b1 < 0 and b2 < 0, Wilcoxon rank-sum test).

When investigating the relationship between the best-fitting
model and multiple myeloma stage (ISS stage) (17), we found
that patients with advanced-stage disease in the VISTAMP cohort
were significantlymore likely to display a 2-phasic rather than a 1-
phasic exponential trend after the initiation of therapy (Supple-
mentary Table S4). For the VISTA VMP cohort, however, there was
no significant association between multiple myeloma stage and
the shape of the treatment response curve (Supplementary Table
S4). In both cohorts, there were more deaths of patients with
positive second slopes compared with patients with negative
second slopes (Supplementary Table S5). Furthermore, for VISTA
VMP patients displaying a 2-phasic M-protein depletion in the

treatment phase, the first slope was significantly associated with
the time to progression (P¼ 0.005, Coxmodel) when controlling
for multiple myeloma stage.

Mathematical modeling of VISTA trial data
The fact that many patients displayed more complex response

kinetics than a simple exponential decay ofM-protein abundance
over time suggests complex intra-patient disease dynamics. We
therefore designed biologically sound mathematical models to
explain the response dynamics. These models were created to
relate the abundance of measurable M-protein to the numbers of
different types of multiple myeloma cells, which are not directly
detectable in the clinical trial data, offering an explanation for the
observed trial results from a theoretical biology perspective. To
validate the model-predicted and observed outcomes, we com-
pared their turning points and the proportion of 1- and 2-phasic
patients.

VISTA trial

VISTA MP

VISTA MP

VISTA MP during therapy VISTA VMP during therapy

VISTA VMP

Newly diagnosed multiple myeloma
patients (n = 682)

Patients without baseline
or not treated even once
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Patients evaluated for response
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Light chain disease and/or
biclonal heavy chain

(n = 15)

Patients without baseline
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(n = 1)
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only measurable
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(n = 54)
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 (n = 668)
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measurable levels of IgG, IgA, IgM, or IgD

 (n = 604)

Received melphalan and
prednisone (n = 299, 2

patients excluded due to
treatment cross-over or early

discontinuation)

Patients with ≥ 5 data points
(n = 272)

Patients with ≥ 5 data points
during therapy (n = 255)

Patients with ≥ 5 data points
during therapy (n = 249)

Patients with ≥ 5 data points
(n = 263)

Patients with ≥ 5 data points
during therapy (n = 40)

Patients with ≥ 5 data points
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Received siltuximab,
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 (n = 43)
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 (n = 269)

Patients with ≥ 5 data points
(n = 41)

MMY-2001 VMP

MMY-2001 VMP

MMY-2001 VMP MMY-2001 SVMP

MMY-2001 SVMP

MMY-2001 SVMP
APEX DEX

APEX trial
Newly diagnosed multiple myeloma

patients (n = 106)

MMY-2001 trial

APEX DEX

APEX DEX during therapy
Patients with ≥ 5 data points

during therapy (n = 168)

Patients with ≥ 5 data points
(n = 229)

Received bortezomib (n = 269)

APEX VEL during therapy

APEX VEL

APEX VELReceived melphalan,
prednisone, and bortezomib

(n = 47)

VISTA VMP
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Figure 1.
Patient selection criteria and M-protein treatment response in the VISTA and APEX trials. A–C, flowcharts outlining the patient inclusion and exclusion
criteria for quantitative analysis of M-protein treatment response. D–I, median longitudinal M-protein trajectories for each cohort in the three trials, and the
associated numbers of patients at each time point: D, VISTA MP cohort; E, VISTA VMP cohort; F, MMY2001 VMP cohort; G, MMY2001 SVMP cohort; H, APEX
DEX cohort; and I, APEX VEL cohort. The median M-protein values are indicated by the orange circles, and quartiles are indicated by the whiskers. The
numbers of patients at each time point are shown by the histograms. Vertical yellow and green dashed lines indicate treatment initiation and termination
times, respectively. For the VISTA and MMY-2001 trials (D–G), only patients who completed the entire treatment regimen are included. For the APEX trial (H and I),
due to the small number of patients who completed the entire treatment regimen, only the M-protein response during treatment is shown.
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We first postulated a model based on the existence of two
genetically independent multiple myeloma clones. In this 'clonal
evolution' model, tumor cells evolve independently, and there is
no differentiation hierarchy within the myeloma cell population
(SI, 'The clonal evolution model'). We found that there was a
significant difference in the numbers of 1- and 2-phasic patients
between the observed clinical data in the VISTA trial and the
simulated data based on the clonal evolutionmodel (observed 1-
phasic patients/total number of patients: 55/249; in one simu-
lation, 1-phasic patients/total number of patients: 113/249; P¼ 5
� 10�8, Fisher exact test). Furthermore, the estimated turning
points for 2-phasic patients were significantly different between
the observed clinical data in the VISTA trial and the simulated data

based on the clonal evolutionmodel, 90� 69, median 72 days in
VISTAdata; 186� 81,median 169 days in simulated data; P¼ 2�
10�12, two-sample t test (SI, 'The clonal evolution model'). Thus,
a clonal evolution model, which considers two genetically dif-
ferent multiple myeloma clones, was unable to recapitulate the
tumor dynamics observed from the VISTA trial data.

We then designed a second model that describes the differen-
tiation hierarchy of the hematopoietic system; in this hierarchical
model, we postulated that myeloma cells in part recapitulate
normal differentiation and are composed of two populations:
myeloma 'progenitor' cells and 'differentiated' cells (Fig. 2A and
SI, 'The differentiation hierarchy model'). In the context of this
model, normal stem cells reside on top of the hierarchy and give

Table 1. Summary statistics of the treatment response data analysis

VISTA MP cohort during treatment (255 patients) VISTA VMP cohort during treatment (249 patients)
2-phasic exponential model Exponential model 2-phasic exponential model Exponential model

Mina of R2
i

0.089 0 0.174 0.002

1st Quartilea of R2
i

0.678 0.327 0.874 0.374

Mediana of R2
i

0.865 0.629 0.929 0.645

Meana of R2
i

0.787 0.572 0.889 0.577

3rd Quartilea of R2
i

0.938 0.847 0.962 0.813

Maxa of R2
i

0.999 0.980 1 0.955
bFinal R2 0.902 0.706 0.910 0.642
cSum of BICs �1096.8 �978.9 �773.1 �480.5

MMY-2001 VMP cohort during treatment (40 patients) MMY-2001 SVMP cohort during treatment (38 patients)
2-phasic exponential model Exponential model 2-phasic exponential model Exponential model

Mina of R2
i

0.684 0.007 0.187 0.003

1st Quartilea of R2
i

0.872 0.444 0.876 0.250

Mediana of R2
i

0.926 0.630 0.948 0.399

Meana of R2
i

0.912 0.573 0.883 0.473

3rd Quartilea of R2
i

0.968 0.731 0.968 0.773

Maxa of R2
i

0.999 0.938 1 0.950
bFinal R2 0.929 0.640 0.934 0.471
cSum of BICs �313.9 �241.5 �309.5 �214.8

APEX DEX cohort during treatment (143 patients) APEX VEL cohort during treatment (168 patients)
2-phasic exponential model Exponential model 2-phasic exponential model Exponential model

Mina of R2
i

0.054 0.000 0.228 0.000

1st Quartilea of R2
i

0.716 0.105 0.828 0.195

Mediana of R2
i

0.846 0.370 0.937 0.529

Meana of R2
i

0.799 0.404 0.873 0.498

3rd Quartilea of R2
i

0.944 0.684 0.983 0.777

Maxa of R2
i

1.000 0.964 1.000 0.996
bFinal R2 0.830 0.496 0.898 0.580
cSum of BICs �1402.5 �1201.4 �1729.7 �1376.1

NOTE: The table displays statistics on the individual patientmodelfitting aswell aswhole cohortmodelfitting for the cohorts for the three trials during treatment. See
SI, 'Treatment phase model fitting,' for details.
aThe Minimum/1st Quartile/Median/Mean/3rd Quartile/Maximum of the R2

i , i ¼ 1, . . . , N, calculated from the corresponding fitted model for each individual patient,

where N is the total number of patients and R2
i ¼ 1 � SSEi/SSTi.

bFinal R2 , calculated as 1 � P
SSEi/

P
SSTi, evaluates the overall fit of the corresponding model to the whole time series data with all patients for each cohort.

cSum of BICs is the sum of BICs over all subjects for each cohort.

Table 2. Summary statistics of slopes and turning points in the treatment response data

Cohort (# patients) First slope, b1 (SD) Second slope, b2 (SD) Turning point, t (SD)

VISTA MP (255) �0.0067 (0.0094) �0.0011 (0.0162) 116.20 (87.02)
VISTA VMP (249) �0.0237 (0.0217) �0.0016 (0.0145) 106.20 (77.59)
MMY-2001 VMP (40) �0.0192 (0.0153) 0.0004 (0.0191) 151.55 (80.05)
MMY-2001 SVMP (38) �0.0530 (0.0562) 0.0014 (0.0068) 106.61 (75.89)
APEX DEX (143) �0.0169 (0.0151) 0.0037 (0.0175) 67.1 (44.75)
APEX VEL (168) �0.0285 (0.0243) 0.0034 (0.0132) 70.1 (40.06)

NOTE: The table displays the means of the first (b1) and second (b2) slopes as well as the turning points (t) obtained from fitting a bi-phasic model to each cohort.
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rise to progenitor cells, which in turn produce differentiated cells.
In addition to normal cells, the bone marrow of multiple mye-
loma patients also includes multiple myeloma cells. Multiple
myeloma progenitors reside on top of the multiple myeloma
hierarchy and give rise to multiple myeloma differentiated cells,
which in turn produce M-protein. Multiple myeloma progenitors
produce none or only low amounts of M-protein, which we
neglected in the mathematical model. We found good agreement
between the VISTA trial data and predictions of the mathematical
model (Fig. 2D and E and SI, 'The differentiation hierarchy
model').

After treatment initiation, the multiple myeloma cell popula-
tion declines at the death rate of differentiated multiple myeloma
cells during therapy (equal to the first slope identified in the data,
mean �0.0067 for the VISTA MP cohort and �0.0237 for the
VISTA VMP cohort) until the latter reach a steady state with
multiple myeloma progenitor cells; from this time onwards, the
kinetics display a shallower decrease signifying the depletion of
progenitor cells during treatment (equal to the second slope
identified in the data, mean �0.0011 for the VISTA MP cohort
and �0.0016 for the VISTA VMP cohort). After treatment discon-
tinuation, some patients show a lasting suppression of their M-

protein values, while others experience a disease rebound (Sup-
plementary Fig. S7). In the context of the hierarchicalmodel, these
patterns are generated by a selective effect of treatment on differ-
ent multiple myeloma clones: treatment may select for multiple
myeloma phenotypes with altered growth and differentiation
kinetics as compared with the predominant clone present at the
time of diagnosis. In patients in whom no rebound occurs by the
end of follow-up, the multiple myeloma clones that remain after
treatment are less 'fit' (either via a decreased growth rate or an
increased death rate) than those present before treatment. Thus,
their expansion occurs on a slower time scale, such that the M-
protein value slowly increases after treatment cessation but
remains below the detection limit. In patients inwhoma rebound
occurs, resistant cells slowly outcompete sensitive cells and lead to
positive M-protein values after variable periods of time, depend-
ing on the size of the resistant clone and their growth rate.

Validation of the hierarchical model using additional trial data
We then utilized data from two independent clinical trials to

test the hierarchical model's ability to explain patient responses:
the MMY-2001 trial (13) comparing bortezomib-melphalan-
prednisone (VMP) versus siltuximab plus VMP (SVMP) in newly

Figure 2.
The hierarchical mathematical model accurately predicts the dynamics of M-protein response in the VISTA and MMY-2001 trials. A, illustration of the hierarchical
mathematical model. Normal and multiple myeloma cells are shown in black and blue, respectively. Solid downward arrows indicate the direction in the
differentiation hierarchy. Circular arrows indicate cellular regeneration within each differentiation level. Double-lined arrow indicates M-protein production from
differentiated multiple myeloma cells. B and C, the panels display the model-predicted abundances of normal (black) stem cells, normal (black) and multiple
myeloma (blue) progenitor cells, andnormal (black) andmultiplemyeloma (blue) differentiated cells over time (years) for theVISTAMP (B)andVISTAVMP(C)cohorts
since the emergence of the first multiple myeloma cell, as predicted by the mathematical framework (see SI, 'The differentiation hierarchy model'). The pink
shaded region denotes the time duringwhich patients receive treatment.D–G, concordance between observed population-levelmultiplemyeloma protein trajectories
(blue intervals, error bars indicating the observed quartiles) and the multiple myeloma protein levels predicted by the mathematical model (solid blue lines). The
parameter values for the first and second slopes used to generate panelsD, E, and F are listed in Table 2. For G, the model predicted trajectory is generated using the
same first and second slopes as E. All ancillary parameters for D–G are identical and are listed in SI, 'Parameter values for the hierarchical and hybrid models.'
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diagnosed multiple myeloma patients (n ¼ 106, Fig. 1B); and
the APEX trial comparing high-dose dexamethasone (DEX)
versus single-agent bortezomib (VEL) in refractory patients
(n ¼ 669, Fig. 1C).

For these two validation data sets, we first performed the
same statistical analysis as before to estimate the shapes of the
treatment response curves (Fig. 1F–I). For both the MMY-2001
and APEX trials, we found that the cohort-level M-protein
dynamics during treatment were best explained by the 2-phasic
exponential model (Table 1); summary statistics are shown
in Table 2. Gratifyingly, we found the first slopes of patients in
the VISTA VMP and MMY-2001 VMP cohorts were not signif-
icantly different (P ¼ 0.2082, t test). For the MMY-2001 trial,
we found that there was a statistically significant difference
between VMP and SVMP cohorts in terms of the first slopes (P¼
0.0005, t test). Interestingly, although the addition of siltux-
imab significantly increased the initial reduction of M-protein
levels, it failed to improve progression-free or overall survival
(13). In terms of the second slopes, there was no significant
difference between MMY-2001 VMP and SVMP cohorts (P ¼
0.7586, t test), and both cohorts were not significantly different
from zero (VMP P ¼ 0.8953 and SVMP P ¼ 0.2123, t test). For
the APEX trial, we found that patients in the VEL cohort had a
significantly steeper first slope than patients in the DEX cohort
(P ¼ 0.0035, t test). Also, the difference between cohorts in
terms of the second slope was not statistically significant (P ¼
0.8635, t test). However, unlike the VISTA and MMY-2001
trials, in the APEX trial the second slopes were significantly
positive (DEX P ¼ 0.01231 and VMP P ¼ 0.001, t statistics).
These increases are consistent with disease progression and
likely signify the development of drug-resistant multiple mye-
loma cells. In all three trials, patients displayed significant
reductions in M-protein levels immediately upon receiving
bortezomib-based treatment; however, the long-term effects
of these medications varied.

We then aimed to validate the hierarchical model using data
from the MMY-2001 and the APEX trials. We found that, for the
MMY-2001 trial consisting of newly diagnosed patients, the
hierarchical model was able to recapitulate the population-level
M-protein trajectories; the MMY-2001 VMP cohort could be
recapitulated using the same parameters as for the VISTA VMP
cohort (Fig. 2G). The correlations between observedmean, medi-
an, and model predicted values were 0.82 and 0.78, respectively.
The SVMP cohort could be recapitulated using slope estimates
obtained from the SVMP patient data and keeping all other
parameters unchanged (Fig. 2F and Table 2).

For the APEX trial, we observed increasing trends in M-protein
values already during the treatment phase in many patients; this
was not unexpected as the time tomyeloma progression is shorter
in relapsed multiple myeloma than in newly diagnosed multiple
myeloma, and therefore for many patients in the APEX trial, this
time fell within the trial-specified treatment duration. First,
among patients displaying 1-phasic patterns, more patients in
the APEX trial had statistically significant positive slopes (b1 > 0
and P < 0.05; APEX DEX: 4/94 and APEX VEL: 11/83) than in the
VISTA trial (VISTA MP: 3/153 and VISTA VMP: 0/55). Second, for
patients displaying 2-phasic patterns in the APEX trial, we
observed rebounds (b2 > 0) in the M-protein values during
treatment (Table 2 and Supplementary Fig. S9). Initially, 2-phasic
patients in both trials had similar responses to treatment, as
shown by the decline in M-protein values immediately after

treatment initiation and the similarity in the magnitudes of b1.
However, the long-term treatment response differed between the
APEX and VISTA patients. We observed that, among patients who
displayed 2-phasic trends, relapsed patients in the APEX trial were
more likely to have statistically significant rebounds (b2 > 0 and
P < 0.05; APEX DEX: 22/49 and APEX VEL: 31/85) than the newly
diagnosed patients in the VISTA trial (VISTA MP: 19/102 and
VISTA VMP: 27/194). In addition, most rebounding patients in
the APEX trial had M-protein rebounds within 100 days after the
start of treatment, while still on treatment (median: 74.21 days;
mean: 83.20; SD: 41.88 for the rebounding patients in the APEX
DEX cohort and median: 68.02 days; mean: 69.14; SD: 27.80 for
the rebounding patients in the APEX VEL cohort).

Development of a hybrid mathematical model for multiple
myeloma cell dynamics

On the basis of these observations, we attributed the differ-
ences in M-protein dynamics between newly diagnosed and
relapsed patients to the existence and expansion of a resistant
clone in relapsed patients (Fig. 3A). A dominant resistant clone
existing before treatment explains the increasing M-protein
values during treatment among 1-phasic patients in the APEX
trial; an expanding resistant clone during treatment explains the
initial declines followed by increases in M-protein values; and
the presence of a small resistant clone explains continuing 2-
phasic declines in the remaining patients (Fig. 3B–D). There-
fore, we extended our mathematical model to take into account
resistant clone(s) (Fig. 3A, SI, 'The hybrid model'). In this
extended model, in addition to normal cells and sensitive
multiple myeloma cells, there is a resistant clone that originally
arose from the sensitive progenitor multiple myeloma cells.
This resistant clone gives rise to a similar differentiation hier-
archy as the sensitive cells. The observed M-protein values are
the sum of M-protein values generated from the sensitive and
resistant clones; the amount of M-protein secreted by each
clone is proportional to the size of the clone and the relative
secretion rates, which are considered to be similar. The time at
which resistance arises determines the relative proportion of
sensitive and resistant cells. In newly diagnosed patients, the M-
protein contribution from the resistant cells during treatment is
negligible; this is supported by the observation that only a
relatively small number of patients (7% and 21% in VISTA VMP
and MP cohorts, respectively) experienced increases in M-pro-
tein values while on treatment in the VISTA trial. In contrast, in
the relapsed patients from the APEX trial, because of prior
treatment-induced clonal selection, the M-protein contribution
from the resistant clone is sufficiently large and stable in size
(between 1% and 10%) to alter the treatment response trajec-
tory, leading to rebounds in a subset of patients while on
treatment in the APEX trial (SI, 'Rebound dynamics'). Unlike
the clonal expansion model, the resistant cells do not need to
be substantial in size at the beginning of the first treatment to
drive the rebound trajectory; rather, through multiple rounds of
treatment-induced selection, the fraction of resistant cells may
increase sufficiently much to alter the response trajectory. This
hybrid model was able to explain the M-protein dynamics for
both newly diagnosed and relapsed myeloma patients in
response to chemotherapy (Fig. 2D and E and Fig. 3E and
F). Our model suggests that treatment-induced clonal selection
may contribute to the increases of the M-protein levels in the
refractory patients while on treatment.
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Figure 3.
The hybrid mathematical model accurately predicts the dynamics of M-protein response in all three trials. A, illustration of the hybrid mathematical model. Normal,
sensitive, and resistant multiple myeloma cells are shown in black, blue, and red, respectively. The dashed arrow indicates the mutation event that gives rise to
the first resistant cell. Solid downward arrows indicate the direction in the differentiation hierarchy. Circular arrows indicate cell regeneration within each
differentiation level. Double-lined arrow indicates theproductionofM-protein fromdifferentiatedmultiplemyelomacells.B, illustration of effects of the time atwhich
resistance arises on the observed M-protein trajectories. Left, resistance emerges very early; middle: resistance emerges early; right, resistance emerges late.
The blue lines denote the contribution to the changes in the observed M-protein values of sensitive multiple myeloma cells; the red lines denote the contribution
to the changes in the observed M-protein values of resistant multiple myeloma cells; and the black dots represent the observed total M-protein levels from
both sensitive and resistant multiple myeloma cells. Although the sensitive cells' response to treatment remains identical in all three subpanels, the timing at which
resistance arises determines the observed M-protein response. Similar to the VISTA trial, the initial steep decline in M-protein (middle and right subpanels) is
attributed to the reduction in the sensitive differentiated multiple myeloma cells; the shallow decline in M-protein is interpreted as the result of the reduction in
the number of sensitive multiple myeloma progenitor cells. Vertical dashed lines in yellow and green indicate treatment start and end dates. C and D, the
panels display themodel-predicted abundances of normal (black) stemcells; normal (black), sensitivemultiplemyeloma (blue), and resistantmultiplemyeloma (red)
progenitor cells; and normal (black), sensitive multiple myeloma (blue), and resistant multiple myeloma (red) differentiated cells over time (years) for early (C) vs.
late (D) emergence of resistance for the APEX DEX cohort, as predicted by the mathematical framework (see SI, 'The hybrid model'). C and D have identical
parameter values except for the time atwhich resistance arises (for the full set of parameter values, see SI, 'Parameter values for the hierarchical and hybridmodels').
The time at which resistance arises dictates whether a rebound occurs during the treatment phase. E and F, M-protein treatment response dichotomized
based on rebound status for APEX DEX and VEL cohorts. Rebound during treatment (purple): patients with at least one positive slope during the treatment phase;
no rebound during treatment (orange): patients with all negative slope(s) during the treatment phase. Observed median M-protein values (�10 observations)
from each subgroup are shown in dots. Lines showmodel-predicted M-protein trajectories. Within each cohort, all parameter values are identical, except the time at
which resistance arises (for the full set of parameter values, see SI, 'Parameter values for the hierarchical and hybrid models,' and Supplementary Table S7).
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Discussion
Here, we present a comprehensive quantitative analysis of mye-

loma cell growth and treatment response based on three large
randomized trials (total sample size n ¼ 1,469). Our analysis of
responses to induction therapy in newly diagnosed patients in the
VISTA trial revealed complex but structured kinetic patterns that
support a hierarchical two-cell populationmathematicalmodel for
multiple myeloma. This model was able to recapitulate the
observed two-phasic decline patterns observed in the majority of
newly diagnosed patients. Importantly, an alternative clonal selec-
tion model of myeloma cell growth did not fit the trial data. The
hierarchical model suggests the existence of a multiple myeloma
progenitor cell population that has self-renewal capacity and dis-
tinct growth kinetics and gives rise to the differentiated multiple
myeloma cell population. The observation of a significantly larger
proportion of 2-phasic patients in the VISTA VMP cohort as
compared with the VISTA MP cohort when performing the indi-
vidual level analysis signifies the potential treatment effect of
bortezomib in combination with melphalan and prednisone on
increasing the death rate of multiple myeloma progenitor cells
during therapy. Our model of multiple myeloma progenitors,
which are nonsecretory and relatively drug resistant comparedwith
differentiated cells, is supportedbyexperimental evidence (18–20).

Weused the two additional independent sets of clinical trial data
to validate and extend the hierarchical model. All trial data sup-
ported themodel for disease response to treatment; however, inter-
patient variability of disease kinetics was noted to be significant at
the time of disease relapse, requiring the adjustment of growth
parameters in the model and suggesting that distinct multiple
myeloma progenitor subclones were selected by induction treat-
ment. The existence of clonal selection between myeloma sub-
clones was also supported by the analysis of relapsed or refractory
patients in the APEX trial. The varied trajectories of disease relapse
observed necessitated the development of a hybrid model with
preexisting drug-resistant myeloma cell clones. Importantly, math-
ematical modeling inmyeloma has not been attempted previously
on this scale. In addition, statistical analyses reveal different M-
protein trajectories even among patients randomly assigned to the
same treatment cohorts. Significant association between slopes in
M-protein trajectories and survival outcomes has been observed.
Hence, M-protein trajectories may have the potential to serve as a
key second endpoint for the early detection of disease relapse.

Our approach evaluated myeloma cell behavior unbiased by
prior assumptions, by analyzing available patient data without a
priori defined patient subgroups. If quantitative data on the effect
of patient-specificmutations on cell growth, for example, become
available, the model might be further refined. Recent studies
(21–23) documented pronounced intra-patient genetic hetero-
geneity in human neoplasias and attributed disease progression
and drug resistance to the differential molecular features of the
underlying tumor subclones. However, it remains a formal pos-
sibility that the functional heterogeneity within a tumor as
described by our model will not be genetically determined but
rather controlled by microenvironmental or epigenetic factors.
Elucidating the pathways that control functional heterogeneity
among subclones is experimentally challenging, but mathemat-
ical modeling can address these limitations and provide insights
into the effects of novel treatments on tumor cell dynamics and
how they determine the behavior of human cancers.

A strength of ourmodel is that it is based on in vivo patient data.
Our model is agnostic in regards to the identity of progenitor and

differentiated myeloma cells and mechanisms of disease resis-
tance. Our analysis is consistent with reports of clonogenic B-cell
'multiple myeloma stem cells' isolated from patient samples
(14, 24). However, experimental data are divided on whether
multiple myeloma progenitor cells are in fact contained within
the CD138- cell compartment (25–27). Additional surface mar-
kers may be needed to identify multiple myeloma progenitor
cells, but alternative biologic explanations are also possible.
Multiple myeloma progenitors may be a functionally distinct
subset of multiple myeloma cells defined by something other
than markers of normal B-cell maturation, for example, by stro-
mal cell interactions (28, 29). Alternatively, two-phase response
kinetics might be explained by yet undefined drug metabolism
induced over time (although published pharmacokinetic data on
bortezomib are not consistent with this hypothesis; ref. 30), or by
the induction of immune or other host responses activated after
treatment initiation. Mechanisms of disease resistance have been
identified in multiple myeloma, and additional experiments will
be required to determine which mechanisms explain in vivo
resistance observed in clinical trials. However, our model was
examined in clinical trials with a bortezomib-based therapy. The
kinetics of tumor growth may be different with immunomodu-
latory agents such as lenalidomide or pomalidomide when used
alone or in combination with proteasome inhibitors. Future
studies to examine these kinetics would be interesting to deter-
mine whether these agents have similar effects on progenitor cell
populations and heterogeneous clonal populations. Another
caveat of our study is that measurement of tumor burden in
multiple myeloma is based on M-protein level in the peripheral
blood. Our model may not be predictive if the therapeutic agent
inhibits secretion of M-protein or induces a cytostatic and not
cytotoxic effect on the tumor cells.

The current goal of treatment inmultiplemyeloma is to achieve
deep complete remissions. Mathematical modeling based on
treatment responses can provide an additionalmethod for testing
biologic hypotheses relevant to disease outcomes in patients with
multiple myeloma. Here, we presented a model based on a large
amount of available clinical data, but models such as this one can
also be used to improve the design of new clinical trials in
myeloma by using treatment effects of specific agents on both
differentiated andprogenitor cells populations as endpoints (31).
Mathematical modeling as suggested here might eventually be
useful for investigating the efficacies of novel treatment modal-
ities. For instance, if the effects of an agent on individualmyeloma
cell populations are known, our mathematical model can help
predict how diverse patient populations will respond to treat-
ment. As multiple myeloma clones are present at diagnosis, the
administration of rational combination treatments at relapsemay
reduce their expansion and therefore lead to deeper and more
prolonged remissions, again an area where the model may have
utility (32, 33). Finally, mathematical models are limited by the
availability of uniformly collected quantitative patient data. The
utility of mathematical models such as this one would be
improved by collecting additional quantitative data centrally
from future clinical trials.
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