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Abstract
Oscillations of the cellular circadian clock have emerged as an
important regulator of many physiological processes, both in
health and in disease. One such process, cellular proliferation,
is being increasingly recognized to be affected by the circadian
clock. Here, we review how a combination of experimental and
theoretical work has furthered our understanding of the way
circadian clocks couple to the cell cycle and play a role in
tissue homeostasis and cancer. Finally, we discuss recently
introduced methods for modeling coupling of clocks based on
techniques from survival analysis and machine learning and
highlight their potential importance for future studies.
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Introduction
Biochemical oscillations are ubiquitous in living organ-
isms, arising from complex spatioetemporal interactions
between genes, proteins and metabolites [1]. The
circadian (‘circa’ d about, ‘diem’ d day, in Latin) clock

represents a special class of such biochemical oscillators;
it has an intrinsic period of approximately 24 h and is
thought to have evolved in organisms to allow anticipa-
tion of daily changes in the environment tied to the
Earth’s rotation [2,3]. These oscillations are self-
sustained in single cells under constant environmental
conditions and can be entrained by external cues such as
light. It has become increasingly clear that the circadian
clock plays an important role in regulating the cell cycle,
thus affecting cellular proliferation in multiple contexts
such as tissue homeostasis and cancer [4].With a focus on
the mammalian circadian clock, here we review recent
progress in our understanding of the nature of coupling of
the clock with the cell cycle. Recent reviews have sum-
marized experimental evidence of this coupling and its
potential consequences on human health [5,6], we pro-
vide a perspective on how a synergy between experi-
mental and theoretical studies has led to significant
insights in this rapidly growing field. We also discuss the
potential usefulness of novel theoretical and computa-
tional approaches rooted in biostatistics and machine
learning and, using a few recent studies as examples,
discuss how such approaches in a data-rich agemay prove
invaluable for the future of circadian research.

Basic architecture of the mammalian
circadian clock
Sustained oscillations in mammalian cells arise from a
canonical set of interlocked transcriptionale
translational feedback loops (TTFLs, Figure 1a),
although the absolute necessity of transcription has
been questioned, for example, from observations of
circadian peroxiredoxin oscillations in human red blood
cells which lack nuclei [7]. Heterodimers of the BMAL1
and CLOCK proteins bind Ebox motifs in the promoters
of Per2 and Cry1, leading to transcription and translation
of the latter. PER2 and CRY1 proteins eventually are
transported back into the nucleus, where they repress
BMAL1 and CLOCK to decrease their own expression.
Finally, degradation of PER2 and CRY1 over time allows
BMAL1eCLOCK driven expression to switch back on,
thereby establishing the circadian oscillation. In a
second interconnected loop the BMAL1eCLOCK
heterodimer induces transcription of Ror and Rev-erb
genes, which in turn stimulate/inhibit Bmal1 expression,
respectively, by binding to ROR response
elements (Figure 1a). We refer the interested reader to
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Figure 1

Current Opinion in Cell Biology

Transcriptional– translational feedback loops (TTFLs) that generate circadian oscillations and coupling to the cell cycle. (a) The core feedback loops
involving BMAL1, Clock, Per, Cry, Rev-Erb, and Ror are shown along with a few example modes of coupling of the clock to the cell cycle. The colored
ovals represent proteins. (b) A schematic of some common approaches to mathematical modeling of the circadian clock and how it can drive cellular
proliferation. The reactions from panel (a) are modeled using ordinary differential equations (ODEs), generating temporal dynamics of various compo-
nents of the TTFLs [10–14]. These time-dependent molecular concentrations can then be used to define transition rates between various phases of the
cell cycle, which can in turn be used in age-structured models to connect single-cell dynamics to population-level growth [25].
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recent reviews providing detailed descriptions of the
biochemical pathways involved [8,9]. The importance of
these interconnected feedback loops in generating
robust oscillations, and how the period and amplitude of
the emergent oscillations are affected by genetic per-
turbations, have been studied in detail using mathe-
matical models of these TTFLs [10e13] (Figure 1b).
Fitting such models to gene expression data sets has also
suggested tissue-specific differences in network motifs
that underlie the essential feedback loops generating
circadian oscillations [14].

Molecular mechanisms and mathematical
models of circadian clock–cell cycle
coupling
Early seminal studies demonstrated the existence of
coupling between the canonical TTFL components of
the circadian network and the cell cycle, revealing
regulation of c-Myc transcription by PER2 [15] and
regulation of the G2/M inhibitor Wee1 by BMAL1e
CLOCK [16] (Figure 1a). Since then, a variety of mo-
lecular interactions between the two cellular oscillators
have been uncovered [6]. Circadian modulation of the
cell cycle is thought to occur primarily via coupling to
the G1-S and G2-M transitions [6] (Figure 1a), although
an earlier fate decision to enter G1 or G0 phases has also
been suggested to be under circadian control in adult
brain neurogenesis [17]. A number of modeling studies
have predicted clock-controlled cell cycle entry: a model
of BMAL1-driven enhancement of a CyclinD/Cdk4-6
inhibitor (posited to be p21) was able to explain
enhanced cell proliferation after BMAL1 ablation in the
subgranular zone of the adult hippocampus [17]. In
another study, we investigated the possible origin of
surprising intermitotic time correlations in colon cancer
cell lineages, both in the absence and presence of the
chemotherapeutic agent cisplatin. Our mathematical
model predicted circadian control of cell cycle entry as
an important regulator of cell cycle speed [18]. These
models suggest early control of cell cycle progression by
the circadian clock and point to an interesting avenue
for further experimental and theoretical studies.

The G1/S transition has been demonstrated to be
regulated by circadian control of phosphorylation of the
retinoblastoma protein [19], WNT signaling [20], p21
[21], and p16 [22] (Figure 1a). The G2/M transition is
affected by transcriptional regulation of Wee1 by
BMAL1eCLOCK [16]. The resulting circadian oscilla-
tions in WEE1 in turn regulates Cyclin B1 expression,
thereby allowing circadian control over the G2/M tran-
sition [23] (Figure 1a). Mathematical models investi-
gating the consequences of these various modes of
coupling have led to interesting and nonintuitive in-
sights d for instance, it was shown that the domain of
entrainment does not increase with increasing modes of
clock and cell cycle coupling [24]. This result was based

on the modeling prediction that the domain of
entrainment via a combination of Wee1, p21, and cyclin
E was not larger than the domain of entrainment
through Wee1, p21, or cyclin E on their own. This
interesting prediction suggests that perhaps the pres-
ence of multiple modes of coupling may provide
redundancy rather than facilitating entrainment [24].

Although there are increasing reports of circadian driving
of the cell cycle, relatively few studies have investigated
the reverse couplingdmodulation of the circadian clock
by thecell cycle. An interesting combinationof time-lapse
microscopy and stochasticmodeling of coupled oscillators
provided strong evidence for a dominant reverse coupling
in single mouse fibroblasts [26]. Using a maximum like-
lihood approach to infer the coupling function between
the two oscillators, the authors found the strongest
interaction to be an acceleration of the circadian phase
right around the cell division event [26]. Although this
work did not provide a mechanistic basis for the reverse
coupling, more recent experiments have uncovered two
modes of this regulation: (1) ubiquitination and subse-
quent degradation of Rev-erb-a is dependent on CDK-1
mediated phosphorylation of Rev-erb-a and controls the
circadian oscillation amplitude [27] and (2) the tran-
scription factor MYC disrupts the circadian clock in
cancer cells by downregulating the core clock genes
BMAL1 and CLOCK, either via upregulating Rev-erb-a
[28] or by forming a complex with MIZ1 [29]. In turn,
disruption of the clock affects cellular proliferation:
upregulation of MYC attenuates the clock and promotes
cell proliferation whereas its downregulation results in
strengthening of the clock and reduction of cell prolifer-
ation [29]. Finally, the larger scale consequences of this
reverse coupling (in addition to the previously discovered
circadian clock to cell cycle coupling) were recently
investigated using modeling; the authors predicted that
bidirectional coupling results in more robust synchroni-
zation than unidirectional coupling [30].

Does the circadian clock ‘gate’ the cell
cycle?
Although studies of the molecular mechanisms of
clockecell cycle coupling are relatively recent, reports
of the preponderance of cell divisions at specific times of
the day have existed since the early 1900s. A study of
the dinoflagellate Ceratium fusus in the waters of the
English Channel suggested that these unicellular or-
ganisms divide mostly between 1ame3.30 am [35].
Later studies of both unicellular eukaryotes [36] and
prokaryotes [31] in culture showed that after entrain-
ment to 12 h light and dark cycles, a large fraction of cell
divisions occurred during a relatively short period of
time around the late subjective night. These studies led
to the use of the term ‘circadian gating’ (Figure 2a),
which refers to the existence of circadian phases where
cell cycle progression slows down or stops (gate closed)
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and phases where the cell cycle progresses leading to
cell division (gate open) [31,32].

Phenomenological models of coupled oscillators com-
bined with time-lapse microscopy of proliferating cells,
tagged with fluorescent circadian and cell cycle re-
porters, are becoming increasingly important to infer the
precise nature of the coupling between the circadian
clock and the cell cycle. Such methods have recently
suggested a need for going beyond the idea of gating to
that of a more continuous, possibly bidirectional
coupling between the clock and the cell cycle such that
the two oscillators remain phase-locked [26,33,34]
(Figure 2b). Other modeling approaches have also used
the idea of a continuous modulation of cell division rates
by the circadian clock to explore the origin of lineage
correlations in intermitotic times [18,37,38], cell size
control [39], and timing of cell divisions in bacteria [40].
However, a number of recent modeling efforts in 3D
murine intestinal organoids [20] and in zebrafish [41]
have suggested gating to be the predominant mode of
coupling. In the zebrafish study, different lightedark
(LD) cycles were imposed on a zebrafish-FUCCI cell
line in culture. From the observation that the differing
LD cycles made no difference to the average cell cycle
length, while the number of mitosis events oscillated
with time in all LD conditions, the authors suggested a
gating mechanism over phase locking [40]. More studies
will be necessary to elucidate the precise nature of the
coupling in various organisms and cell types. Recent
developments in generating endogenous reporters of
the circadian clock using CRISPR knock ins will un-
doubtedly prove invaluable in this endeavor [42].

Use of survival analysis to model the
circadian clock–cell cycle coupling
Nonlinear dynamical systems have been the most pop-
ular modeling approach for understanding how the
circadian clock couples to the cell cycle [26,33,34].
Recently, we and others independently introduced
methods from survival analysis to model the clockecell
cycle coupling [18,39]. Survival analysis is a set of sta-
tistical tools to analyze data where the variable of in-
terest is time until an event occurs [43], for instance, in
medical fields where time to death of patients is under
study. The distinguishing factor of survival analysis is
that it naturally deals with various scenarios of
censoring, where the end of the observation period or
other competing events precludes observation of the
time to event for many individuals [44]. A basic intro-
duction to survival and competing risks analysis in the
context of single-cell time-lapse data is discussed in our
recent work [18].

As shown in Figure 3a, the formalism of survival analysis
lends itself naturally to the analysis of time-lapse mi-
croscopy data of proliferating cells. The central quan-
tity is the hazard function h, which in this context is
interpreted as the instantaneous rate of division of cells
of a particular age a, given that the cells have survived
until time a since birth (Figure 3b). The circadian
clock can then be modeled as modulating the hazard
function [18,39] and an analytic expression for the
likelihood of observing a set of single-cell division
times can be used for making inferences of underlying
model parameters (Figure 3b top). In a recent work,
this approach was combined with cubic B-splines to

Figure 2

Gating versus phase-locking modes of coupling between the circadian clock and the cell cycle. The two panels show schematics of phase portraits that
can be obtained using time-lapse microscopy of single cells comprising circadian and/or cell cycle reporters. The red dashed curves represent average
trajectories, and the blue zones denote the phase space through which typical cellular trajectories pass. (a) Gating is characterized by regions of phase
space where cell cycle progression slows down or stops [31,32] (b) A 1:1 phase-locked state is depicted here, where the circadian clock and cell cycle
progress in synchrony such that knowledge of the phase of one oscillator specifies the phase of the other to a large extent. Unlike in gating, the phase-
locked state does not exhibit regions of significant cell cycle slow down [26,33,34].
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flexibly model and infer how the circadian clock affects
cell divisions in the cyanobacteria Synechococcus elongatus
[39] (Figure 3b top). We combined a conceptually
similar inference approach with the theory of copulas
(that allow modeling of correlations in multivariate
non-Gaussian distributions) to infer cell division and
death times from correlated single-cell lineages [18].
Our method demonstrated how experimental obser-
vations of cell division times (red histogram; Figure 3b
bottom) can be highly skewed in the presence of drugs
[18], resulting in the underlying unbiased distribution
becoming very different from the observed one (green
dashed lines; Figure 3b bottom). Our computational
approach paves a way for future studies to account for
drug-induced biases while inferring the circadian
clockecell cycle coupling from time-lapse data.
Furthermore, the survival analysis approach allows
modeling of additional factors such as cell size [39] or
delays in drug action [18], which may regulate cell

division and affect inferences of the coupling function.
Taken together, these studies show that survival anal-
ysis is a powerful tool for inferring effects of the
circadian clock on the cell cycle.

Consequences of the circadian clock–cell
cycle coupling in adult (cancer) stem cells
Although most cells across mammalian tissues are fully
differentiated and hence postmitotic, adult stem cells
make up a small but essential portion of tissues. These
stem cells retain the capability of proliferating and
generating new cells of the tissue, thus playing a critical
role in tissue homeostasis, regeneration, and tumori-
genesis. Understanding cell cycle control mechanisms in
these stem cells is therefore essential, and regulation by
the circadian clock has been demonstrated in adult skin,
intestine, blood, hair, bone, and nerve stem cells [45].
Intriguingly, pluripotent stem cells do not exhibit
circadian oscillations of the canonical TTFL genes [46],

Figure 3
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Survival analysis for modeling circadian coupling with the cell cycle. (a) A schematic showing how cellular proliferation can be mapped onto the problem
of survival analysis, where every cell division is considered an ‘event’ and denoted by an ‘x’. (b) A schematic of the basic approach to inference using
survival analysis. The likelihood (L) of observing a data set comprising division (and/or apoptosis) times of all N cells (t) is written down in terms of hazard
functions. The underlying parameters (q) are then inferred, often using Markov chain Monte Carlo methods [18,39]. The hazard for division can be
modeled as a function of the circadian clock (or time of day t ) and other covariates, and the parameters inferred computationally [39] (top). Red denotes
larger hazard for division whereas blue represents lower hazard. In experiments performed in the presence of drugs, multiple cell fates such as cell
division, death, and arrest can be induced (bottom). ‘Competing risks’ survival analysis can be used to infer the unbiased underlying division and
apoptosis time distributions (bottom; green dashed lines) [18]. The experimentally observed distributions (bottom; red and green histograms) may be
highly skewed and different from the underlying distributions depending on the drug concentration used.
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Figure 4
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Examples of methods that determine body/clock time or clock (a)synchronicity from single samples. (a) A schematic of the basic underlying principle
behind determination of body/clock time. Different genes oscillate with fixed phase relationships with each other as well as external time in healthy in-
dividuals, allowing time to be inferred probabilistically from gene expression levels at a single time point. (b–c) Two distinct computational methods that
use the basic principle in panel (a) to determine body time. (b) The molecular timetable method [60] uses genome wide expression levels and the peak
times of a set of 168 oscillating genes to create a lookup table. These peak times are then used to determine the time of a test dataset. (c) TimeTeller [65]
finds 10–16 oscillating genes (Step 1) to create a high dimensional representation of expression levels (Step 2). This data is then projected down to a
lower dimensional space using a projection operator calculated from the N data points corresponding to one time point (Step 3). Separate multivariate
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although noncanonical 24-h oscillations have been re-
ported in metabolic programs of these cells [47].

Over the last few years, important connections between
the circadian clock and cancer stem cells have emerged
[4]. Traditionally, the circadian clock has been thought
of as a tumor suppressor [48]. In support of this idea,
B16 melanoma cells in vitro and tumors in vivo were
found to suppress clock genes, and their proliferation
was strongly reduced upon restoring clock function [49].
In addition, in support of the idea of circadian genes
acting as tumor suppressors, an earlier study showed a
direct proteineprotein interaction between PER2 and
the tumor suppressor P53; by forming a stable trimeric
complex with P53 and P53’s negative regulator MDM2,
PER2 prevented ubiquitination of MDM2, and the
resulting degradation of P53 [50]. Intriguingly however,
recent studies have suggested the possibility of circa-
dian genes aiding tumor maintenance in some contexts.
For example, it was observed that while glioblastoma
stem cells, differentiated glioblastoma cells, and
noncancerous brain cultures exhibited circadian
rhythms, only the glioblastoma stem cells showed a
strong dependence on BMAL1 and Clock for optimal
cell growth [51]. Similar effects were observed in he-
matopoietic cells, where Clock and Bmal1 are required for
leukemia cell growth in a murine model of acute
myeloid leukemia, and circadian disruption impaired
cell cycle progression [52]. Although these results are
apparently contradictory and suggest a complex rela-
tionship between the circadian clock and cancer, theo-
retical modeling is well poised to shed light onto these
complexities. For example, a study coupling ODEs to
model chemical reactions and age-structured population
models to describe population growth (Figure 1b)
investigated the effects of Per/Cry mutations and
BMAL1 knockouts on cellular proliferation. This study
concluded that depending on the autonomous period of
the cell cycle (cell cycle length in the absence of
coupling to the circadian clock) a disrupted circadian
clock can lead to both enhancement and decrease of the
cellular growth rate [25].

Circadian clock (de)synchronization:
quantification and implications for cellular
proliferation
A combination of experimental and theoretical ap-
proaches has provided fundamental insights into how
individual cellular oscillators in mammalian tissues
decode environmental information to stay synchronized
[53e56] or become desynchronized by light perturba-
tions, such as jet lag and similar protocols [57,58]. Many

lines of evidence have suggested that synchrony among
circadian clocks is crucial for maintaining healthy tis-
sues, and desynchronization can lead to susceptibility to
diseases such as cancer [4,59]. Using various tissues
from mice exposed to chronic jet lag [60] and blood
samples from humans undergoing a night shift protocol
[61], it was observed that oscillations of circadian clock
genes are dampened (presumably due to reduced syn-
chrony among individual cells) and phase shifted. An
in vitro jet lagelike protocol, developed to mimic these
observations in cultured cancer cells [19], led to upre-
gulation of cell cycle genes and a concomitant increase
in cellular proliferation in human U2 osteosarcoma cells
[19]. In mice, a jet-lag protocol was found to change
expression levels of both tumor suppressor genes such as
NF1 and oncogenes such as KRAS, which in turn were
associated with clock genes such as Bmal1, Cry1, and
Cry2 [62]. Cellular proliferation may therefore be linked
to the degree of synchronicity among individual cellular
circadian oscillators in a population of cells.

These results demonstrate the need to develop quan-
titative measures of clock (de)synchronicity in tissues
of individual patients and investigate its association
with disease, an endeavor to which computational
modeling has made significant contributions over the
years (Figure 4a). In early work, genome-wide expres-
sion patterns were used to infer body time [63]
(Figure 4b). In more recent work, a variety of machine
learning methods have been used to infer either body
time or the degree of clock (a)synchronicity from single
patient samples, often using a much reduced set of core
clock genes [64e69]. For example, TimeTeller is a
recently developed method which defines a metric for
clock dysfunction from single samples based on the
phase relationships between various circadian genes in
diseased tissues compared with normal ones [68]
(Figure 4c describes the TimeTeller workflow). Inter-
estingly, this study demonstrated that the dysfunction
metric was a prognostic factor for both disease-free
survival and overall survival in primary breast cancer
patients, independent of previously established prog-
nostic factors such as the meta-PCNA gene signature
[68]. Another study developed a 12 biomarker gene set
from human epidermis [69], and used a previously
developed method ZeitZeiger [65] to report circadian
phase from single samples. This method performed
well across body sites, age, sex, and detection plat-
forms, which are essential elements for ease of clinical
implementation [69]. Finally, a method to quantify
relative coupling strength among individual cells has
also been suggested based upon the idea that period

normals (MVNs) are fit to the data points at each time. Splines are then used to interpolate between the entries of the mean vectors and the covariance
matrices to obtain an MVN likelihood function with time-dependent mean and covariance (Step 3). This procedure is repeated using projection operators
based off every time point, and all the likelihood functions are combined to give the final likelihood LgðtÞ. The peak of Lg ðtÞ gives the inferred body time of
the test sample (Step 4).
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and phase distributions in an ensemble of cells become
narrower upon increasing coupling strength [70].

Conclusions and future directions
Much progress has been made in elucidating the basic
principles of coupling of cellular circadian clocks, with
each other as well as with other oscillators such as the
cell cycle. Here, we have highlighted how a synergy
between experiments and theoretical modeling has
provided novel insights in this fast-growing field. Rapid
developments in microscopy and image analysis tech-
niques are allowing careful quantitative analyses of
circadian clock coupling, and we believe that the next
few years will see exciting developments in this area.
The nature of circadian coupling with the cell cycle in
diseases such as cancer and in response to drugs re-
mains poorly understood, and in our opinion, repre-
sents an important avenue of future research. Novel
theoretical approaches based on survival analysis
[18,39] and machine learning [64e69] could provide
important tools to analyze large quantities of data, from
in vitro and in vivo as well as clinical studies. Such ap-
proaches could be coupled with evolutionary models of
cancer progression that allow for time-dependent
changes in cellular growth and death rates [71] to
optimize treatment regimens accounting for the
circadian behavior [72e74]. Optimizing treatment
regimens based on the circadian clock remains a chal-
lenging frontier [75], and the combination of experi-
mental and theoretical techniques will, no doubt, break
important barriers in this endeavor.
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