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ABSTRACT
With rare exceptions, human tumors arise from single cells that have accumulated the necessary number

and types of heritable alterations. Each such cell leads to dysregulated growth and eventually the formation
of a tumor. Despite their monoclonal origin, at the time of diagnosis most tumors show a striking amount of
intratumor heterogeneity in all measurable phenotypes; such heterogeneity has implications for diagnosis,
treatment efficacy, and the identification of drug targets. An understanding of the extent and evolution of
intratumor heterogeneity is therefore of direct clinical importance. In this article, we investigate the
evolutionary dynamics of heterogeneity arising during exponential expansion of a tumor cell population, in
which heritable alterations confer random fitness changes to cells. We obtain analytical estimates for the
extent of heterogeneity and quantify the effects of system parameters on this tumor trait. Our work
contributes to a mathematical understanding of intratumor heterogeneity and is also applicable to
organisms like bacteria, agricultural pests, and other microbes.

HUMAN cancers frequently display substantial
intratumor heterogeneity in genotype, gene ex-

pression, cellular morphology, metabolic activity, mo-
tility, and behaviors such as proliferation rate, antigen
expression, drug response, and metastatic potential
(Fidler and Hart 1982; Heppner 1984; Nicolson

1984; Campbell and Polyak 2007; Dick 2008). For
example, a molecular and phenotypic analysis of breast
cancer cells has revealed defined subpopulations with
distinct gene expression and (epi)genetic profiles
(Shipitsin et al. 2007). Heterogeneity and the existence
of subpopulations within single tumors have also been
demonstrated via flow cytometry in cervical cancers and
lymph node metastases (Nguyen et al. 1993) as well as
in leukemias (Wolman 1986). Virtually every major
type of human cancer has been shown to contain dis-
tinct cell subpopulations with differing heritable alter-
ations (Heppner 1984; Merlo et al. 2006; Campbell
and Polyak 2007). Heterogeneity is also present in
premalignant lesions; for instance, genetic clonal di-
versity has been observed in Barrett’s esophagus, a
condition associated with increased risk of developing
esophageal adenocarcinoma (Maley et al. 2006; Lai
et al. 2007).

Tumor heterogeneity has direct clinical implications
for disease classification and prognosis as well as for

treatment efficacy and the identification of drug targets
(Merlo et al. 2006; Campbell and Polyak 2007). The
degree of clonal diversity in Barrett’s esophagus, for
instance, is correlated with clinical progression to
esophageal adenocarcinoma (Maley et al. 2006). In
prostate carcinomas, tumor heterogeneity plays a key
role in pretreatment underestimation of tumor aggres-
siveness and incorrect assessment of DNA ploidy status
of tumors (Wolman 1986; Haggarth et al. 2005). Het-
erogeneity has long been implicated in the develop-
ment of resistance to cancer therapies after an initial
response (Geisler 2002; Merlo et al. 2006) as well as in
the development of metastases (Fidler 1978). In ad-
dition, tumor heterogeneity hampers the precision of
microarray-based analyses of gene expression patterns,
which are widely used for the identification of genes
associated with specific tumor types (O’Sullivan et al.
2005). These issues underscore the importance of ob-
taining a more detailed understanding of the origin and
temporal evolution of intratumor heterogeneity.
To study the dynamics of intratumor heterogeneity,

we construct and analyze a stochastic evolutionary
model of an expanding population with random muta-
tional fitness advances. Evolutionary models of popula-
tions with random mutational advances have been
studied in the context of fixed-size Wright–Fisher pro-
cesses for both finite and infinite populations (Gerrish
and Lenski 1998; Park and Krug 2007; Park et al.
2010); Gerrish and Lenski (1998) studied the speed
of evolution in a Wright–Fisher model with random
mutational advances in the context of finite but large
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populations while Park et al. (2010) obtained accurate
asymptotic approximations for the evolutionary dy-
namics of the population, following ideas presented in
Park and Krug (2007). The latter work and references
therein constitute a substantial exploration of the ef-
fects of random mutational advances in fixed-size pop-
ulations. Our present work complements this research
by exploring the effects of random mutational advances
in the context of exponentially expanding populations
and in particular the implications of these mutational
advances on population heterogeneity. Models of ex-
ponentially expanding populations are appropriate for
the study of situations arising during tumorigenesis, but
are also applicable to other organisms undergoing bi-
nary replication such as bacteria, agricultural pests, and
other microbes and pathogens. Bacterial populations,
for instance, are diverging quickly in both genotype
and phenotype, as studied by Lenski and colleagues.
These investigators examined the dynamics of pheno-
typic evolution in populations of Escherichia coli that
were propagated by daily serial transfer for 1500 days,
yielding 10,000 generations of binary fission (Lenski
et al. 1991; Lenski and Travisano 1994). The fitness
of the bacteria improved on average by 50% relative to
the ancestor, and other phenotypic properties, such as
cell size, also underwent large changes. Similarly, sin-
gle malaria isolates have been found to consist of het-
erogeneous populations of parasites that can have
varying characteristics of drug response, from highly
resistant to completely sensitive (Foley and Tilley
1997). These findings have implications for treatment
strategies, as not all pathogen populations are sensi-
tive to therapeutic interventions, and necessitate the
study of diversity dynamics in growing populations of
cells.

In this article, we consider an exponentially expand-
ing population of tumor cells in which (epi)genetic
alterations confer random fitness changes to cells. This
model is used to investigate the extent of genetic
diversity in tumor subpopulations as well as its evolution
over time. The mathematical framework is based on the
clonal evolution model of carcinogenesis, which postu-
lates that tumors are monoclonal (i.e., originating from
a single abnormal cell) and that over time the descend-
ants of this ancestral cell acquire various combi-
nations of mutations (Merlo et al. 2006; Campbell
and Polyak 2007). According to this model, genetic
drift and natural selection drive the progression and
diversity of tumors. Our work complements studies
of the effects of random mutational fitness distri-
butions on the growth kinetics of tumors (Durrett

et al. 2010) and contributes to the mathematical in-
vestigation of intratumor heterogeneity (Coldman and
Goldie 1985, 1986; Michelson et al. 1989; Kansal
et al. 2000; Komarova 2006; Haeno et al. 2007;
Schweinsberg 2008; Bozic et al. 2010; Durrett and
Moseley 2010).

MATERIALS AND METHODS

We consider a multitype branching process model of
tumorigenesis in which (epi)genetic alterations confer an
additive change to the birth rate of the cell. This additive
change is drawn according to a probability distribution v,
which is referred to as the mutational fitness distribution.
Cells that have accumulated i $ 0 mutations are denoted as
type-i cells. Initially, the population consists entirely of type-
0 cells, which divide at rate a0, die at rate b0, and produce type-
1 cells at rate u. The initial population, whose size is given by
V0, is considered to be sufficiently large so that its growth can
be approximated by Z0ðtÞ 5 V0 exp½l0t �, where l0 ¼ a0 2 b0
and time t is measured in units of cell division. Type-1 cells
divide at rate a0 1 X, where X $ 0 is drawn according to the
distribution v, and give rise to type-2 cells at rate u. All cell
types die at rate b0 , a0. In general, a type-(k 2 1) cell with
birth rate ak21 produces a new type-k cell at rate u, and the
new type-k cell type divides at rate ak21 1X, where X $ 0 is
drawn according to v. Each type-k cell produced by a type-
(k2 1) cell initiates a genetically distinct lineage of cells, and
the set of all of its type-k descendants is referred to as its
family. The total number of type-k cells in the population at
time t is given by ZkðtÞ and the set of all type-k cells is called the
kth wave or generation k. The total population size at time
t is given by Z ðtÞ.

Note that in our model, mutations are not coupled to cell
divisions but instead occur at a fixed rate per unit of time. This
model can be modified to exclusively consider (epi)genetic
alterations that occur during cell division by assuming that
type-0 individuals divide at rate a0 and during each division,
there is a chance m that a mutation occurs, producing a type-1
individual. These two model versions are equivalent for wave-1
cells if a0 ¼ a0(12 m) and u ¼ a0m. For later waves, the model
must be altered so that the mutation rate is dependent upon
the genetic constitution of the cells, since accumulation of
alterations modifies the fitness of the cell and hence the rate
at which further changes are accumulated. Analysis of this
model would then require the mutation rate term to be inside
the integral over the support of the fitness distribution; how-
ever, this modification does not alter the limiting results sig-
nificantly. Our model and results can also be modified to
account for generation-dependent mutation rates (Coldman
and Goldie 1985; Park et al. 2010).

The mutational fitness distribution v determines the effects
of each (epi)genetic change that is accumulated in the pop-
ulation of cells. We consider fitness distributions concentrated
on [0, b] for some b . 0. We discuss two distinct classes of
distributions: (i) v is discrete and assigns mass gi to a finite
number of values b1 , b2 , : : : ,bN 5 b; (ii) v is continuous
with a bounded density g ðxÞ that is continuous and positive
at b. Figure 1 shows a snapshot of the population decomposi-
tion in a sample simulation for case ii and illustrates the com-
plex genotypic composition of the population of cells generated
by our model.

The determination of the distribution v in the context of
bacteria and viruses has been the subject of several experi-
mental studies (Imhof and Schlotterer 2001; Sanjuan
et al. 2004), which have generally produced results leading
to the conclusion that v has an exponential distribution.
However, more recently Rokyta and colleagues (Rokyta
et al. 2008) presented studies of bacteriophages, in which
the distribution of beneficial mutational effects appears to
have a truncated right tail. One possible explanation for this
result is that the experiments were done at an elevated tem-
perature that might have led to a limited number of available
beneficial mutations. A similar scenario might arise during
tumorigenesis when only a limited number of (epi)genetic
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alterations allow a cell to progress to a more aggressive
phenotype.

RESULTS

There are two sources of heterogeneity present in
the population: variability in the number of mutations
per cell (heterogeneity between generations) and geno-
typic variation between members of the same generation
(heterogeneity within a generation). We investigate
these two sources of heterogeneity and derive analytic
results that quantify the relationship between model
parameters—e.g., mutation rate and mutational fitness
distribution—and the amount of genotypic variation
present in the population over time.

Between-generation heterogeneity: Asymptotic results
for the size of generation k were obtained in (Durrett
et al. 2010; Durrett and Moseley 2010); see Equations
A1 and A2 in the appendix for restatements of the rel-
evant results from these articles. Equation A1 implies
that in case i, for example, we have the approximation

logZk
�
t
� � lkt 2

�
k1 pk

�
log
�
1=u

�
1 logVd;k ; (2)

when t is large, where lk 5 l01kb is the maximum
growth rate that can be attained by generation k mutants,

pk 5 2k1

Pk21
j50lk

lj
;

and Vd;k is a positive random variable with known Lap-
lace transform. In case ii there is an additional term in

(2) of the form ðk1 pkÞlog t . Dividing both sides of (2)
by L 5 logð1=uÞ and speeding up time by a factor of L,
we note that the log size of generation k approaches
a deterministic, linear limit as the mutation rate be-
comes very small. In particular, as u/0, we have

�
1=L

�
log1Zk

�
Lt
�
/zk

�
t
�
5
�
lkt 2

�
k1pk

��1
5 lkðt 2bkÞ1

ð3aÞ
in probability, where

bk 5
k1 pk
lk

5
Xk21

j50

1
lj
: (3b)

The limiting process depends on l0, the growth rate of
type-0 cells, and b, the maximum attainable fitness in-
crease, but is otherwise independent of the particular
choice of fitness distribution. An example of the limit-
ing process is displayed in Figure 2, a and b.
As a consequence of Equation 3, we obtain the

following insight regarding the birth time of type-k cells:
if Tk 5 infft$ 0 : ZkðtÞ. 0g is the first time a type-k in-
dividual is born, then, as u/0,

Tk

L
/bk (4)

in probability for all k$ 0. From the definition of bk , we
have that bk 2bk21 5 1=lk is decreasing so that the
increments between the birth times for successive gen-
erations decrease as k increases. This effect leads to an
acceleration in the rate at which new mutations are

Figure 1.—A sample cross-
section of tumor heterogen-
eity. (A) The composition of
a tumor cell population at
t 5 150 time units after tu-
mor initiation. Each “wave”
of cells, defined as the set
of cells harboring the same
number of (epi)genetic al-
terations, is represented by
a different color. Individual
clones of cells with identical
genotype are shown as cir-
cles, positioned on the hori-
zontal axis according to
fitness (i.e., birth rate) and
on the vertical axis accord-
ing to clone size. Note that
later waves tend to have
larger fitness values. (B)
The time at which individual
clones of cells were created
during tumor progression.
The color scale depicts
the time of emergence of
each clone. In A and B,
parameters are a0 5 0:2,
b0 5 0:1, v � U ð½0; 0:05�Þ,
and u 5 0:001:
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accumulated (Figure 2c). This acceleration occurs re-
gardless of the choice of fitness distribution, assuming
that i or ii holds. Since 1=lk is inversely proportional
to b, distributions that allow for larger fitness increases
tend to exhibit shorter increments.

Bozic et al. (2010) observed a similar acceleration of
waves in their model of mutation accumulation. On the
basis of approximations by Beerenwinkel et al. (2007),
they concluded that this acceleration was an artifact of
the presence of both passenger and driver mutations
and that it does not occur when only driver mutations
conferring a fixed selective advantage are considered—
i.e., when the fitness increments are deterministic. In
contrast to these conclusions, we find that the acceler-
ation of waves occurs regardless of the choice of mu-
tational fitness distribution and is due to the difference
in growth rates between successive generations: type-k
cells arise when generation k 2 1 reaches size Oð1=uÞ
and since the asymptotic growth rate of generation k
is larger than the asymptotic growth rate of generation
k 2 1, generation k 1 1 reaches size Oð1=uÞ faster than
generation k. We observed another example of this
phenomenon earlier during our study of a related
Moran model for tumor growth in which the total
population of cells grows at a fixed exponential rate
(Durrett and Mayberry 2010). In this model, the cause
of acceleration was similarly related to growth rates—later
generations take longer to achieve dominance in the
expanding population of cells, and hence new types are
born with a higher fitness advantage compared to the
population bulk, allowing them to grow more rapidly.

As a second application of Equation 3, we derive an
analytic expression for the time at which type-k cells
become dominant in the population. Let Sk 5 inf

ft $ 0 : ZkðtÞ.ZjðtÞ; for all j 6¼ kg be the first time that
type-k cells become the most frequent cell type in the
population. Then, as u/0, we have

Sk
L
/tk 5 b21 1bk (5)

in probability for all k$ 1: The limit tk is the solution to
lkðtk 2bkÞ 5 lk21ðtk 2bk21Þ, i.e., the time when zkðtÞ
first overtakes zk21ðtÞ. Figure 2d demonstrates how the
index mðtÞ of the largest generation at time t, defined as
zmðtÞðtÞ 5 maxfzkðtÞ : k$ 0g; changes over time. The
transitions between periods of dominance are sharp
only in the small mutation limit. At any given time,
the population consists primarily of members of the
current dominant generation; i.e., (1/L)log Z(Lt)/
zm(t)(t) as u/0. Therefore, for small mutation rates,
the amount of genetic heterogeneity present in the
population is determined by the amount of heteroge-
neity present in the dominant generation.

To determine the accuracy of our results when the
mutation rate is small, we compare our limiting ap-
proximation in Equation 3 with the results of numerical
simulations, using a mutational fitness distribution
corresponding to a point mass at b [i.e., v � dðbÞ]. Given
that there are �3 billion base pairs in the human ge-
nome and the mutation rate per base pair is
Oð1028Þ2Oð10210Þ (Seshadri et al. 1987; Oller et al.
1989; Kunkel and Bebenek 2000), point mutations oc-
cur at a rate of 0.3–30 per cell division. However, since
advantageous mutations constitute only a fraction of all
possible mutations, the mutation rate per cell division
for advantageous mutations is smaller than the overall
mutation rate per cell division. In the following exam-
ple, we use a mutation rate per cell per time unit of

Figure 2.—The process for the small mutation
limit. The limiting process is shown for the case in
which the mutation rate goes to zero. (A) The
time, t, on the horizontal axis vs. the log number
of cells of wave k, zkðtÞ, as given by Equation 3.
Both time and space are given in units of L ¼ log
(1/u). This plot shows the first 20 waves started at
t 5 10 5 1=l0; i.e., the time that type-1 cells begin
to be born. (B) A closer look at the first 7 waves
from a, showing the changes in the dominant type.
(C) The birth times of the first 20 generations as
a function of the generation number. (D) The
dominant type in the population as a function of
time. The index mðtÞ of the largest generation at
time t is defined as zmðtÞðtÞ 5 maxfzkðtÞ  : k $ 0g.
In A–D, parameters are l0 5 0:1 and b 5 0:05.
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u 5 1025 and a cell division rate of a ¼ 0.2. In Figure 3,
we compare the average size of the kth generation in
simulations (Figure 3a) with the approximation given
by Equation 3 (Figure 3b). Although the behavior is
qualitatively similar to the small mutation limit, the ap-
proximation consistently underestimates the times at
which new waves appear. To explain the source of this
bias, we use the alternative approximation given by the
right-hand side of Equation 2, which can be rewritten as

ẑ Lk
�
t
�
5Lzk

�
t=L
�
1 logVd;k ; (6)

where L 5 logð1=uÞ. Using the expression for the Lap-
lace transform of Vd;k and the numerical algorithm pre-
sented in Ridout (2008), we sample 1000 variates from
the distribution of Vd;k . Table 1 shows the sample mean
and standard deviation of log Vd;k , for k 5 1; 2;  3. The
distribution of log Vd;k has a positive mean and is
skewed to the right (Figure 4), implying that the limit
in Equation 3 in general underestimates the size of
generation k for positive mutation rates. The approxi-
mation obtained by replacing log Vd;k with the sample
mean of log Vd;k is displayed in Figure 3c. After an initial
period in which the number of type-k cells is small, the
behavior of the process closely resembles the one shown
in Figure 3a. The variance of log Vd;k increases with k
and hence, we expect an increasing amount of variabil-
ity in the simulations in the time when type-k cells arise.
Figure 3d displays the right-hand side of Equation 6,
replacing log Vd;k with the value two standard deviations
above its mean to illustrate an extreme scenario.

While the limit in (3) depends on the fitness distri-
bution only through the maximum attainable fitness

increase b, the distribution of Vd;k also depends on the
fitness distribution through the probability of attaining
a fitness advance of b if v is discrete and the value of the
probability density function at b if v is continuous (see
Equation 4.9 in Durrett et al. 2010). As a consequence,
our finite time approximation (6) takes into consider-
ation the shape of the fitness distribution near b and the
corrector term log Vd;k accounts for variations in the
likelihood of attaining the maximum possible fitness
advance.
Within-generation heterogeneity: We begin our in-

vestigation of within-generation heterogeneity by exam-
ining the extent of diversity present in the first
generation of cells. We use two statistical measures to
assess heterogeneity: (i) Simpson’s index, which is given
by the probability that two randomly chosen cells from
the first generation stem from the same clone, and (ii)
the fraction of individuals in the first generation that
stem from the largest family of cells. To obtain these
results, we derive an alternate formulation of the limit
in Equation 1 that shows the limit is the sum of points in
a nonhomogeneous Poisson process (see the appendix

for more details). Each point in the limiting process

Figure 3.—The size of the first four genera-
tions of cells. The log size of generations 1–4 is
shown as a function of time t. Both time and space
are plotted in units of L 5 logð1=uÞ. (A) The av-
erage values of the log generation sizes over 106

sample simulations. (B) The limiting approxima-
tion from Equation 3 for the log size of the gen-
erations. (C) The approximation from Equation 6
using the mean of log Vd;k . (D) The approximation
from Equation 6 using a value two standard devia-
tions above the mean of log Vd;k to demonstrate an
extreme scenario. Parameters are u 5 1025,
v � dðbÞ, a0 5 0:2, b0 5 0:1, and b 5 0:05:

TABLE 1

Means and standard deviations for log Vd,k for k ¼ 1, 2, 3, as
specified by Equation 1

Generation Mean Standard deviation

1 4.7638 1.3738
2 10.6010 2.2434
3 17.0519 3.0282
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represents the contribution of a different mutant line-
age to Z1ðtÞ so that it suffices to calculate i and ii for the
points in the limiting process.

Simpson’s index: Let us introduce some terminology
by defining Xn to be the nth largest point in the limiting
point process and by setting Sn 5

Pn
i 5 1Xi . Then Simp-

son’s index for the point process is defined by

R 5

PN
i51X

2
i

ðSNÞ2 5
XN
i51

�
Xi

SN

�2

:

We may also consider Simpson’s index for a random
walk Rn 5

Pn
i51ðYi=WnÞ2, where the Yi are indepen-

dent random variables with a tail probability
P ðYi .xÞ 5 x2a, and Wn 5

Pn
i51Yi . Then the limit as

n goes to infinity of Rn is 12a (Fuchs et al. 2001),
where a 5 l0=l1 2 ð0; 1Þ denotes the ratio of the
growth rate of type-0 cells to the maximal growth rate
of type-1 cells. Furthermore, the expected value of Rn

converges to the expected value of R so we have

ER 5 12a: (7)

See the appendix for details of this calculation. Equa-
tion 7 shows that the average amount of heterogeneity
present in the first generation depends only on a.
Figure 5 displays the sample mean of Simpson’s index
of Z as a function of time for different values of a. Ini-
tially, the sample mean tends toward 12a; the expected
value of Simpson’s index for the limiting point process.
Although the sample mean is greater than the limiting
value for larger values of b, our theory guarantees that
eventually, the values of the sample mean converge.
However, it is impossible to simulate the process for
such long times since the population size and number
of cell types become too large.

Expressions for the density and higher moments of R
can be obtained in a similar manner by the comparison
techniques we used in the proof of Equation 7 (see
appendix and Logan et al. 1973; Shao 1997). In addi-
tion, near the origin, the density g(x) of R has the form

g
�
x
��ax2 3=2exp

h
2bx 21

i
(8)

as x/0. Figure 6 displays simulations of Simpson’s in-
dex for the first wave mutants in the branching process
Z. Note the convergence of the empirical distribution of
Simpson’s index to the distribution for the limiting
point process.

Largest clones: To further investigate heterogeneity
properties of the point process, we examine the fraction
of cells descended from the largest family of first-
generation mutants defined as Vn 5 X1=Sn. This quan-
tity reveals the degree of dominance of the largest clone
in the first wave of mutants. For large n, values of Vn
near one indicate that the population is largely domi-
nated by a single clone, while values near zero indicate
a highly heterogeneous population where no single
clone contributes significantly to the total. Using a sim-
ilar approach to that in the previous section, we again
consider this calculation in the context of a random walk.
Consider a sequence of independent, identically distrib-
uted random variables Yi with partial sums Wn. Define
the maximum value of this sequence from 1 to n to be
Y(1). Then classical results regarding one-dimensional
random walks characterize the limiting characteristic
function of Wn/Y(1) (Darling 1952). In the appendix,
we demonstrate that these results can be applied to the
study the largest clone contributions in the limiting
point process.

We show that 1/Vn converges in distribution to a non-
trivial limit W and obtain an explicit formula for the
characteristic function of the limit: as n/N, V 21

n ⇒W ,
where W has characteristic function c satisfying c(0) ¼
1 and

c
�
t
�
5

exp½it �
fa
�
t
� for all t 6¼ 0; (9a)

with

fa
�
t
�
5 11a

ð1
0

�
12 e itu

�
u2ða11Þdu: (9b)

Interestingly, the characteristic function of W is nonin-
tegrable since its density has a singularity at 1. This
finding implies that there is a disproportionately large
chance that a single clone dominates the population.
Further details are shown in the appendix.

Differentiating c then leads to simple expressions for
the mean and variance of the limit,

Figure 4.—The distribution of log Vd,1. The relative fre-
quency histogram of 1000 random samples from the distribu-
tion of log Vd;1 is shown, as specified by Equation 1.
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EW 5
1

12a
and var

�
W
�
5

2

ð12aÞ2�22a
�: (10)

Figure 7a suggests that the rate of convergence is slow
for a close to 1. These formulas provide us with the first
two moments of the diversity measure W and reveal its
dependence on a.

Equation 9 implies that Vn converges to a nontrivial
limit V¼W21 and Jensen’s inequality applied to the strictly
convex function 1/x implies that EðlimX1=SnÞ.12a:
This result provides a lower bound on the expected
value of the limit of Vn and indicates that for values of
a close to zero, the population is eventually dominated
by a single clone. Even though this result indicates only
a lower bound, simulations suggest that deviations of
the mean from 12a are small, as illustrated in Figure
7b.

Extensions to generation k: The results obtained in
the previous two sections for the first generation of cells
can easily be extended to later generations by noting
that each mutation to a type-(k2 1) individual starts
a new family regardless of the mutated cell’s family tree.
Therefore, the amount of heterogeneity within genera-
tion k depends on the relative growth rates of type-k and
type-(k2 1) individuals in the same way that the
amount of heterogeneity within generation 1 depends
on the relative growth rates of type-1 and type-0 individ-
uals. In particular, letting Rk denote the limiting value
of Simpson’s index for generation k, we have

ERk 5 12ak ; (11)

where ak 5 lk21=lk is the relative growth rate of type-
(k 21) individuals compared to type-k individuals (see
also Equation 7 above). Note that the relative growth
rates ak are increasing functions of k. Therefore, Equa-
tion 11 shows that the mean of Simpson’s index is a de-
creasing function of the generation number.

Total population heterogeneity: We conclude this
section by demonstrating how heterogeneity measures
for the population as a whole can be calculated using
information about both intra- and interwave heteroge-
neity. First, define the total collection of all genotypes
present at time t as N(t). For a particular genotype, x,
the number of cells at time t that have exactly this ge-

notype is given by Z(x)(t). Two cells have the same ge-
notype if they contain exactly the same collection of
mutations. Then Simpson’s index for the entire popu-
lation is given by

SI
�
Z
�
t
��

5
X

x2N ðtÞ

 
Z ðxÞ�t�
Z ðtÞ

!2
:

To show how this expression depends on the contribu-
tions of different waves, define the total collection of
genotypes present in the wave-k population at time t by
Nk(t), and let Zk(x) be the population of cells in wave k
that have genotype x. By defining K(t) to be the number
of waves present at time t, we obtain the alternate
expression

SI
�
Z
�
t
��

5
XK ðtÞ

k50

X
xk2NkðtÞ

 
Z ðxkÞ
k

�
t
�

ZkðtÞ

!2�
ZkðtÞ
Z ðtÞ

�2
:

This decomposition expresses Simpson’s index for the
whole population in terms of Simpson’s index for each
wave and the contribution of each wave to the total
population. Combining the result in (5), which gives
the dominant wave as a function of time, with (11),
which describes wave-k heterogeneity, we obtain a de-
scription of how the extent of heterogeneity changes in
time. However, more refined results are needed to de-
scribe the transitions between the dominance of succes-
sive waves.

DISCUSSION

In this article, we investigated the evolution of intra-
tumor heterogeneity in a stochastic model of tumor cell
expansion. Our model incorporates randommutational
advances conferred by (epi)genetic alterations and
our analysis focused on the extent of heterogeneity
present in the tumor. We first considered heterogeneity
between tumor subpopulations with varying numbers of
alterations and obtained limiting results, as the mutation
rate approaches zero, for the contribution of each wave
of mutants to the total tumor cell population. We showed
that in the limit, this intergeneration heterogeneity

Figure 5.—The expected value of Simpson’s
index for the first wave of cells. The sample mean
of Simpson’s index (dots) over time t and the
expected value of Simpson’s index for the limiting
point process (line) are shown, for two different
values of a. Parameters are l0 5 0:1, a0 5 0:2,
and v � U ð½0; b�Þ, where b 5 0:01 in a and
b 5 0:05 in b.
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depends on the maximum attainable fitness advance
conferred by (epi)genetic alterations, but not on the
specific form of the mutational fitness distribution. Our
analysis also led to analytical expressions for the arrival
time of the first cell with k mutations and showed that
the rate of accumulation of new genetic alterations
accelerates over time due to the increasing growth rates
of successive generations. We demonstrated with sto-
chastic simulations that for small but positive mutation
rates, our limiting approximations provide good predic-
tions of the model behavior (see Figure 3). These sim-
ulations also suggest that as time increases, multiple

waves of mutants coexist without a single, largely dom-
inant wave. For large t, the mean growth rate of the kth
wave is given by l01kb, showing that variation in fitness
within a particular wave is a transient property. The
extent to which this variation affects tumor dynamics
at small times is the subject of ongoing work.

We also investigated the genotypic diversity present
within the kth generation of mutants by considering
two measures of diversity: Simpson’s index, which is
given by the probability that two randomly selected cells
stem from the same family, and the fraction of individ-
uals in generation k that stem from the largest family of

Figure 6.—The empirical distribution of Simp-
son’s index for the first wave of cells. Individual
plots of Simpson’s index are shown for the
branching process at times t 5 70, 90, 110, and
130 along with Simpson’s index for the limiting
point process ðt 5 NÞ. The histograms show the
average over 1000 sample simulations. For the
limiting point process, we approximate Simpson’s
index by examining the largest 104 points in the
process. Parameters are l0 5 0:1, a0 5 0:2, and
v � U ð½0; 0:01�Þ.

Figure 7.—The largest clones in
the population of cells. (A) A com-
parison between Monte Carlo esti-
mates for EV 21

n and the limit
ð12aÞ21: (B) A comparison of the
Monte Carlo estimates for EVn and
the curve ð12aÞ1. The Monte Carlo
estimates are averaged over 100 sam-
ple simulations.
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individuals. We obtained limiting expressions for the
mean of Simpson’s index as well as the form of its den-
sity near the origin. Interestingly, the limiting mean of
Simpson’s index is given by the quantity 12a, where a
is the ratio between the maximum attainable fitness
values of type-(k 2 1) and type-k individuals. We then
observed that, as time increases, the mass of the distri-
bution of Simpson’s index moves closer to 0, indicating
higher levels of diversity in the tumor at later times (see
Figure 6). This behavior was also observed via direct
numerical simulation of the branching process—the
distribution and mean of Simpson’s index converged
to the predicted limiting values.

Finally, we investigated the ratio between the total
population size of the kth wave of mutants and the size
of the largest family. We showed that this ratio can be
approximated by a random variable with mean (12a)21.
An explicit formula for the characteristic function of
this random variable was also obtained (see Equation
9). Note that as a approaches 1, the mean of the ratio
grows to infinity—i.e., the largest family of cells consti-
tutes a vanishing proportion of the total population of
wave-k cells as the maximum possible fitness advance
goes to zero.

In the context of tumorigenesis, where a tumor
originally starting from a single cell reaches cell numbers
of $1012, the limit as t goes to infinity is indeed the
appropriate regime of study. We have compared our re-
sults regarding Simpson’s index with numerical simula-
tions at finite times (see, e.g., Figures 5 and 6) and have
found good qualitative agreement with the asymptotic
limits. Estimates of overall mutation rates in evolving can-
cer cell populations range from 1029 to 1022. In Figure 3
we demonstrate good agreement between our results re-
garding interwave heterogeneity in the small mutation
rate limit ðu/0Þ and numerical simulations when the
mutation rate is 1025; thus, analysis in this limiting re-
gime captures the dynamics for mutation rates ,1025

per cell division.
In conclusion, our analysis indicates that tumor diver-

sity is strongly dependent upon the age of the tumor and
the maximum attainable fitness advance of mutant cells.
If only small fitness advances are possible, then the tumor
population is expected to have a larger extent of diversity
compared to situations in which fitness advances are
large. The acceleration of waves observed in our studies of
intergeneration heterogeneity provides evidence that an
older tumor has a higher level of diversity than a young
tumor. In addition, we have shown that the mean of
Simpson’s index for generation k is a decreasing function
of the generation number (see Equation 11), indicating
a larger extent of diversity in later generations and sug-
gesting a further increase in the total extent of heteroge-
neity present in the tumor at later times.

Possible extensions of our model include spatial
considerations and the effects of tissue organization
on the generation of intratumor heterogeneity as well

as the inclusion of other cell types, such as immune
system cells and the microenvironment. Furthermore,
alternative growth dynamics should be considered to
test the extent of heterogeneity arising in populations
that follow logistic, Gompertzian, or other growth
models. We have neglected these aspects in the current
version of the model to focus on the dynamics of tumor
diversity in an exponentially growing population of
cells. Our model provides a rational understanding of
the extent and dynamics of intratumor heterogeneity
and is useful for obtaining an accurate picture of its
generation during tumorigenesis.
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APPENDIX

Convergence in distribution of Zk(t): Define lk ¼ l0 1 kb to be the maximum growth rate that can be attained by
a generation k mutant, and let

pk 52k1
Xk21

j50

lk
lj
:

If n is discrete and assigns mass gi to a finite number of values b1 , b2 , . . . ,bN ¼ b, then

ð1=uÞk1pk e2lk tZkðtÞ⇒Vd;k ; (A1)

where “⇒” denotes convergences in distribution, and Vd,k has Laplace transform

exp
h
2dkðl0; bÞV0ul0=lk

i
for all u $ 0.

If instead n is a continuous distribution on [0, b] with a bounded density g that is continuous and positive at b, then

ðt=uÞk1pk e2lk t ZkðtÞ⇒Vc;k ; (A2)
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where Vc,k has Laplace transform exp½2ckðl0; bÞV0u
l0=lk � for all u $ 0. Here dk(l0, b) and ck(l0, b) are constants that

depend on the model parameters (Durrett et al. 2010), and “d” and “c” in the constants and subscripts stand for
discrete and continuous. See Durrett andMoseley (2010) for a proof of Equation A1 and Durrett et al. (2010) for
a proof of (A2). To show the dependence on the density g, we write the value of c1(l0, b) as

c1ðl0; bÞ5 g ðbÞ l0 1 b
l0

� 1
l0 1 b

�
a01b
l01b

�2b=ðl01bÞ
G

�
l0

l01 b

�
G

�
12

l0
l0 1 b

�
:

The convergence in (A2) was also numerically investigated in Figures 1 and 2 of Durrett et al. (2010).
Point process limit: In this section, we discuss the point process representation for the limit in Equations A1 and A2

in the case where k ¼ 1. The limit is the sum of points in a nonhomogeneous Poisson process. Before stating this
result, we introduce some terminology. Here and in what follows, we use jA j to denote the number of points in the
set A. We say that L is a Poisson process on (0, N) with mean measure m if L is a random set of points in (0, N) with
the following properties:

i. For any A�⊂(0, N), N(A) ¼ jL \ Aj is a Poisson random variable with mean m(A).
ii. For any k $ 1, if A1, . . . , Ak are disjoint subsets of (0, N), then N(Ai), 1 # i # k are independent.

We also let a ¼ l0/l1 2 (0, 1) denote the ratio of the growth rate of type-0 cells to the maximal growth rate of type-1
cells and note that 1 1 p1 ¼ 1/a.

Theorem 1. Let L be a Poisson process on (0, N) with mean measure

mðAÞ5
ð
A

az2ða11Þdz

and let S denote the sum of the points in L. Then positive constants Ad, Ac ¼ Ad(l0, b), Ac(l0, b) exist that depend on the indicated
parameters so that in case i as t/N

ðAduV0Þ2ð11p1Þe2l1t Z1ðtÞ ⇒S ;

and in case ii as t/N

ðAcuV0Þ2 ð11p1Þt11p1e2l1tZ1ðtÞ⇒S:

For more details, see Durrett et al. (2010), Theorem 3, and Durrett andMoseley (2010), Corollary to Theorem
3. Note that the mean measure for L has tail m(x, N) ¼ x2a.

Let Xn denote the nth largest point in L, and let Sn 5
Pn

i51Xi denote the sum of the n largest points. To determine
the dependence of Xn on n we first note that if we define L9 ¼ f (L) where f (x) ¼ x2a, then L9 is a Poisson process
and after making the change of variables y ¼ x2a, we can see that the mean measure is

m9ðAÞ5
ð
f 21ðAÞ

ax 2ða11Þdx5
ð
A
dy5 jA j :

In other words, L9 is a homogeneous Poisson process with constant intensity and hence the spacings between points
are independent exponentials with mean 1. If we let Tn denote the time of the nth arrival in L9, then the law of large
numbers implies that Tn � n as n / N. Since Xn 5 T21=a

n , we obtain Xn � n21/a as n / N. In addition, we have
the following Lemma:

Lemma 1.

EXn 5
Gðn2 1=aÞ

GðnÞ :

Furthermore, if we define SN 5
PN

i 5 1Xi , then

ESN,N:
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Proof. Since Tn has a Gamma(n, 1) distribution, we have EXn 5 ET21=a
n 5 Gðn21=aÞ=GðnÞ: Stirling’s approxima-

tion implies that G(n 2 1/a)/ G(n) � n21/a and the second conclusion follows. ∎

Simpson’s index: To prove Equation 7 in the text, we use a result in Fuchs et al. (2001) that shows that

lim
n/N

ERn 5 12a: (A3)

Here

Rn 5
Xn
i51

�
Yi
Sn

�2

;

where Yi are iid random variables in the domain of attraction of a stable law with index a and Sn ¼ Y1 1 . . . 1 Yn.
To explain the connection between the two results, note that if we have P(Yi . x) ¼ x2a, for x $ 1 and letting Yn,i ¼
Yi/n1/a, then

nP
�
Yn;i 2 A

�
/mðAÞ:

This implies that if we let Dn ¼ {Yn,i : i # n} be the point process associated with the Yn,i and define the measures
jn[

P
x2Ln

dx and j 5
P

x2Ldx ; then we have

jn ⇒ j;

so that we should expect ER to agree with lim ERn.
To make this argument rigorous, let

RnðeÞ5
P

i51
n Y 2

n;i1Yn;i.e�Pn
i51Y

2
n;i1Yn;i.e

	2
denote the truncated value of Simpson’s index for Ln and

RðeÞ5
P

i
NX 2

i 1Xi.e�P
i51
N Xi1Xi.e

	2
denote the truncated value for L. Then for any e . 0, we have

j ERn 2 ER j# E jRn 2RnðeÞ j 1 E jRnðeÞ2RðeÞ j 1 E jRðeÞ2R j : (A4)

We complete the proof by deriving appropriate bounds for each of the three terms on the right-hand side of (A4).
For the first term, we have the following:

Lemma 2.

lim
n/N

sup E jRn 2RnðeÞj# he;

where he/0 as e/0.
Proof. Let e . 0 and write An;k 5

Pn
i51Y

k
n;i ; An;kðeÞ 5

Pn
i51Y

k
n;i1Yn;i.e; and �An;kðeÞ 5 An;k2An;kðeÞ for k ¼ 1, 2. Since

EY k
1 1Y1#en1=a 5

ðen1=a

1
kyk2 1y2ady # Cek2ank=a21

for k ¼ 1, 2, we have the bound

E �An;kðeÞ # Cek2a: (A5)
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After noting that An;2 # A2
n;1; An;2ðeÞ # A2

n;1ðeÞ # A2
n;1; and �An;1ðeÞ1An;1ðeÞ 5 An;1; we have for any d . 0,

E jRn 2RnðeÞ j 5 E






 �An;2ðeÞ
A2
n;1

1RnðeÞ
�
A2
n;1ðeÞ2A2

n;1

A2
n;1

� 





# d22E �An;2ðeÞ1 P

�
An;1 #d

�
1  d21E

�
j 2An;1ðeÞ�An;1ðeÞ�A2

n;1ðeÞ j
An;1

�
1 P

�
An;1#d

�
5 d22E j �An;2ðeÞ j 1 d21E

� 


�An;1ðeÞ
�
21 An;1ðeÞ

An;1

	


 	1 2P
�
An;1#d

�
# d2 2E �An;2ðeÞ1 3d21E �An;1ðeÞ1 2P

�
An;1 #d

�
#

e22a

d2
1

3e12a

d
1 2P

�
An;1#d

�
;

(A6)

where we have used (A5) in the last line. To control the third term on the right, let f denote the Laplace transform of
Y1. Then

12fðtÞ5a
ÐN
1 ð12 e2tyÞy2ða11Þdy

5ata
ÐN
t ð12 e2xÞx2ða11Þdx � Cta

as t / 0 since 1 2 e2x � x as x / 0 implies that
ÐN
0 ð12e2xÞx2ða11Þdx ,N: We can conclude that

E exp
�
2tAn;1

�
5

�
12

�
12f

t
n1=a

�n�
/expð2CtaÞ

as n / N. In particular, An,1 ⇒ A1, where A1 has the above Laplace transform. Since

12 expð2CtaÞ/1

as t / N, we have P(A1 ¼ 0) ¼ 0 so that taking d ¼ e(12a)/2 in (A6) yields the result. ∎

To bound the second term on the right-hand side of (A4), we need some notation. Let Mp denote the class of all
point measures on (0, N). In a slight abuse of notation, we write v 2 n when n 2 Mp and v 2 supp(n). We equip Mp

with the topology of vague convergence (see, for example, Section 3.4 in Resnick 1987) and take as our s-algebra the
one generated by open sets in this topology. Associated with any random set of points, we can associate a measure j
that is a random variable with values in Mp. We write Ln ⇒ L to mean that the associated random measures jn ⇒ j.

Lemma 3. Ln ⇒ L and if we define the maps Fk,e: Mp / [0, N) by

Fk;eðmnÞ5
X
x2mn

xk1x.e

for k ¼ 1, 2, then �
F1;eðLnÞ; F2;eðLnÞ

�
⇒
�
F1;eðLÞ; F2;eðLÞ

�
:

Proof. Since

nP
�
Yn;i 2 A

�
5 n

ð
n1=aA

ay2ða11Þdy5
ð
A
ax2ða11Þdx5mðAÞ

for all Borel sets A, the first claim follows from Proposition 3.21 in Resnick (1987). The second claim follows from
the continuous mapping theorem (see, for example, Resnick 1987, p. 152) the fact that Fk,e is continuous away
from measures n with e ; n and the fact that the random measure associated with L has no point masses with
probability 1. ∎

As a consequence of this lemma, the fact that Rn(e) # 1, and the bounded convergence theorem, we have the
following:
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Corollary 1.

E jRnðeÞ2RðeÞj/0

as n / N for any e . 0.

It thus remains to establish the following:

Lemma 4.

lim
e/0

sup E jRðeÞ2R j 5 0:

Proof. We can establish this result using the same results as in the proof of Lemma 2, in particular if we define
Ak 5

PN
n51X

k
n and �AkðeÞ 5

PN
n 51X

k
n1Xn,eE for k ¼ 1, 2. Then, following the display in Equation A6, we have for

any d . 0

E jR 2RðeÞj #d22E �A2ðeÞ1 3d21E �A1ðeÞ1 2P ðA1$dÞ:

It is obvious that P(A1 ¼ 0) ¼ 0 and E �A2ðeÞ# E �A1ðeÞ for e , 1, so it remains only to establish that

E �A1ðeÞ/0;

as e / 0. This result follows immediately from Lemma 1. Therefore, taking d 5 ðE �A1ðeÞÞ1=4 completes the proof. ∎

We can now complete the proof of Equation 7 by letting n / N and then e / 0 in (A4) and applying Lemmas 2
and 4 and Corollary 1.

To prove Equation 8, we use a result in Logan et al. (1973) that establishes that as n / N,

Snð2Þ5R 21=25

P
i5 1
n Yi�P

i5 1
n

Y 2
i

	1=2
has a limiting distribution with a density f that satisfies

f ðyÞ � ae 2by2 ; as y/N;

for some constants a, b . 0 (see Logan et al. 1973, Equation 5.7, and Shao 1997, Theorem 6.1). Making the change
of variables x¼ y21/2 yields Equation 8. ∎

Largest clones: Equation 9 is a consequence of the following theorem:

Theorem 2. As n / N, V 21
n ⇒W ; where W has characteristic function c satisfying c (0) ¼ 1 and

cðtÞ5 e it

faðtÞ

for all t 6¼ 0 with

faðtÞ5 11a

ð1
0

�
12 e itu

�
u2ða11Þdu:

The form of the characteristic function is the same as the characteristic function for limn/NTn/Y(1), where the Yi
are iid random variables with power law tails, Y(1) ¼ maxi#nYi, and Tn 5

Pn
i 51Yi (see, for example, Darling 1952).

Again, this agreement is a consequence of the previously discussed connection between Dn and the limiting Poisson
point process.

To prove Theorem 2, we need the following notation. For a real number t, we define the function
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sgnðtÞ5
8<
:
2 1; t, 0

0; t 5 0
1; t . 0:

For a complex number z we denote the real part of z by Re[z] and its imaginary part by Im[z].

Proof of Theorem 2. Theorem 5.1 in Darling (1952) implies that we have

E exp
�
itTn=Yð1Þ

	
/cðtÞ

as n / N whereas in the Simpson’s index section, Y(1) ¼ maxi#nYi and Tn 5
Pn

i 5 1Yi : To conclude that Tn/Y(1) ⇒ V, we
need to show that y is continuous at 0. To establish this fact, we make the change of variables v ¼ tu to conclude that

faðtÞ5 11a

ð1
0

�
12 e itu

�
u2ða11Þdu5 11a j t ja

ð jtj
0

�
12 e iv sgnðtÞ

	
v2ða11Þdv: (A7)

Since 1 2 exp(iv) � 2iv as v / 0, the integral on the right-hand side of (A7) is finite and hence

cðtÞ5 e it f 2 1
a ðtÞ/1

as t / 0. Since Tn/Y(1) ⇒ V, the fact that Sn/X1 ⇒ V follows from the arguments in the previous section. ∎

It is interesting to note that the characteristic function in Theorem 2 is not integrable. The problem is that the
density of V 21

n blows up near 1. As an explanation for this, we note that with probability

expð2ð12 x2aÞÞexpð2x2aÞx2a ¼ e21x2a

there is a point in the process bigger than x and no points in [1, x). When this happens,

V 21
n 5

Sn
X1

# 11
n
x

and so

FnðyÞ5 P
�
V 21
n # y

�
$e21n2aðy2 1Þa:

If we had Fn(y) ~ (y2 1)a, then the density would blow up like (y21)a21 as y/ 1. We confirm that this gives the right
asymptotic by providing an explicit formula for the density of W.

Corollary 2. W has a density on (1, N) given by

f ðyÞ5 lim
M/N

ðM
2M

eitð12yÞ

faðtÞ dt :

Note that integral expression above does not converge absolutely so part of the proof consists of showing that the
limit exists. If we apply the change of variable s ¼ t(y 2 1) in the definition of f, we see that

f ðyÞ5 ðy21Þa21

ðN

2N

e2it

ðy21Þa1 Ð ðy21Þ21

0 ðð12 e iutÞ�ua11ÞÞdu
;

thus confirming the intuition that the density blows up like (y 2 1)a21 as y approaches 1.

Proof of Corollary 2. We first establish that there are no point masses in the distribution of V. By the inversion
formula we have for any a 2 ℝ,
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P ðV 5 aÞ5 lim
T/N

1
2T

Ð T
2T e2iatcðtÞdt

5 lim
T/N

1
2T

Ð T
2T

eitð12 aÞ
faðtÞ dt :

If we focus on the positive axis and use the change of variable s ¼ t/T,

1
2T

ðT
0

e itð12aÞ

faðtÞ dt5
1
2

ð1
0

e isT ð12aÞ

faðsT Þ ds:

From display (A7) it follows that for every s 2 (0, 1) we have e isT(12a)/fa(sT) / 0 as T/N. Note that

Re
�
faðtÞ

�
5 11a

ð1
0

12cos ut
ua11 du.1;

which implies j fa(t)j $ 1 for all t. Therefore je isT(12a)/fa(t)j # 1 for all t and it follows via the dominated convergence
theorem that

lim
T/N

1
2

ð1
0

e isT ð12aÞ

faðsT Þ ds5 0:

A similar result holds for the integral on the negative axis and we conclude that

P ðV 5 aÞ5 0:

We can therefore conclude for x . 1 and h . 0 via the inversion formula (see Durrett 2005, Equation 3.2) and
Fubini’s theorem that

P ðV 2 ðx; x1 hÞÞ 5 lim
T/N

1
2p

Ð T
2T

Ð x1h
x e2itycðtÞdydt

5 lim
T/N

1
2p

Ð x1h
x

ÐT
2T e

2itycðtÞdtdy:

Therefore, to establish the result we need to show that

lim
T/N

1
2p

ðx1h

x

ðT
2T

e 2itycðtÞdtdy5 1
2p

ðx1h

x

ðN
2N

e 2itycðtÞdtdy:

This follows if we show that limT/N

Ð T
2T e

2itycðtÞdt is a convergent integral and that a bounded function h exists
defined on (x, x 1 h) such that

j hT ðyÞ j5



ðT

2T
e 2itycðtÞdt




#hðyÞ:

We first use integration by parts to see

hT ðyÞ5
ðT
2T

eitð12yÞ

faðtÞ dt 5
i

12 y

 
e iT ð12yÞ

faðT Þ 2
e 2iT ð12yÞ

fað2T Þ 1

ðT
2T

eitð12yÞfa9ðtÞ
faðtÞ2

dt

!
:

Recalling that j fa(T)j / N as T / 6N, it follows that if we establish that fa9ðtÞ=  faðtÞ2 is integrable on (2N, N), then
the convergence of the integral and the existence of a bounded dominating function will be established. Since fa is
bounded away from 0, it suffices to check that the function decays fast enough. Recalling the definition of fa,

f 9
a
ðtÞ52iata21

ðt
0

e iv

va
dv;

which follows by passing the derivative inside the integral in the definition of fa. We can establish that

sup
T,N




 ðT
0

e iv

va
dv



,N
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by observing

ðN
0

e iv

va
dv5 e2ipð12aÞ=2Gð12aÞ;

which can be found in many places, e.g., Loya (2005). Thus,

j fa9ðtÞ j#ata21 sup
T,N




ðT
0

e iv

va
dv



#C0ta21:

We can similarly establish that for t sufficiently large

j faðtÞj 2$C1t2a;

for a positive finite constant C1. Thus for t sufficiently large




e itð12yÞfa9ðtÞ
faðtÞ2




# C
ta11;

establishing the result. ∎

We conclude this section with the proof of Equation 10. Using the Taylor series expansion of exp(iu) � 0 in (A7)
above implies that

11 faðtÞ5 12
XN
n51

aðitÞn
ðn2aÞn!

and therefore

f ðkÞa ðtÞ5
XN
n5k

aintn2k

ðn2aÞðn2 kÞ!

so that in particular,

f ðkÞa ð0Þ5 ika
k2a

for all k $ 1. Let S(t) ¼ logc(t) ¼ it 2 log fa(t). Then dropping the a subscript on fa, we have

S9ðtÞ5
�
i2

f 9ðtÞ
f ðtÞ

�
5 ði2ðlogf ðtÞÞ9Þ;

which yields the desired result for the mean:

EY 5 iS9ð0Þ5 iði2 f 9ð0ÞÞ 5
1

12a
:

Now

S99ðtÞ5 2 ðlogf ðtÞÞ995 2
f 99ðtÞf ðtÞ2 ðf 9ðtÞÞ2

f 2ðtÞ ;

so

varðY Þ5 S99ð0Þ5 2f 99ð0Þ1 ðf 9ð0ÞÞ25 a

22a
1

a2

ð12aÞ2 5
a

ð12aÞ2ð22aÞ;

completing the proof. ∎
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