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Next-generation sequencing of paired tyrosine kinase
inhibitor-sensitive and -resistant EGFR mutant lung
cancer cell lines identifies spectrum of DNA changes
associated with drug resistance
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Somatic mutations in kinase genes are associated with sensitivity of solid tumors to kinase inhibitors, but patients with
metastatic cancer eventually develop disease progression. In EGFR mutant lung cancer, modeling of acquired resistance
(AR) with drug-sensitive cell lines has identified clinically relevant EGFR tyrosine kinase inhibitor (TKI) resistance
mechanisms such as the second-site mutation, EGFR T790M, amplification of the gene encoding an alternative kinase, MET,
and epithelial–mesenchymal transition (EMT). The full spectrum of DNA changes associated with AR remains unknown.
We used next-generation sequencing to characterize mutational changes associated with four populations of EGFR mutant
drug-sensitive and five matched drug-resistant cell lines. Comparing resistant cells with parental counterparts, 18–91 coding
SNVs/indels were predicted to be acquired and 1–27 were lost; few SNVs/indels were shared across resistant lines.
Comparison of two related parental lines revealed no unique coding SNVs/indels, suggesting that changes in the resistant
lines were due to drug selection. Surprisingly, we observed more CNV changes across all resistant lines, and the line with
EMT displayed significantly higher levels of CNV changes than the other lines with AR. These results demonstrate
a framework for studying the evolution of AR and provide the first genome-wide spectrum of mutations associated with
the development of cellular drug resistance in an oncogene-addicted cancer. Collectively, the data suggest that CNV
changes may play a larger role than previously appreciated in the acquisition of drug resistance and highlight that re-
sistance may be heterogeneous in the context of different tumor cell backgrounds.

[Supplemental material is available for this article.]

Over the past several decades, somatic mutations in genes encoding

kinases have become associated with increased sensitivity of dif-

ferent solid tumors to kinase inhibitors. Examples include the gene

products of specific ‘‘driver oncogenes’’ including EGFR, ALK, BRAF,

and KIT, which are effectively targeted with gefitinib/erlotinib

(Maemondo et al. 2010; Mitsudomi et al. 2010), crizotinib (Kwak

et al. 2010), vemurafenib (Sosman et al. 2012), and imatinib

(Demetri et al. 2002), in lung cancer (EGFR, ALK), melanoma (BRAF ),

and gastrointestinal stromal tumors (KIT ), respectively. Unfortu-

nately, virtually all patients with metastatic cancer eventually de-

velop disease progression, limiting the effectiveness of these agents.

Common mechanisms of acquired resistance include the devel-

opment of second-site gene mutations (e.g., ‘‘gatekeeper muta-

tions’’) that alter binding of drug to target and re-activation of the

original oncogene-driven kinase signaling pathway through the

up-regulation of alternative kinases. For example, in patients with

EGFR mutant lung adenocarcinomas harboring drug-sensitive

mutations (deletions in exon 19 or the L858R point mutation in

exon 21), tumor cells in more than half develop a second-site EGFR

T790M mutation (Kobayashi et al. 2005; Pao et al. 2005), while

5%–10% acquire MET amplification (Bean et al. 2007; Engelman

et al. 2007). Occasionally, changes in tumor histology have also

been observed, with tumor cells displaying features of small-cell

lung cancer or epithelial–mesenchymal transition (EMT) (Sequist

et al. 2011).

A common laboratory method used to model acquired re-

sistance involves the development of isogenic pairs of drug-sensitive

and drug-resistant human tumor cell lines. Parental drug-sensitive

cells are cultured in stepwise fashion with increasing concentrations

of drug until cells emerge that are 50-fold to 100-fold less sensitive

to growth inhibition. Cells are initially treated with a drug con-

centration at which 30% of the cells are growth inhibited or killed

(GI30), and when cells resume normal growth patterns, the drug

concentration is increased (Chmielecki et al. 2011; Ohashi et al.
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2012). In EGFR mutant lung cancer, this type of modeling using

EGFR tyrosine kinase inhibitors (TKIs) has reliably identified clini-

cally relevant resistance mechanisms such as EGFR T790M, MET

amplification, and EMT (Chmielecki et al. 2011; Ohashi et al. 2012).

To date, the full spectrum of DNA mutations and copy number

changes associated with such resistance mechanisms remains to be

determined.

Next-generation sequencing (NGS) technologies augmented

with bioinformatics analyses provide powerful approaches to

screen for genome-wide genetic alterations in matched samples to

identify various types of mutations associated with drug resistance.

In a recent study, RNA sequencing (RNA-seq) was applied to detect

mutations in drug-resistant clones developed from parental cell

lines (Wacker et al. 2012). To our knowledge, the use of genome-

wide DNA sequencing to compare drug-sensitive and drug-resistant

cell lines has not yet been reported. Here, we used whole-genome

sequencing (WGS) or whole-exome sequencing (WES) and bio-

informatics analysis to characterize mutational changes associated

with four populations of parental EGFR mutant drug-sensitive lines

and five corresponding drug-resistant lines that were already

known to harbor EGFR T790M mutations, MET amplification, or

EMT, respectively (Fig. 1). These studies illustrate the power of

NGS technologies to uncover genome-wide changes associated

with drug resistance.

Results

Spectrum of genetic alterations associated with an isogenic
pair of drug-sensitive and drug-resistant cells: PC-9/S1
versus PC-9/ER (T790M)

PC-9/S1 parental cells are known to harbor a drug-sensitive EGFR

exon 19 deletion, while polyclonal PC-9/ER cells, developed after

long-term culture in the EGFR TKI erlotinib, contain a second-site

EGFR T790M mutation (Fig. 1; Chmielecki et al. 2011). PC-9/ER

cells display sensitivity to the T790M-specific inhibitor WZ4002

(Zhou et al. 2009), suggesting that they remain dependent on

EGFR signaling for survival (Supplemental Fig. S1). To determine

the full spectrum of mutations associated with erlotinib sensi-

tivity and resistance, we performed WGS on genomic DNA from

both lines. We denote this parental cell line sequenced by WGS as

PC-9/S1, to distinguish it from a second set of parental cells

(PC-9/S2) sequenced by WES after multiple passages in culture

in the absence of TKI selection (see next section and Fig. 1). For

PC-9/S1 cells, a total of 128.3 3 109 bases were covered by short

reads (100 bp, paired-end), with an average of 42.33 coverage of

the human genome, and for PC-9/ER cells, 148.7 3 109 bases of

short reads were obtained, with an average of 49.03 coverage

(Table 1). These sequence reads covered ;92.0% bases of the

human reference genome (hg19) by at least one read and ;87.2%

bases by a depth of at least 203. We then compared data from

the resistant and parental lines to identify mutations that oc-

curred at >20% allele frequency that were unique to each cell

population. As expected, both parental and resistant cells were

found to harbor the same EGFR exon 19 deletion (c.2235_2249del,

p.E746_A750del, at chr7: 55242465–55242479), while only the re-

sistant cells harbored EGFR T790M (c.C2369T, p.T790M, at chr7:

55249071).

Using a set of optimized filtering criteria for high prediction

accuracy (see Methods and Supplemental Fig. S2), we identified

a total of 7060 novel single nucleotide variants (SNVs) and 7442

small insertions/deletions (indels) that were unique to PC-9/ER

versus parental PC-9/S1 cells. Thirty-three SNVs (including 19 mis-

sense, three stop-gain, and 11 synonymous SNVs) and 11 indels

were predicted to occur in exonic regions (Table 2). We chose for

validation by direct sequencing the predicted exonic SNVs/indels

that did not fail our manual review (see Methods) and were ame-

nable to primer design. All selected SNVs (n = 15, 100%) and 86% of

selected indels (n = 7) for validation were verified to be present only

in PC-9/ER cell DNA by direct sequencing (Table 3; Supplemental

Table S1). In the reverse comparison, nine and four predicted ex-

onic SNVs and deletions, respectively, were unique to PC-9/S1

parental cells (Table 2); all selected SNVs (n = 4) and 50% of indels

(n = 2) were validated (Fig. 2; Tables 3, 4). These data indicate that

in this isogenic pair of cells, exonic mutations are both acquired

and lost during the selection process for resistance, with more mu-

tations being acquired than lost.

We next applied the software tool Control-FREEC (Boeva et al.

2011, 2012) to detect CNVs uniquely aberrant in PC-9/ER cells

compared with PC-9/S1 parental cells. While many small ampli-

fied/deleted regions were detected across the genome, there were

three large blocks of amplifications (spanning >1 Mb) involving

chromosomes 5, 7, and 22 (Supplemental Fig. S3; Supplemental

Table S2). The 5p15.1–5p15.2 locus overlapped with a region we

previously reported in tumor samples from patients with EGFR

mutant lung cancer and acquired resistance to EGFR TKIs (Bean

et al. 2007); the region spans ;3.7 Mb and encompasses cancer

genes collected from the Cancer Gene Census (CGC) database

(Futreal et al. 2004) such as ANKH, CTNND2, DNAH5, FAM105A,

FAM105B, and TRIO. The locus 7p11.2–7p13 involves EGFR, the

amplification of which has been frequently reported in patients

with acquired resistance (Balak et al. 2006). The third locus,

which is at 22q12.3–22q13.1, spans ;3.2 Mb and involves many

genes including the CGC cancer gene MYH9. Large blocks of de-

letions were detected in 2q32–2q34, 7q31.1–7q35, 10p11.21–

10p15.3, 22q11.21, and Xp21.1 (Supplemental Table S2). Loss of

Figure 1. Description of cell lines examined. (TKI) Tyrosine kinase inhib-
itor; (WGS) whole-genome sequencing; (WES) whole-exome sequencing.
Cell lines in the left boxes are drug-sensitive, while those in the right boxes
are drug-resistant. PC-9/S2, PC-9/ER, and PC-9/BRc1 were derived from PC-
9/S1 cells; HCC827/R1 and HCC827/R2 were derived from HCC827
cells; HCC4006/ER were derived from HCC4006 cells. Comparisons
between PC-9/S1 and PC-9/S2, PC-9/S1 and PC-9/ER, PC-9/S1 and PC-
9/BRc1, HCC827 and HCC827/R1, HCC827 and HCC827/R2, and
HCC4006 and HCC4006/ER were performed as detailed in the text.

Genome Research 1435
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copy number in these loci involved multiple CGC genes such as

IDH1, MET, SMO, and BRAF. Taken together with the SNV/indel

data, these analyses show that more genes were affected by copy

number changes than exonic SNVs/indels during the develop-

ment of drug resistance.

Spectrum of genetic alterations associated with an isogenic
pair of drug-sensitive and drug-resistant cells: PC-9/S2
versus PC-9/BRc1 (T790M)

Polyclonal PC-9 parental cells were treated with a different EGFR

TKI, afatinib, and used to select for a T790M-harboring resis-

tant line, PC-9/BRc1, which was derived from a single-cell clone

(Chmielecki et al. 2011). Through WES, we compared the exomes

in PC-9/BRc1 and PC-9/S2 cells (Fig. 1; see below). We obtained

8.4 3 109 bases of short reads (74-bp paired-end) for PC-9/S2 cells

with an average of 232.63 coverage, and 7.8 3 109 bases of short

reads for PC-9/BRc1 (216.73 coverage). These sequence reads

covered ;99.0% of bases of the targeted regions (NimbleGen

SeqCap EZ Exome Library kit v2) by at least one read and ;94.7%

of bases by a depth of at least 203 (Table 1). A total of 88 SNVs and

three indels were detected in exonic regions that were unique to

PC-9/BRc1 cells, while 27 SNVs were unique to PC-9/S2 (Table 2).

For validation, we selected mutations likely to have high functional

impact (e.g., those indicated as ‘‘probably damaging’’ by PolyPhen-2

software) (Adzhubei et al. 2010). All of the selected SNVs (11 for

PC-9/BRc1 and three for PC-9/S2) were validated (Tables 3, 4; Sup-

plemental Table S3). Thus, again, we predicted more coding SNVs/

indels in the resistant cell population compared with the parental

cells. A greater number of changes may have been observed in PC-9/

BRc1 cells than PC-9/ER cells, since the former were derived from

a single cell clone, while the latter were polyclonal.

CNV detection using WES data can be variable, since in-

terpretations can be affected by the non-uniform nature of exome

capture reactions (Krumm et al. 2012). We therefore applied two

software tools, VarScan 2 (Koboldt et al. 2012) and ExomeCNV

(Sathirapongsasuti et al. 2011), to determine the CNVs in PC-9/

BRc1 cells. To get more reliable results, we focused only on the

regions detected by both tools. When using VarScan 2, we selected

regions with >1000 bp and log ratios >0.25 or <�0.25. For

ExomeCNV, we selected regions with >1000 bp with abnormal copy

numbers (e.g., 6¼2) (Supplemental Fig. S4; Supplemental Table S4).

Large amplified regions encompassing CGC genes included 1p36.21–

1p36.33 (CAMTA1, PRDM16, RPL22, TNFRSF14 ), 3q13.13–

3q27.3 (BCL6, EIF4A2, ETV5, FOXL2, GATA2, GMPS, MECOM,

MLF1, PIK3CA, RPN1, SOX2, WWTR1), and 21p11.1–21q22.3 (ERG,

OLIG2, RUNX1, TMPRSS2, U2AF1) among others. PC-9/BRc1 cells

also had regions of copy number loss, affecting cancer-related genes

such as ABI1, GATA3, KIF5B, KLF6, and MLLT10 on 10p11.1–

10p15.3, AKT1 on 14q32.33, and MYH9 and PDGFB on 22q12.3–

22q13.1. More details are provided in Supplemental Table S4. Col-

lectively, similar to PC-9/ER cells, we predicted that PC-9/BRc1

cells harbored more copy number changes than SNVs and indels

when compared with their parental cell counterparts.

Spectrum of genetic alterations associated with the two PC-9
parental cell populations: PC-9/S1 versus PC-9/S2

To determine whether the DNA changes associated with acquired

resistance in PC-9/ER and PC-9/BRc1 cells were random or due to

drug selection, we compared the profiles of the two parental cell

populations, PC-9/S1 and PC-9/S2. These cells were passaged about

six to eight times (1.5 mo) in media without drug selection (Fig. 1).

Using the same pipeline for paired samples and our standard cutoff of

>20% mutation allele frequency for a called mutation, we did not

find any coding SNVs/indels that uniquely occurred in either cell

line, even allowing for differences in sequencing coverage (42.33 for

PC-9/S1 and 232.63 for PC-9/S2 cells). Thus, the SNVs detected in

the resistant cell lines were likely due to drug treatment and did not

arise from the normal culturing process. We did not compare CNV

differences because the significantly different depth of coverage

provided by WGS and WES would strongly affect the CNV calling.

Table 1. Summary of data derived from next-generation sequencing of nine EGFR mutant cell lines

WGS WES

PC-9/S1 PC-9/ER PC-9/S2 PC-9/BRc1 HCC827 HCC827/R1 HCC827/R2 HCC4006 HCC4006/ER

Number of bases sequenced 128.3 3 109 148.7 3 109 8.4 3 109 7.8 3 109 4.6 3 109 5.4 3 109 4.3 3 109 4.3 3 109 5.3 3 109

Coverage (3) 42.3 49.0 232.6 216.7 119.4 139.7 110.8 109.9 137.3
Covered fraction (%, $1) 92.0 92.0 99.0 98.9 99.1 99.2 98.9 99.0 99.2
Callable fraction (%, $20) 86.7 87.7 94.7 94.7 87.8 88.4 86.5 85.5 88.6

(WGS) Whole-genome sequencing; (WES) whole-exome sequencing.

Table 2. Summary of single nucleotide variants (SNVs) and small insertions/deletions (indels) unique to each cell line

PC-9/S1 PC-9/ER PC-9/S2 PC-9/BRc1

HCC827

HCC827/R1 HCC827/R2 HCC4006 HCC4006/ERvs. R1 vs. R2

SNVs
Missense 7 19 20 61 5 1 12 19 14 13
Stop-gain 3 1 7 1 2
Synonymous 2 11 6 20 3 3 7 4 7

Indels
Frameshift deletion 1 1 1 1 2
Frameshift insertion 1 1 1 1
Nonframeshift deletion 3 9 1

Jia et al.
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Spectrum of genetic alterations associated with an isogenic
pair of drug-sensitive and drug-resistant cells: HCC827
versus HCC827/R1 (EGFR T790M) and HCC827/R2
(MET amplification)

We used WES to characterize the spectrum of mutations associated

with a different set of isogenic pairs of cell lines. HCC827 cells,

harboring an exon 19 deletion, are sensitive to erlotinib; drug se-

lection in vitro led to two polyclonal resistant lines: HCC827/R1,

which harbor the T790M mutation and lack MET amplification,

and HCC827/R2, which lack T790M and display MET amplifica-

tion (Ohashi et al. 2012). HCC827/R1 but not HCC827/R2 cells

further display sensitivity to the T790M-specific TKI, WZ4002

(Supplemental Fig. S5); conversely, HCC827/R2 but not HCC827/

R1 cells display sensitivity to a MET TKI, SGX-532 (Ohashi et al.

2012; data not shown). Details of the sequencing data are listed

in Tables 1–3. As expected, all three lines harbored the same

EGFR exon 19 deletion (c.2235_2249del, p.E746_A750del, at chr7:

55242465–55242479). In HCC827/R1 cells, the EGFR T790M point

mutation (c.C2369T) was found manually at low allele frequency

(7%), while HCC827/R2 cells did not contain any alleles with

T790M.

We detected 16 exonic SNVs (12 missense, one stop-gain, and

three synonymous) and two indels (Table 2) that were unique to

HCC827/R1 cells compared with parental cells. Conversely, eight

SNVs were found only in parental cells. In HCC827/R2 cells, 26

SNVs (19 missense and seven synonymous), and one indel (Table

2) were predicted to be unique, while only one SNV was detected as

significant in the parental line (Table 2). Validation rates are shown

in Table 3, and the validated SNVs/indels are shown in Supple-

mental Tables S5 and S7 for HCC827/R1 and HCC827/R2, respec-

tively. Thus, as in PC-9 cells, HCC827 resistant cells harbored more

genetic changes than parental cells.

We applied the same pipeline as in PC-9/BRc1 to detect CNVs

for HCC827/R1 and for HCC827/R2, both of which were com-

pared with HCC827 parental cells. In HCC827/R1, large amplifi-

cations were found in chromosomes 7 and 18, where the cancer

genes BRAF (7q34) and BCL2 (18q21.33–18q22.1) are located, re-

spectively (Supplemental Fig. S6). We also found an amplified re-

gion on 21p11.1–21q22.3 of unknown significance (Supplemental

Table S6). Regions with fewer copies compared with parental cells

were found in 5p11–5q35.3 (involving the CGC gene PDGFRB),

7p11.2–7p12.1 (involving the gene EGFR), and 12p12.2–12p13.33.

In HCC827/R2, amplifications were mainly detected in

5p15.2–5p15.33, 7q21.3–7q31.1, and 18q11.2 (Supplemental

Fig. S7; Supplemental Table S8). On chromosome 7, there was a

6-Mb block encompassing MET (Fig. 3; Supplemental Fig. S7);

this gene was known to be amplified by fluorescent in situ hy-

bridization (FISH) (Ohashi et al. 2012). Interestingly, in the

HCC827/R1 cell line, the same region displayed a different pattern:

We found a sharp low-level peak spanning only ;1.9 Mb (Fig. 3;

Supplemental Fig. S6). Consistent with these data, HCC827/R1 cells

did not display MET amplification by FISH (Ohashi et al. 2012). We

specifically examined the amplified regions in both HCC827/R1

and R2 cells and found that the amplicons in both covered all

MET coding regions. In HCC827/R1, the amplified region was

predicted to have a low copy number, while in HCC827/R2, the

amplified region was large and with a high copy number (Fig. 3;

Supplemental Fig. S6).

To validate these CNV changes further and to examine

whether there were other structural variants that may affect MET,

we conducted RNA-seq of these three cell lines and systematically

searched for gene fusion events involving MET using FusionMap

(Ge et al. 2011). We did not find any evidence for structural var-

iations involving MET. We also examined exon-level and tran-

script-level expression intensities as measured by the fragments

per kilobase of transcript per million fragments mapped (FPKM)

algorithm. We found that all exons of MET were expressed in all

three cell lines, with the highest expression in HCC827/R2 cells.

Previous studies have shown that some lung adenocarcinomas

harbor mutations in MET that result in skipping of exon 14

(Onozato et al. 2009). Analysis of our RNA-seq data indicated no

evidence for exon skipping. Collectively, these data show that

MET is amplified and expressed at different levels in HCC827/R1

and HCC827/R2 cells, with the highest amplification/expression in

HCC827/R2 cells.

Spectrum of genetic alterations associated with an isogenic pair
of drug-sensitive and drug-resistant cells: HCC4006 versus
HCC4006/ER cells (EMT)

We next used WES to identify mutations associated with HCC4006

parental and polyclonal resistant cells, the latter of which de-

veloped features consistent with EMT (i.e., loss of E-cadherin, in-

creased expression of vimentin, and spindle-like morphology)

(Ohashi et al. 2012). Both cell lines harbored the same known

Table 3. Summary of validation studies on putative SNVs and indels

PC-9/
S1

PC-9/
ER

PC-9/
S2

PC-9/
BRc1

HCC827
HCC827/

R1
HCC827/

R2 HCC4006
HCC4006/

ER

Summary

vs. R1 vs. R2 All P R

SNVs
Number predicted 7 22 21 68 5 1 13 19 16 13 185 50 135
Number selected

for validation
4 15 3 11 4 0 12 15 10 9 83 21 62

Number validated 4 15 3 11 4 8 15 2 9 71 13 58
Validation rate (%) 100 100 100 100 100 67 100 20 100 85.54 61.90 93.55

Indels
Number predicted 4 11 0 3 0 0 2 1 0 2 23 4 19
Number selected

for validation
2 7 1 0 2 12 2 10

Number validated 1 6 0 2 9 1 8
Validation rate (%) 50 86 0 100 75 50 80

(P) Parental; (R) resistant.
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EGFR mutation (i.e., 9-bp nonframeshift deletion [c.2239_2247del,

p.747_749del, at chr7: 55242469–55242477] coupled with c.G2248C,

p.A750P, chr7: 55242478). Neither harbored the T790M mutation

as expected, and HCC4006/ER cells are resistant to the T790M-

specific TKI, WZ4002 (Supplemental Fig. S8). We found 20 exonic

SNVs (13 missense and seven synonymous SNVs) and two frame-

shift deletions unique to HCC4006/ER cells (Table 2), most of which

were validated (Table 3; Supplemental Table S9). In contrast, 20

SNVs (14 missense, two stop-gain, and four synonymous SNVs)

were predicted to be unique to parental cells; two of 10 coding SNVs

were confirmed by direct sequencing (Table 4). Similar to our ob-

servations in the other resistant cell lines, more mutations were

‘‘selected for’’ during drug treatment, while fewer mutations were

‘‘selected against.’’

Our CNV analysis revealed that compared with parental cells,

HCC4006/ER cells displayed a large number of duplications/

deletions across the whole genome (Supplemental Fig. S9). Sur-

prisingly, the number of CNV gains and losses were at least 10-fold

greater than that seen in the other cell line comparisons (Table 5).

Although the numbers of regional gains/losses might be signifi-

cantly affected by the size of CNVs and the segmentation

methods adopted by different software tools, the observed trend

of many more aberrant CNVs in HCC4006/ER was clearly sup-

ported by the actual depth of coverage at CNV regions, regardless

Figure 2. Sanger sequencing chromatograms of mutations ‘‘lost’’ in drug-resistant cell lines compared with matched drug-sensitive cell lines. For each
panel, the mutation marked by a red asterisk is shown in the sensitive line (top) and resistant line (bottom). (#) The mutation occurs in multiple transcripts
with different nucleotide positions and/or amino acid positions. Detailed information is available in Table 4.
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of software tools (data not shown). The most significantly altered

region involved a deletion on chromosome 11, spanning 7.7 Mb in

11p13–11p12 and encompassing the cancer genes WT1 and LMO2.

Sample relatedness

To quantitatively assess genetic relationships between parental/

resistant cell line pairs, we adapted the genetic concept of mea-

suring relatedness between individuals based on their shared genetic

information. We hypothesized that even though each cell line dis-

played unique mutations, truly matched parental and resistant cell

line samples should share more common SNVs than with unmatched

lines. To test this, we computed pairwise identity-by-state (IBS) (Goh

et al. 2011) based on the called SNVs for all pairs of cell lines formed by

any two of the nine cell lines, regardless of whether they were

matched or unmatched. As expected, the four PC-9-related cell

lines, the three HCC827-related cell lines, and the two HCC4006-

related cell lines each grouped together (Fig. 4), while all the other

pairs did not. These data support the notion that even though each

line acquired mutations during drug selection, cell lines generated

from the same parental cell line remained more closely related to

each other than to the other lines. Moreover, the data internally

confirm that the samples were not contaminated with each other

throughout the process of drug selection and sequencing.

Mutation patterns

We compared mutation patterns in each of the cell lines (Fig. 5).

In both PC-9/ER and PC-9/BRc1 resistant cells, the most prevalent

mutations were C:G ! T:A transitions, followed by C:G ! A:T

transversions. C:G ! T:A transitions are predominantly seen in

lung cancers from never/light smokers, while C:G ! A:T trans-

versions are more predominant in smokers (Govindan et al. 2012).

Similar data were obtained for HCC827/R1, HCC827/R2, and

HCC4006/ER cells, although the numbers of mutations were low.

The transition over transversion ratio (Ti/Tv) was 2.01 for both

PC-9/S1 and PC-9/ER cells (WGS) and varied slightly for each pair

of WES samples (HCC827: 2.42, HCC827/R1: 2.37, HCC827/R2:

2.46, HCC4006: 2.51, and HCC4006/ER: 2.40). Since there was not

much difference in the Ti/Tv ratios among the drug-sensitive and

drug-resistant lines, we could not discern whether TKI treatment

selected for certain types of mutations over others.

We then investigated these SNVs in greater detail to identify

any genome-wide patterns of their location. For the exome mu-

tations, we surveyed the following genomic features: GC content

(Karolchik et al. 2003), DNA replication timing (Hansen et al.

2010), presence of lamina-associated domains (Guelen et al. 2008),

chromosome banding (Furey and Haussler 2003), and recombi-

nation rate (Kong et al. 2002). We found that there were no mu-

tations in repeat elements ( Jurka 2000) and CpG islands (Irizarry

et al. 2009). The distribution of GC content at a resolution of

200 bp around each SNV did not display a different pattern

compared with the genome-wide background, with mean GC

content of 0.4. For chromosome banding, recombination rate,

DNA replication timing, and lamina-associated domains, we did

not detect any significant enrichment. For instance, almost half

of the SNVs were located in ‘‘gneg’’ regions, while the other half

Table 4. List of validated SNVs and indels in parental cell lines

Gene Chromosome Position (bp) RefSeq Nucleotide change Amino acid change Tumor variant frequency

PC-9/S1 vs. PC-9/ER, SNVs
ADCY10 1 167793927 NM_018417 c.A3917T p.K1306M 20.37%

NM_001167749 c.A3458T p.K1153M
SLC39A10 2 196545280 NM_001127257 c.C514T p.H172Y 36.07%

NM_020342 c.C514T p.H172Y
VWDE 7 12420170 NM_001135924 c.C731T p.T244I 34.88%
UBE3B 12 109921713 NM_130466 c.A209G p.K70R 23.91%

NM_183415 c.A209G p.K70R
C1GALT1a 7 7278411 NM_020156 c.T746G p.I249S 18.03%
ANK3a 10 61844931 NM_001149 c.C1231G p.Q411E 19.61%

PC-9/S1 vs. PC-9/ER, indels
CUBN 10 16960732-16960741 NM_001081 c.6880_6889del p.2294_2297del 27.50%

PC-9/S2 vs. PC-9/BRc1, SNVs
SPEN 1 16258538 NM_015001 c.G5803C p.E1935Q, 29.63%
GRIK2 6 102516283 NM_021956 c.T2624G p.L875X, 25.55%
HIRIP3 16 30004831 NM_003609 c.G1456C p.E486Q, 25.97%

HCC827, SNVs
SPZ1 5 79616573 NM_032567 c.C539A p.A180D 27.59%
TRIM36 5 114506855 NM_001017397 c.C128T p.T43I 31.15%
HARS2 5 140075201 NM_012208 c.A508G p.R170G 23.32%
PPARGC1B 5 149221858 NM_001172698 c.G2617T p.D873Y 27.47%

NM_001172699 c.G2542T p.D848Y
NM_133263 c.G2734T p.D912Y

HCC4006, SNVs
TESK2 1 45887454 NM_007170 c.C287A p.A96E, 23.38%
CPA5 7 130008410 NM_001127442 c.T1198G p.W400G 28.70%

NM_080385 c.T1283G p.M428R
NM_001127441 c.T1283G p.M428R

Genes with multiple transcripts were displayed in more than one row. Position is based on human reference genome (hg19).
aThese genes were missed by our bioinformatics filtering criteria but were recovered by manual check and confirmed by Sanger sequencing.
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resided in ‘‘gpos’’ regions (i.e., recognized stain values from Giemsa

stains).

We next surveyed whether the SNVs were preferentially lo-

cated in specific regions within genes, for instance, the C or N

terminus. We found an excess of these mutations located in the 59-

UTR regions of genes (Supplemental Table S10). This observation

might be due to the limited number of SNVs available and will be

confirmed in future studies.

We then performed similar analyses for the WGS data of PC-9/

ER and PC-9/S1 cells. We overlaid the SNVs with information on

DNA replication timing and lamina-associated domains (Fig. 6). We

found that there was a higher frequency of SNVs in ‘‘constant late’’

replication timing zones as compared with ‘‘constant early’’ repli-

cation timing zones (x2 P-value < 10�5). These replication timing

zones were identified based on consistency in the patterns across

eight different cell types (Hansen et al. 2010). These findings are

consistent with previous data showing an enrichment of mutation

frequencies in late replication domains across multiple different cell

types (Liu et al. 2013). We further identified an enrichment of SNV

frequencies in genomic regions harboring lamina-associated

domains compared with the remainder of the nucleus (x2

P-value < 10�5).

Finally, in each case, we examined the mutation signatures,

i.e., the six different types of nucleotide substitutions that might

arise (AT|TA, AT|CG, AT|GC, CG|AT, CG|TA, and CG|GC) (Fig. 6).

The mutation signatures stratified by lamina-associated domains

were quite similar in the two samples, with a correlation of 0.98,

whereas the correlation of mutation transversion patterns stratified

Figure 3. Copy number variation (CNV) regions on chromosome 7 for HCC827/R1, HCC827/R2, and HCC4006/ER cells. (X-axis) Genomic position;
(y-axis) log2 ratio of CNVs in resistant versus sensitive cells. Red lines indicate the segments. The size of the MET amplicon is different in HCC827/R1 and
HCC827/R2 cells. See text for details.
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by DNA replication timing was less similar, with a correlation of

only 0.27.

Mutations shared across resistant cells

We compared data from all the resistant lines to determine if there

were mutations shared by cells regardless of the known mechanisms

of acquired resistance (i.e., EGFR T790M, MET, or EMT). While EGFR

T790M mutations were found as expected in three of five resistant

lines (PC-9/ER, PC-9/BRc1, HCC827/R1) (Table 6), surprisingly, only

one gene was observed to be mutated in more than one line. LRP1B

mutations were found in two cell lines, with three mutations in

PC-9/BRc1 and one in HCC827/R1 cells.

Among CNV changes across drug-

resistant cell lines, chromosome 7 harbored

the most frequent co-occurring regions.

Amplified regions on 7q around MET in

HCC827/R1 and HCC827/R2 overlapped

with each other as discussed above (Fig. 3).

Changes in regions on 7p, especially in-

volving EGFR, were also observed; e.g.,

amplification in PC-9/ER (Supplemental

Table S2) and amplification/deletion in

HCC827/R1 (Supplemental Table S6). Ad-

jacent regions on 5p, which have been

frequently reported in lung cancer sam-

ples (Bean et al. 2007; Weir et al. 2007),

were detected both in PC-9/ER (Supple-

mental Table S2) and HCC827/R2 cells

(Supplemental Table S8).

Driver gene specification

Finally, to determine whether there were

other potential driver genes, we system-

atically searched for non-silent SNVs/

indels located in kinase genes, especially

those that might impact the three key

phosphorylation residues; i.e., serine,

threonine, and tyrosine. We assessed

the functional impact of SNVs using

PolyPhen-2 (Adzhubei et al. 2010) and

SIFT (Kumar et al. 2009) algorithms,

which predict damage to protein function

or structure based on amino acid conser-

vation and structural features. A total of six

kinase genes were found to harbor

non-silent SNVs/indels occurring

in six cell lines (Supplemental Ta-

ble S11). Among them, only three

variants were located within ki-

nase domains; C2369T (T790M)

in EGFR in PC-9/ER, PC-9/BRc1,

and HCC827/R1 cells, A1491T

(E497D) in HIPK3 in HCC827/R2

cells, and C287A (A96E) in TESK2

in HCC4006 cells (Supplemen-

tal Fig. S10). Both the C2369T

(T790M) mutation in EGFR and

the A1491T (E497D) mutation

in HIPK3 are predicted to be ‘‘del-

eterious’’ (SIFT score < 0.05 or

PolyPhen-2$0.5), while C287A (A96E) in TESK2 occurred in pa-

rental cells and is predicted to be ‘‘benign.’’ However, only the

C2369T (T790M) mutation in EGFR impacts phosphorylation

sites. Put together, these results suggest that the T790M in EGFR is

the most likely mutation affecting drug resistance in the cells in

which it was detected.

Discussion
In the past decade, multiple new targeted therapies have shown

remarkable anti-tumor activity in genetically defined ‘‘oncogene-

addicted’’ cancers (Demetri et al. 2002; Kwak et al. 2010; Maemondo

et al. 2010; Mitsudomi et al. 2010; Sosman et al. 2012). However,

Figure 4. Pairwise comparison of samples. Identity-by-state (IBS) analysis was applied to compute
the shared alleles for each pair of cell lines, with the mean on the x-axis and the variance on the y-axis.
On the main panel, each point represents a pair of cell lines, regardless of whether they were matched
(denoted by +) or not (denoted by a circle dot). In the internal panel, the truly matched sensitive-
resistant pairs were enlarged to show the details.

Table 5. Summary of copy number variation (CNV) regions identified in whole-exome sequencing
(WES) samples using two software tools

Cell line

Control-FREEC VarScan2-pipeline ExomeCNVb

Gain Loss Gain Loss Gain Loss

PC-9/ER 377 76
PC-9/BRc1 104 (76a) 272 (141) 135 (117) 55 (49)
HCC827/R1 114 (57) 294 (95) 158 (133) 47 (12)
HCC827/R2 17 (15) 128 (24) 77 (50) 67 (31)
HCC4006/ER 1934 (1420) 1630 (1059) 1364 (1078) 298 (225)

Whole-genome sequencing data were analyzed by Control-FREEC, and whole-exome sequencing data were
analyzed by VarScan 2 and ExomeCNV.
aThe numbers in parentheses are the counts of regions called by both software tools.
bThe reported regions are those whose copy number was >2 or <2 and targeted base pairs $1000.
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acquired resistance remains a significant obstacle limiting the sur-

vival of patients with metastatic disease. Many mechanisms have

been identified, but comprehensive genomic profiles of resistant

tumor cells have not yet been established. Here, we used a model

system of ‘‘oncogene addiction’’—isogenic pairs of drug-sensitive

and drug-resistant EGFR mutant lung cancer cells—and next-

generation sequencing to characterize genome-wide changes asso-

ciated with the acquisition of drug resistance in vitro. Importantly,

the study of these EGFR mutant cells has already identified mech-

anisms of resistance found in human patient samples (i.e., sec-

ondary EGFR mutations, MET amplification, and EMT) (Chmielecki

et al. 2011; Ohashi et al. 2012), suggesting that additional genetic

changes identified are likely to have clinical relevance as well. To our

knowledge, this is the first comprehensive analysis using WGS or

WES of isogenic pairs of drug-sensitive and drug-resistant cell lines.

Comparing resistant cells with their matched parental coun-

terparts, we identified 18–91 coding SNVs/indels that were ac-

quired and 1–27 that were lost during drug treatment. While the

secondary EGFR T790M mutation was found appropriately in the

two resistant lines known to harbor this

mutation, very few exonic SNVs/indels

were shared across resistant lines, and

many of the additional mutations iden-

tified did not have obvious biological

significance. Analysis of mutation spec-

tra across parental cells sequenced at

different times and the resistant cells

treated with either erlotinib or afatinib

suggest that the SNVs/indels that were

acquired or lost were due to drug selec-

tion, not just random mutation during

in vitro culturing. These data illustrate

five important principles. First, WGS/

WES can be used to detect resistance

mechanisms in isogenic pairs of lines.

Second, the number of exonic SNVs/

indels that differ among isogenic pairs of

lines is relatively low (magnitude of only

102). Third, additional biological studies

are needed to determine if many muta-

tions are just ‘‘passengers’’ or, indeed,

contribute to gain of fitness in the ac-

quisition of acquired resistance. Fourth,

analysis of the Ti/Tv ratios in treated cells

suggested that TKI treatment does not

significantly alter the ratio of transi-

tion/transversion mutations induced in

cells. Finally, by extrapolating the find-

ings from cell lines to human tumors,

the acquisition of resistance may be

unique in each individual patient and

even within individual tumors within

patients.

When investigating genome-wide

patterns of these SNVs, we identified

some interesting trends. For instance, we

found that the SNVs were enriched in

59 UTRs within protein-coding genes as

compared with 39 UTRs based on exome

sequencing data. When investigating

WGS data, we found that there was a sig-

nificant difference in SNV frequency as

well as the mutation signatures in genomic material with late

replication timing as well as those containing nuclear lamina-as-

sociated domains. These data suggest that certain areas of the ge-

nome might be more prone to accumulation of SNVs.

Surprisingly, we observed more CNV changes than SNV/indel

changes across all resistant lines, and the one line that had an EMT

phenotype displayed significantly higher levels of CNV changes

than the other lines with acquired resistance. These observations

suggest that CNV changes may play a larger role than previously

appreciated in the acquisition of drug resistance and again high-

light that resistance may be heterogeneous in the context of dif-

ferent tumor cell backgrounds.

This study has some limitations. For example, WGS was per-

formed on one isogenic pair of lines, while WES was used for the

remaining pairs. WGS enables detection of all types of possible

mutations, including SNVs, indels, CNVs, and structural variants

(SVs), while WES has limited ability to identify SVs. However, WES

generally delivers higher coverage than WGS (>1003 vs. ;403;

Illumina HiSeq 2000 platform), which allows for greater power in

Figure 6. Patterns of SNV frequencies (A,B) and signatures (C–F ) across different stratifications of
genomic material.

Figure 5. Patterns of mutations that uniquely occurred in each resistant cell line.
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discovering SNVs/indels that have low allele frequency in a cell

population. Here, to enable comparison of WGS and WES data, we

focused on detecting SNVs/indels with >20% allele frequency.

Furthermore, for most of the cell lines, we did not perform whole

transcriptome sequencing, which could enable the detection of

changes at the RNA level, such as alternative splicing, gene-fusion

events, etc. (Liu et al. 2012). In future studies, we plan to explore

the significance of mutations that occur at both DNA (e.g., lower

allele frequency) and RNA levels (e.g., transcriptional level).

A second limitation involves the use of WES data to call CNVs.

While CNV detection using WGS data has been successfully ap-

plied in cancer (Campbell et al. 2008; Chiang et al. 2009; Dahlman

et al. 2012), WES data have only recently been proven to be prac-

tically workable. Since WES data are vulnerable to various biases

such as GC content, target capture reactions, and non-uniform data

distribution, caution should still be taken when detecting CNV

changes from WES data. Because the false discovery rate in CNV

calls can be high, especially in whole-exome sequencing data, we

applied two computational tools for CNV detection and focused on

the consistent regions called by both tools to improve data quality.

Note that amplification of the entire MET gene in HCC827/R2 and

in HCC827/R1 was detected by both tools, providing evidence of

the quality of the CNV changes we detected.

A third limitation involves the various cell lines examined. All

of the parental lines were derived from polyclonal populations,

and only the PC-9/BRc1 resistant line was derived from a single-cell

clone. To determine if the identified SNVs/indels coexist in all or

only some of the resistant cells, we would need to perform single-

cell sequencing from multiple clonally derived cell populations. In

addition, the PC-9/S1 and PC-9/S2 control cells were just two splits

from starting polyclonal population of cells grown separately for

;1.5 mo, making them a less compelling control than if we had

examined cells cultured for longer periods of time in the absence of

drug selection. These issues can be addressed in future studies.

In summary, these results demonstrate a framework for studying

the evolution of drug-related genetic variants over time and provide

the first genome-wide spectrum of mutations associated with the

development of cellular drug resistance in an oncogene-addicted

cancer. In future studies, we plan to use this framework to examine the

effect of different types and doses of targeted therapies on the evo-

lution of drug resistance and to extend these analyses to mechanisms

of acquired resistance to cytotoxic chemotherapies and radiation.

Methods

Cell culture
EGFR-mutant TKI-sensitive parental cell lines PC-9, HCC827, and
HCC4006 were cultured in erlotinib or afatinib following well-

established TKI dose-escalation protocols
to develop PC-9/ER, PC-9/BRc1, HCC827/
R1, HCC827/R2, and HCC4006/ER cells
(Chmielecki et al. 2011; Ohashi et al.
2012). Details of cell culture conditions
and treatments were described in Ohashi
et al. (2012).

Next-generation sequencing

DNAs were extracted from each cell line
using a DNeasy kit (Qiagen). PC-9/S1 and
PC-9/ER DNA samples were submitted for
whole-genome sequencing on an Illumina

Genome Analyzer IIx platform. Whole-exome sequencing of PC-9/
S2 and PC-9/BRc1 samples was conducted on an Illumina HiSeq
2000 platform using the NimbleGen SeqCap EZ Exome Library kit
v2. HCC827, HCC827/R1, HCC827/R2, HCC4006, and HCC4006/
ER DNA samples were submitted for whole-exome sequencing
on an Illumina HiSeq 2000 platform using the Agilent SureSelect
38-Mb Kit.

Read mapping and alignment

Quality-control analysis of sequence reads was performed
using FastQC software (FastQC; http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Reads that failed to pass quality
control were removed from further analysis. We mapped the reads
of each sample to the human reference genome (hg19) using BWA
(version 0.5.9-r16) (Li and Durbin 2009). Local realignment was
performed around small indels using the Genome Analysis Toolkit
(GATK) (DePristo et al. 2011). The base quality scores initially re-
ported by Illumina platform were recalibrated based on covariates of
the read group, the reported base quality score, the machine cycle,
and the combination of the base and its ahead base. After post-
alignment refinement and removal of duplicate reads, we called
somatic variants using VarScan 2 (Koboldt et al. 2012). The pipeline
is shown in Supplemental Figure S2.

Detection of unique variants

To search for cell-line-specific variants, we performed the following
comparisons: (1) PC-9/S1 unique variants compared with PC-9/ER,
(2) PC-9/ER unique variants compared with PC-9/S1, (3) PC-9/S2
unique variants compared with PC-9/BRc1, (4) PC-9/BRc1 unique
variants compared with PC-9/S2, (5) PC-9/S1 unique variants
compared with PC-9/S2, (6) PC-9/S2 unique variants compared
with PC-9/S1, (7) HCC827 unique variants compared with HCC827/
R1, (8) HCC827 unique variants compared with HCC827/R2, (9)
HCC827/R1 unique variants compared with HCC827, (10) HCC827/
R2 unique variants compared with HCC827, (11) HCC4006 unique
variants compared with HCC4006/ER, and (12) HCC4006/ER unique
variants compared with HCC4006. In each case, the VarScan 2
‘‘somatic’’ model was executed designating the targeted cell line
as ‘‘tumor’’ and the cell line to be compared as ‘‘normal.’’

To select high-confidence SNVs, we started with the somatic
SNVs classified as ‘‘high confidence’’ by VarScan 2 and performed
the following filtering: (1) at least 15 supporting reads in the tumor
sample at the position; (2) at least five reads supporting the mu-
tation allele; (3) supporting reads for the mutation allele in both
the forward and reverse strands; (4) somatic P-values < 0.05; (5) the
average base quality for variant-supporting reads was >20; and (6) if
there were three SNVs within a 10-bp window, all of them were
removed. We further removed SNVs that occurred in dbSNP build
131 or the 1000 Genomes Project data set and denoted what

Table 6. List of genetic alterations associated with drug resistance for each cell line

Cell line
Known

mechanisms
Nucleotide

change
Amino acid

change
Validated by
experiments

Detected
by NGS

PC-9/ER EGFR c.C2369T p.T790M Direct sequencing Yes
PC-9/BRc1 EGFR c.C2369T p.T790M Direct sequencing Yes
HCC827/R1 EGFR c.C2369T p.T790M Direct sequencing Noa

HCC827/R2 MET Amplification N/A FISH Yes
HCC4006/ER EMT N/A N/A Immunoblotting N/A

(FISH) Fluorescent in situ hybridization.
aThe proportion of reads supporting the mutant allele was 7%, which failed the filter criterion of 20% in
the VarScan 2 pipeline.
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remained as novel ‘‘somatic’’ SNVs (The 1000 Genomes Project
Consortium 2010). The functional impact of non-silent SNVs was
assessed using the PolyPhen-2 (Adzhubei et al. 2010) and SIFT
(Kumar et al. 2009) algorithms, which predict the effects on pro-
tein functions based on the degree of amino acid conservation and
structural information. For high-confidence indels, we imple-
mented similar filtering criteria as for SNVs.

Copy number variations (CNVs)

WGS data and WES data could behave differently in that WES data
are more vulnerable to system biases such as the exome capture
reaction. We therefore applied different analysis pipelines to detect
CNVs in these two data types. For WGS samples, we detected CNVs
using the software tool Control-FREEC (Boeva et al. 2011, 2012)
with all default parameters. For CNVs in WES data, due to the non-
uniform nature of the exome capture reaction, we applied two
software tools and focused on the consensus calls by both tools in
order to obtain high-confidence results. We first executed the
‘‘copynumber’’ function in VarScan 2 in the four resistant cell lines
versus their respective parental cell lines, i.e., (1) PC-9/BRc1 versus
PC-9/S2, (2) HCC827/R1 versus HCC827, (3) HCC827/R2 versus
HCC827, and (4) HCC4006/ER versus HCC4006. The uniquely
mapped reads (e.g., through SAMtools view -q 1) were used for this
analysis. To adjust the potential biases introduced by different
sample depth, we included a data ratio computed based on the
uniquely mapped reads and the read length in the normal and
tumor samples following the instruction of VarScan 2. The can-
didate CNV regions were filtered using the ‘‘copyCaller’’ option of
VarScan 2 and then smoothed and segmented by the DNAcopy
package (Seshan VE, Olshen A. Cited August 2012. DNAcopy: DNA
copy number data analysis. R package version 1.24.20) from the
Bioconductor project (Reimers and Carey 2006). Secondly, we ap-
plied the R package ExomeCNV (Sathirapongsasuti et al. 2011) to
detect CNVs from the WES samples. ExomeCNV takes the targeted
intervals as units and determines a log ratio for each interval based
on the mapped reads in a pair of matched samples.

Direct dideoxynucleotide-based sequencing

Parental or TKI-resistant specific SNPs and short indels were vali-
dated by direct sequencing. Cell line DNAs were used as template
for PCR amplification. M13-tagged gene-specific primers were
designed using Primer3 software (Rozen and Skaletsky 2000). Se-
quence chromatograms were analyzed using Mutation Surveyor
software (SoftGenetics, LLC) and manual inspection.

Sample relatedness

To assess the correlations among samples, we adopted the cal-
culation of pairwise identity-by-state (IBS) (Goh et al. 2011)
based on the called SNVs. For the nine cell lines sequenced in
this study, we iteratively compared any two of them, regardless
of whether they were matched or unmatched. This resulted in
9 3 8/2 = 36 pairs of cell lines. For each pair, we first obtained the
overlapping positions where a SNV is reported in both cell lines
and calculated the number of shared alleles at each position. The
average value and standard deviation (SD) of the number of
shared alleles for all positions were calculated for each pair of cell
lines, which were then used to assess the correlations among
samples. A higher average number and a lower scale of SD of the
shared alleles indicate that the two cell lines share more identical
SNVs and, thus, are more likely related to each other than to
others.

RNA-seq data analysis

Total RNAs were extracted from HCC827, HCC827/R1, and
HCC827/R2 cell lines using a Qiagen RNeasy mini kit. The Illumina
Tru-Seq RNA sample prep kit was used for library preparation. Then,
RNA sequencing was performed in the Vanderbilt Technologies for
Advanced Genomics (VANTAGE) core. Paired-end reads with 50 bp
in length were generated by an Illumina HiSeq 2500 and were ini-
tially mapped to the human reference genome and human tran-
scriptome using the software TopHat v2.0.8 (Trapnell et al. 2009).
We used FusionMap (Ge et al. 2011) to search for potential gene
fusion events that might be involved in MET. Gene expression
levels were measured by the fragments per kilobase of transcript
per million fragments mapped (FPKM) algorithm (Trapnell et al.
2010).

Data access
All predicted variants are available in Supplemental Table S12. The
sequencing data from this study can be accessed at the NCBI Se-
quence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) un-
der accession numbers SRP022942 and SRP022943.
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