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A B S T R A C T

Human cancers are thought to be sustained in their growth by a pathologic counterpart of normal
adult stem cells: cancer stem cells. This concept was first developed in human myeloid leukemias
and is today being extended to solid tumors such as breast and brain cancers. A quantitative
understanding of cancer stem cells requires a mathematical framework to describe the dynamics
of cancer initiation and progression, the response to treatment, and the evolution of resistance. In
this review, I use chronic myeloid leukemia as an example to discuss how mathematical and
computational techniques have been used to gain insights into the biology of cancer stem cells.

J Clin Oncol 26:2854-2861. © 2008 by American Society of Clinical Oncology

INTRODUCTION

The field of stem-cell biology was initiated in 1917
when Artur Pappenheim postulated the concept of
hematopoietic stem cells.1 Their existence was later
demonstrated with experiments showing that leuke-
mia could be transmitted with a single cell2 and
bone-marrow reconstitution experiments after le-
thal irradiation in mice.3 In the years since, many
more tissue-specific stem cells have been isolated.4-6

At approximately the same time that stem cells were
discovered, cells from both solid tumors and leuke-
mias were reported to vary in their ability to form
colonies in vitro and in vivo.7,8 This and other ob-
servations led to the cancer stem-cell hypothesis,
suggesting that the entire tumor cell mass arises
from a small number of cancer stem cells that, like
normal stem cells, have the ability to indefinitely
self-renew while repopulating the distinct cell types
found in the tumor.8,9 Cancer stem cells, too, were
first described in the hematopoietic system, with the
identification of acute myeloid leukemia stem cells
in 199410 and of acute lymphocytic leukemia stem
cells soon thereafter.11 The existence of cancer stem
cells has since been demonstrated for solid tumors
such as breast and brain cancers.12,13

The mathematical exploration of cancer was
initiated in the 1950s with a study of the age-
dependent incidence curves of human cancers. Nor-
dling,14 Armitage and Doll,15 and Fisher16 noticed
that on a doubly logarithmic plane, the incidence
data of most cancers is a straight line whose slope
may be used to estimate the number of mutations
necessary to drive tumorigenesis. Their finding that
the data could be explained by the requirement of
several probabilistic events for cancer evolution be-

came known as the multistep theory of carcinogen-
esis.17 In the early 1970s, Knudson conducted a
statistical analysis of retinoblastoma incidence in
children and proposed the two-hit hypothesis, sug-
gesting that two hits in the RB1 gene are the rate-
limiting steps of retinoblastoma18 and leading to the
concept of a tumor suppressor gene.19 These studies
sparked the interest in a mathematical approach to
cancer, and much subsequent work was produ-
ced.20-25 In recent years, cancer stem cells have be-
come the subject of theoretical investigations as well,
and studies were performed to elucidate the biology
and dynamics of colorectal cancer stem cells,26-30

breast cancer stem cells,31 hematologic malig-
nancies,32-35 and the role of stem cells in the evolu-
tion of drug resistance.35-38 In this review, I discuss
mathematical models that explore stem-cell dynam-
ics in cancer initiation and progression as well as
treatment response and resistance, and use chronic
myeloid leukemia (CML) as a specific example.

CML represents the first human cancer in
which molecularly targeted therapy leads to a dra-
matic clinical response.39 Imatinib mesylate is a
potent inhibitor of the BCR-ABL fusion onco-
gene that drives the leukemia, and induces re-
mission in all stages of the disease.40 Although
CML represents one of the most well-studied
cancers, several critical questions remain: (1)
CML is associated with the BCR-ABL oncogene,
but the total number of mutations necessary to
initiate the disease is unknown. Is the BCR-ABL
oncogene sufficient to cause chronic-phase
CML? (2) In most patients, imatinib fails to
eliminate residual disease, which has been
shown to be part of the stem-cell compart-
ment.41 How do leukemic stem cells respond to
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imatinib therapy? (3) A substantial fraction of patients evolves
point mutations in the ABL kinase domain leading to treatment
failure.42 What are the dynamics of resistance? (4) Disease
progression has been reported to correlate with an expansion of
leukemic stem cells43 or progenitors.44 In which cellular com-
partment do mutations that drive progression to blast crisis
arise? In the following sections, I will discuss how these topics
have successfully been addressed with mathematical and com-
putational techniques.

HOW MANY MUTATIONS ARE NEEDED TO CAUSE
CHRONIC-PHASE CML?

The BCR-ABL fusion oncogene is the hallmark of CML, but it is
unknown whether any other mutations are needed to cause the
chronic phase of the disease. So far, experimental evidence has not
been able to show conclusively how many mutations are necessary to
initiate CML. Approximately 30% of healthy individuals express BCR-
ABL at low levels.45 This could mean that they have not yet evolved a
second, disease-causing mutation, or that the Philadelphia chromo-
some has arisen in a differentiated cell not capable of self-renewal. In
the latter case, the continuous production of healthy hematopoietic
cells would eventually replace the BCR-ABL–positive clone. Mouse
models reproduce a CML-like disease when expressing the BCR-ABL
oncogene alone46 or in combination with v-abl.47 Finally, exposure to
ionizing irradiation increases the risk of CML only after a prolonged
latent period,48 suggesting either that further mutations need to accu-
mulate, or that the mutant clone has a slow rate of expansion.

The age-specific incidence data of CML increases with a slope of
2.86 on a doubly logarithmic plane. A slope of almost 3 could indicate
that there are two mutations, in addition to the BCR-ABL oncogene,
that have not yet been discovered. Indeed, the incidence data was used
to calibrate a multistage model of carcinogenesis predicting that the
chronic phase of the disease is caused by three mutations accumulat-
ing in one stem cell.49 However, the model neglects the population
genetics of stem cells (such as the number of susceptible cells and the
fitness effects of mutations), which are indispensable for drawing a
meaningful conclusion.

Let us discuss a population genetics model of CML initia-
tion and its epidemiologic consequences.50 Initially, there is a
population of wild-type hematopoietic stem cells. During each
cell division, a cell carrying the Philadelphia chromosome arises
with a certain probability, and such a cell has a fitness advantage
(larger net growth rate) compared with wild-type cells (Fig 1A).
Assume that the probability to diagnose the disease is linearly
proportional to the number of leukemic stem cells present. This
stochastic process is characterized by three waiting times, or the
time needed for rate-limiting steps: (1) the waiting time until
the production of the first surviving leukemic stem cell, (2) the
time for clonal expansion of its lineage, and (3) the time until
detection of the disease. Under particular circumstances, for
instance when the time for clonal expansion is sufficiently long
and the rate of diagnosis is small, this simple one-mutation
model can give rise to incidence curves with a slope of up to 3.
The age-specific incidence data for CML is obtained from the
SEER registry (www.seer.cancer.gov), which covers approxi-
mately 10% of the US population, and is adjusted to obtain the

probability to be diagnosed with CML per year (Table 1). The
resulting incidence curve is a nearly straight line on a doubly
logarithmic plot with slope 2.86. The one-mutation model is
found to fit to the incidence data for plausible parameter
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Fig 1. Chronic myeloid leukemia (CML) incidence. (A) The model. Initially, all
stem cells are wild type. At each time step, a cell is chosen for reproduction
proportional to fitness, and its offspring replaces another randomly chosen cell.
Leukemic stem cells arise at a certain rate per cell division and have a fitness
advantage. The rate of CML diagnosis is proportional to the number of leukemic
stem cells. This model allows us to study the evolutionary dynamics of CML
initiation. (B) The graph shows the numerical simulation of the probability to be
diagnosed with CML (equation 1 in Michor, Iwasa, and Nowak50; line) and the
adjusted cumulative CML incidence data from Table 1 (circles). Parameter values
are mutation rate 3 � 10–8 per cell division, population size 105, relative fitness
of mutated cells 1.01 corresponding to a 1% fitness advantage, average cell
cycle time 60 days, and probability of diagnosis 10–3. Figure adapted from
Michor, Iwasa, and Nowak.50
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choices (Fig 1B). Therefore, the hypothesis that the Philadelphia
chromosome alone is sufficient to initiate chronic-phase CML is
consistent with the observed incidence curve.52 This mathemat-
ical model does not serve as a proof that no further mutations
are necessary, but can be used as supportive evidence that the
BCR-ABL oncogene may be enough to cause the chronic phase.
A firm establishment that BCR-ABL is sufficient requires further
experimental investigations.

HOW DO LEUKEMIC STEM CELLS RESPOND TO
IMATINIB THERAPY?

The hypothesis that leukemic stem cells cannot be depleted by ima-
tinib therapy is supported by several experimental in vitro studies,53-55

but an in vivo demonstration is complicated by the fact that a direct
measurement of stem-cell abundance requires frequent bone marrow
aspirates. However, BCR-ABL transcript levels in peripheral blood can
readily be determined by a quantitative real-time polymerase chain
reaction assay. BCR-ABL values are expressed as a percentage of BCR
transcript levels, and give an estimate of the fraction of terminally
differentiated leukemic cells, because the blood predominantly con-
tains terminally differentiated cells. These data have been used in a
series of theoretical investigations to infer the behavior of leukemic
stem cells during imatinib therapy.32,33,35

Successful therapy leads to a biphasic exponential decline of
leukemic cells in peripheral blood (Fig 2A).32 The first slope, deter-
mined by calculating the exponential decline between 0 and 3

months after initiation of imatinib therapy, has a mean of 0.05
(� 0.02); this corresponds to a 5% depletion of leukemic cells
per day. The second slope, determined by calculating the expo-
nential decline between 3 and 12 months, has a mean of 0.008
(� 0.004) which corresponds to a 0.8% depletion per day. Some
patients discontinue imatinib as a result of complications or
adverse effects (Fig 2B). In those patients, the number of leuke-
mic cells rises within weeks to levels at or beyond pretreatment
baseline despite continuous treatment for up to 3 years.

A mathematical model describing four layers of the differentia-
tion hierarchy of leukemic cells (leukemic stem cells, progenitors,
differentiated, and terminally differentiated cells) is fit to the data and
suggests that the first slope represents the depletion of differentiated
leukemic cells.32 These cells have an average life span of 20 days during
therapy and, on reaching a steady-state with leukemic progenitors,
decline at the latter cells’ turnover rate. The second slope represents
the depletion of leukemic progenitors, which have an average life span
of 125 days during therapy. Imatinib therapy leads to an at least
5,000-fold decrease in the production of terminally differentiated leu-
kemic cells from leukemic stem cells and therefore, discontinuation of
imatinib leads to a sudden 5,000-fold increase in their production. The
levels the cell count reaches after discontinuation of the drug informs
about the dynamics of the cell population that is driving the disease:
the leukemic stem cells. Resurgence to levels beyond pretreatment
baseline signifies that leukemic stem cells are not depleted by ima-
tinib therapy.

Quiescence of leukemic stem cells has been investigated as one
explanation for the lack of their depletion by imatinib.33,35,54 Leuke-
mic stem cells are thought to switch between a dormant, imatinib-
insensitive state and a proliferating, imatinib-susceptible state. The
propensity of cells to be in either state depends on a cell-specific
affinity, which they lose while proliferating and regain while dor-
mant.33 In the context of these models, the first slope is interpreted as
a depletion of cycling leukemic stem cells by imatinib, whereas the
second slope represents the depletion of dormant cells as they re-enter
the cell cycle.33,35 The models predict that imatinib can deplete (cy-
cling) leukemic stem cells and that prolonged therapy may cure the
disease, particularly if combined with a proliferation-stimulating
agent that pushes dormant leukemic stem cells into the cell cycle and
makes them susceptible to imatinib therapy.

To distinguish between the predictions of the models, more
clinical and experimental work is warranted. The alternative
interpretations of the biphasic decline could be tested by mea-
suring average life spans of leukemic differentiated cells, pro-
genitors, and cycling stem cells, as well as the relative abundance
of quiescent cells. The long-term response to imatinib can
inform about the behavior of leukemic stem cells during
imatinib therapy: If the leukemic burden settles around a
constant value or slowly increases, then leukemic stem cells
survive or expand during therapy, whereas they are depleted if
the cell count continues to decrease.56 A clinical trial exploring
the effects of combination therapy of imatinib and a
proliferation-stimulating agent can help shed lights onto these
issues. The number of circulating leukemic stem cells could also
be measured and may be interpreted as a proxy for the abun-
dance of leukemic stem cells in the marrow. Additionally, other
possibilities of imatinib insensitivity, such as drug export by

Table 1. Chronic Myeloid Leukemia Incidence Data

Age Class
(years)

Cases in
SEER

(1973-2002)

Cases
per
Year

US Standard
Population

Adjusted
Cumulative
Probability

1-4 20 17 15,191,619 .0000055
5-9 22 18 19,919,840 .0000102
10-14 27 23 20,056,779 .0000159
15-19 50 42 19,819,518 .0000264
20-24 92 77 18,257,225 .0000475
25-29 147 123 17,722,067 .0000823
30-34 189 158 19,511,370 .0001228
35-39 225 188 22,179,956 .0001653
40-44 241 202 22,479,229 .0002103
45-49 281 235 19,805,793 .0002698
50-54 351 294 17,224,359 .0003552
55-59 436 365 13,307,234 .0004925
60-64 508 425 10,654,272 .0006922
65-69 569 476 9,409,940 .0009455
70-74 611 511 8,725,574 .0012388
75-79 635 532 7,414,559 .0015973
80-84 465 389 4,900,234 .0019944
85� 379 317 4,259,173 .0023666

NOTE. The table shows the number of chronic myeloid leukemia (CML)
cases in the Surveillance, Epidemiology, and End Results (SEER) registry
(1973-2002) for age classes of 5 years (columns 1 and 2), cases per year
(column 3; there were 4,400 CML cases in 2000,51 so each SEER entry is
multiplied with 4,400/5,256), the US Census data from 2000 (column 4), and
the adjusted cumulative probability to be diagnosed with CML before a certain
age (column 5; the cases per year are divided by the census data to get the
probabilities p(i) to be diagnosed with CML per year of age, which are used to
calculate the probabilities q(k) to be diagnosed with CML anytime before age
k: q(k) � 1 � �i�1

k �1 � p(i)�). Table adapted from Michor, Iwasa, and Nowak.50
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multidrug-resistance efflux pumps53 and BCR-ABL indepen-
dence of leukemic stem cells,57 should be investigated.

WHAT ARE THE DYNAMICS OF IMATINIB RESISTANCE?

A substantial fraction of patients develops acquired resistance to
imatinib. Mutations in the ABL kinase domain are the main
mechanism for resistance and account for 70% to 80% of cases

with treatment failure.42,43,58 Sometimes resistance can already
be detected at the time of diagnosis of CML.59 Resistant leuke-
mic cells emerge after an initially successful response to ima-
tinib therapy and lead to a relapse of the disease (Fig 3). The
average slope was determined by calculating the exponential
increase after the first appearance of resistance mutations in
thirty patients32; a mean value of 0.02 (� 0.01) per day was
obtained. Of those patients who start imatinib in the early
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Fig 2. Chronic myeloid leukemia response to imatinib therapy. (A) Imatinib leads to a biphasic decline of leukemic cells. The first five panels show the BCR-ABL
transcript levels in the blood of five patients. The sixth panel shows the median with quartiles taken over all patients who do not evolve resistance mutations. Imatinib
therapy starts on day 0. (B) Discontinuation of imatinib therapy in three patients after 1 to 3 years lead to a rapid increase of leukemic cells to levels at or beyond
pretreatment baseline. Therefore, leukemic stem cells are not depleted by imatinib during this time period. Figure adapted from Michor et al.32 RQ-PCR, real-time
quantitative polymerase chain reaction.
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chronic, late chronic and accelerated phase, respectively, 12%,
32%, and 62% develop detectable resistance mutations within 2
years of treatment (Table 2).59

A stochastic process model can be used to analyze the evolution
of resistance and predict the fraction of patients harboring mutated
cells at diagnosis.36 The model considers an exponentially growing
population of leukemic stem cells that may accumulate mutations
conferring resistance to imatinib therapy, and is used to calculate the
probability of resistance once the patient is diagnosed (Table 3). The
higher incidence of resistance in patients in later stages of the disease
can be explained by an increased leukemic stem-cell burden (or a
larger number of cell divisions that have occurred until that time).

Another mathematical model investigates how quiescence of leuke-
mic stem cells affects the evolutionary dynamics of drug resistance.35 If
treatment consists of a single drug, then quiescence is found to have no
effect on the probability that mutant cells exist before CML diagnosis;
if treatment involves a combination of two or more drugs with differ-
ent targets, however, then cellular quiescence does increase the chance
of resistance. Although quiescence prolongs the time it takes to erad-
icate the tumor, the treatment phase is unimportant for the evolution
of resistance because most mutations emerge before the start of ther-
apy. Therefore, a reduction of the quiescent stem-cell population by
therapy (eg, by combining imatinib with a proliferation-stimulating
agent) will not reduce the risk of resistance.
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Fig 3. Acquired resistance to imatinib
therapy. Approximately 40 different point
mutations have been identified, each of
which is sufficient to confer resistance to
imatinib. The panels show the dynamics
of resistance in four patients, with the
labels denoting the individual mutations
detected at various time points. Resis-
tance mutations lead to a relapse of leu-
kemic cells. Figure adapted from Michor
et al.32 RQ-PCR, real-time quantitative
polymerase chain reaction.

Table 2. Observed Incidence of Imatinib Resistance

Year

%

Early Chronic Phase Late Chronic Phase Accelerated Phase

1 5.9 14 38
2 12 32 62

NOTE. Observed percentage of patients with acquired resistance mutations
during the first and second year of treatment. Early chronic phase refers to
patients who commenced imatinib within 1 year of diagnosis. Adapted from
Michor, Hughes, and Iwasa.32

Table 3. Predicted Fraction of Patients With Resistance Mutations

Mutation
Rate

No. of Leukemic Stem Cells (%)

105 106 107 108

4 � 10�7 5.4 43 100 100
4 � 10�8 0.6 5.4 43 100

NOTE. Predicted percentage of patients that harbor resistance mutations
depending on the abundance of leukemic stem cells and the mutation rate
conferring resistance. Resistant leukemic cells can be below detection limit in
some patients. Adapted from Michor, Hughes, and Iwasa.32
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Further theoretical investigations will inform about the efficacy
of the use of multiple drugs, such as imatinib, dasatinib, and nilotinib,
and predict the chance that resistance evolves during such treatment
strategies. Also, calculations of the probability of resistance and treat-
ment outcome can be customized to individual patients such that their
disease is optimally managed. The development of new compounds
that inhibit cells carrying resistance mutations against currently avail-
able drugs is an experimental priority, and mathematical analyses can
help understand their efficacy and impact on cancer stem cells.

WHERE DO MUTATIONS DRIVING PROGRESSION TO CML
BLAST CRISIS ARISE?

CML progresses through three distinct clinical stages: chronic phase,
accelerated phase, and blast crisis. Progression to blast crisis is sup-
ported by self-renewing blast-crisis stem cells. These cells drive blast
crisis like leukemic stem cells drive the chronic phase, and arise as a
result of genetic and/or epigenetic events such as duplication of the
Philadelphia chromosome, trisomy 8, and inactivation of p16 and
p53.60 The cell of origin of blast-crisis stem cells is a subject of contro-
versy. Many experimental findings support that blasts arise by muta-
tion of leukemic stem cells,43 but new evidence suggests that blasts
may evolve from leukemic progenitors instead: leukemic progenitors
isolated from blast-crisis patients are found to have self-renewal ca-
pacities and increased �-catenin and BCR-ABL expression, and to

expand during disease progression.44 Knowledge of the cell type and
mutations driving blast crisis would increase the understanding of the
natural history of CML, and may suggest new treatment strategies for
blast-crisis patients.

A mathematical model of CML progression can be used to inves-
tigate the cell of origin and the dynamics of blast crisis.61 Blast-crisis
stem cells could, in principle, arise by (epi)genetic changes accumu-
lating in leukemic stem cells or in leukemic progenitors. The muta-
tions arising in stem cells may be activating oncogenes and
inactivating tumor suppressor genes, whereas the mutations arising in
progenitors can additionally include changes facilitating self-renewal.
In the model, the evolutionary process of mutation is encapsulated in
a parameter describing the rate at which blasts arise and survive. The
observed probability of progression to blast crisis is 1% to 2% per year
for patients receiving imatinib therapy (Table 4) and 10% to 20% per
year for patients receiving previous therapies such as �-interferon plus
cytarabine.62 Hence, imatinib reduces the progression rate 10-fold
compared with previous (ineffective) therapies.

Imatinib seems to be incapable of depleting leukemic stem cells
by considerable amounts (Fig 3). Therefore, the abundance of leuke-
mic stem cells should not differ substantially between imatinib-treated
and -untreated patients, if imatinib is administered for short periods.
If blasts arise by mutation from leukemic stem cells, then the proba-
bilities of progression to blast crisis with and without imatinib should
be the same: treatment would not attenuate blast crisis if it did not
change the abundance of the target cell population. Conversely, if blast
crisis is driven by leukemic progenitors, then the rates of progression
are expected to differ because imatinib does deplete leukemic stem
cells (Fig 4). The latter pattern is seen in CML patients. Hence, CML
blast-crisis mutations are likely to arise in leukemic progenitors.

There are two caveats to this conclusion. First, imatinib may be
able to reduce the increased mutation rates brought about by the
BCR-ABL oncogene. A CML mouse model suggests that BCR-ABL
increases the point mutation rate two- to three-fold, and that this
effect can be reversed by imatinib therapy.63 However, an increase in
the mutation rate of this order of magnitude does not change the
conclusion of the mathematical model. Second, imatinib might re-
duce the expansion of leukemic stem cells without depleting them.
This expansion occurs slowly (with a net growth rate of about 0.5%

Table 4. Annual Rate of Disease Progression During Imatinib Therapy

Year

%

Progression Accelerated Phase/Blast Crisis

1 3.4 1.5
2 7.5 2.8
3 4.8 1.6
4 1.5 0.9

NOTE. Progression and evolution to accelerated phase/blast crisis in patients
treated with imatinib. Progression is defined as loss of complete hematologic
response of major cytogenetic response. Adapted from Michor.61
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Fig 4. Evolution of blast crisis stem cells.
The figure shows the probability of blast
crisis over time if blast crisis stem cells
arise by mutations accumulating in (A)
leukemic stem cells (equations 2 and 4 in
Michor62) or (B) leukemic progenitors
(equations 3 and 4 in Iwasa, Nowak, Mi-
chor60). (A) The curve is the same for
patients receiving imatinib therapy and for
untreated patients, because imatinib can-
not deplete leukemic stem cells. (B) The
right curve shows the probability of blast
crisis when the patient is treated with
imatinib, and the left curve shows the
probability of blast crisis when there is no
treatment. The rate of progression with ima-
tinib therapy is 10-fold lower than the rate of
progression without imatinib therapy because
imatinib depletes leukemic progenitors. Fig-
ure adapted from Michor.62

Mathematical Models of Cancer Stem Cells

www.jco.org © 2008 by American Society of Clinical Oncology 2859

Copyright © 2008 by the American Society of Clinical Oncology. All rights reserved. 
140.163.254.157. 

Information downloaded from jco.ascopubs.org and provided by MEMORIAL SLOAN KETTERING on June 6, 2008 from



per day), and it is unlikely that robust clonal expansion can be main-
tained if the growth rate is decreased considerably. Robust expansion,
though, is necessary to explain the relapse kinetics in patients who
discontinue therapy. Hence, this explanation seems ungeneric, and
blasts are likely to arise from leukemic progenitors. An identification
of the genetic changes driving blast crisis, as well as a firm establish-
ment that those changes arise in progenitors, requires further experi-
mental investigation.

DISCUSSION AND OUTLOOK

In this review, I have presented examples for how mathematical and
computational techniques can contribute to the understanding of
cancer stem cells. I have used CML as an example and have discussed
approaches to answer questions about the number of mutations nec-
essary to cause chronic-phase CML, the treatment response of leuke-
mic stem cells, the evolution of resistance to imatinib therapy, and the
dynamics of progression to blast crisis. Although experimental valida-
tion remains necessary to demonstrate the molecular mechanisms,
quantitative methods can help to distinguish between hypotheses and
further the understanding of cancer stem cells.

The models discussed in this review represent only a small part of
the literature on theory and cancer stem cells. Other fields of investi-
gation include the dynamics of stem cells driving particular cancers
such as colon or breast cancer,26-31 as well as the role of symmetric and
asymmetric stem-cell division in carcinogenesis.64,65 In the latter case,
mathematical models have been used to study the impact of changes in
the probability for symmetric versus asymmetric replication on tumor
dynamics. An increase in the probability of stem-cell self-renewal can
lead to a rapid cancer stem-cell expansion even in the absence of a

selective fitness advantage (as conferred by for instance an activated
oncogene).65 Mutations in several genes, such as PINS, LGL, and
HUGL-1, can lead to this process and may be at the root of tu-
mor development.

The mathematical approaches outlined in this review are not
limited to the study of leukemic stem cells. Although CML appears to
be a relatively simple malignancy driven by a single genetic aberration,
it serves as an example of a disease managed by molecularly targeted
therapy, and insights gained concerning its treatment response and
dynamics of resistance are applicable to other (solid) cancers, too. The
existence of cancer stem cells has been conjectured for most (if not all)
types of tumors, but a demonstration of their presence, as well as an
elucidation of their biologic characteristics, are still lacking for many
cancers. Theoretical techniques similar to the ones outlined in this
review can contribute to that goal; particularly, the question of
whether targeted or general cytotoxic drugs can deplete cancer stem
cells is amenable to mathematical investigation. The evolution of
resistance represents a challenge for most cancer types and treatment
options, and a quantitative understanding of its dynamics helps to
determine how to optimize treatment options for individual patients.
Also, the question of how many mutations are needed to cause a
particular type of cancer and its progression, as well as the target cell
population in which those mutations arise, can be investigated with
computational and mathematical tools. The study of cancer stem cells
is an exciting and important topic in cancer research and will profit
considerably from theoretical input.
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