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A B S T R A C T

Purpose
EGFR-mutant lung cancer was first described as a new clinical entity in 2004. Here, we present an
update on new controversies and conclusions regarding the disease.

Methods
This article reviews the clinical implications of EGFR mutations in lung cancer with a focus on
epidermal growth factor receptor tyrosine kinase inhibitor resistance.

Results
The discovery of EGFR mutations has altered the ways in which we consider and treat
non–small-cell lung cancer (NSCLC). Patients whose metastatic tumors harbor EGFR mutations
are expected to live longer than 2 years, more than double the previous survival rates for
lung cancer.

Conclusion
The information presented in this review can guide practitioners and help them inform their
patients about EGFR mutations and their impact on the treatment of NSCLC. Efforts should now
concentrate on making EGFR-mutant lung cancer a chronic rather than fatal disease.

J Clin Oncol 31:1070-1080. © 2013 by American Society of Clinical Oncology

INTRODUCTION

EGFR-mutant lung cancer was first described as a po-
tential distinct clinical entity in 2004.1-3 Eight years
later, multiple studies have undisputedly validated the
disease as a unique subset of lung cancer, with its own
clinical features, natural history, and clinical course.
EGFR-mutantlungcanceralsoservesasaparadigmfor
an oncogene-addicted solid tumor that can be effec-
tively treated with specific targeted therapy (ie, first-
generation epidermal growth factor receptor
[EGFR] tyrosine kinase inhibitors [TKIs], gefitinib
[Iressa; AstraZeneca, London, United Kingdom]
and erlotinib [Tarceva; Genentech, South San Fran-
cisco, CA]).4-9 Multiple reviews have been published
on the rationale for targeting EGFR in cancer and
the subsequent discovery of EGFR mutations in lung
cancer.10-12 Here, we review new controversies and
conclusions regarding the clinical implications of
EGFR mutations in lung cancer, with a focus on
EGFR TKI resistance.

DRUG-SENSITIVE EGFR MUTATIONS IN
LUNG CANCER

EGFR is a receptor tyrosine kinase that belongs to
the EGFR family, consisting of four members:

EGFR, ERBB2, ERBB3, and ERBB4. Under normal
circumstances, binding of ligands (eg, epidermal
growth factor, transforming growth factor-alpha)
activates the intracellular tyrosine kinase activity of
EGFR via homo- or heterodimerization with EGFR
family members.13 In lung cancer, EGFR mutations
occur in exons encoding the ATP-binding pocket of
the kinase domain (exons 18 to 21; Fig 1). In a cohort
of nearly 1,200 patients with EGFR mutations linked
to clinical outcomes, more than 145 different types
of nucleotide changes have been reported within the
EGFR kinase domain.14

The most clinically relevant and extensively
studied drug-sensitive mutations are deletions in
exon 19 that eliminate a common amino acid motif
(LREA) and point mutations in exon 21 that lead to
a substitution of arginine for leucine at position 858
(L858R). Together, these two classes of mutations
account for approximately 85% of EGFR mutations
in the disease. They are constitutively active and
oncogenic15,16 as a result of a disruption of autoin-
hibitory interactions.17 Biochemical studies indicate
that these mutants preferentially bind to drugs like
gefitinib and erlotinib over ATP.17,18 Other poten-
tial drug-sensitive mutations occur at much lower
frequency: G719X (3%), L861X (2%),14 and exon 19
insertions (1%).19 The former two were associated
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with drug sensitivity in the original reports on EGFR mutations,1,2

whereas the exon 19 insertions were just recently reported as drug
sensitive.19 The rarity of clinical data associated with these less fre-
quent mutants has made it more difficult to determine how drug
sensitive they are in patients, but new data are emerging.20,21

CLINICAL FEATURES ASSOCIATED WITH EGFR MUTATIONS

EGFR mutations can be found in all histologic subtypes of non–small-
cell lung cancer (NSCLC), including adenocarcinoma, large-cell car-

cinoma, and squamous cell carcinoma.14 In North American/
European and East Asian countries, EGFR mutations are found in
10% and 30% of unselected NSCLCs,22,23 respectively. Clinical fea-
tures likely to be associated with EGFR mutations include adenocar-
cinoma histology, history of never smoking cigarettes (ie, fewer than
100 cigarettes in a lifetime),3,22 and East Asian ethnicity.22 Female sex
was originally thought to be correlated with EGFR mutations, but data
suggest that this association was made because more women are likely
to be never-smokers,24 not necessarily because of a true sex bias. Sixty
percent to 80% of tumors from East Asian never-smokers with lung
adenocarcinoma harbor EGFR mutations,25,26 whereas only 30% to
50% of tumors from North American/European counterparts have
such mutations.3,22 The reason for this discrepancy is unclear; as of yet,
no study has determined if US citizens of East Asian descent diagnosed
with lung cancer have the same prevalence of EGFR mutations as East
Asians themselves. Such a finding would suggest a genetic rather than
environmental cause of EGFR alterations.

Most importantly, EGFR mutations (mostly exon 19 deletions
and L858R point mutations) are associated with a clinical benefit from
gefitinib and erlotinib. In early phase III trials, these drugs were tested
in unselected patients with NSCLC and showed less than 10% radio-
graphic response rates (RRs) with short (� 3 months) progression-
free survival (PFS) rates27-29 (Table 1). After the discovery of EGFR
mutations, several prospective single-arm first-line studies enrolling
only patients with EGFR-mutant tumors reported unprecedented RRs
(73% to 91%) and prolonged PFS (7.7 to 13.3 months).33 Thereafter,
five large prospective phase III first-line trials directly compared an
EGFR TKI versus platinum doublet chemotherapy in patients with
NSCLC harboring EGFR mutations. These trials strongly confirmed
the benefit of gefitinib or erlotinib in EGFR-mutant lung cancer,
regardless of ethnic background (Table 1).4,6-9,30-32 By comparison,

Exon 18 Exon 19 Exon 20 Exon 21

Sensitive Mutations

Resistant Mutations

G719X
(3%)

VAIKEL insertion
(1%)

LREA deletion
(45%)

L858R
(40%)

L861X
(2%)

L747S T790MD761Y

Exon 20  insertion (4%)

T854A

Fig 1. Distribution of EGFR mutations in lung cancer. Schematic of the kinase
domain of epidermal growth factor receptor showing exons 18 to 21. Activating
drug-sensitive mutations are shown on the top, and tyrosine kinase inhibitor (TKI)
–resistant mutations are depicted on the bottom (red: acquired resistant muta-
tions). The most common activating mutations in EGFR are a point mutation in
exon 21, which substitutes an arginine for a leucine (L858R), and a small deletion
in exon 19 that removes four amino acids (LREA). Together, these account for
approximately 85% of the TKI-sensitive mutations observed in EGFR-mutant
tumors. Many rare mutations have also been reported.14

Table 1. Select Phase III Clinical Trials in Lung Cancer Involving EGFR TKIs

Trial Year Line
No. of

Participants Race
EGFR

Mutant (%) EGFR TKI Reference Arm

TKI v Reference

RR (%)
CR
(%)

PFS
(months)

OS
(months)

ISEL27 2005 Second to third 1,692 White, 75%;
Asian, 21%�

12.1† Gefitinib Placebo 8.0 v 1.3 NA 3.0 v 2.6 5.6 v 5.1

BR.2128 2005 Second to third 731 Asian, 12%;
other, 88%

23‡ Erlotinib Placebo 8.9 v � 1 0.7 v 0 2.2 v 1.8 6.7 v 4.7

INTEREST29 2008 Second 1,433 White, 75%;
Asian, 21%�

14.8§ Gefitinib Docetaxel 9.1 v 7.6 NA 2.2 v 2.2 7.6 v 8.0

IPASS4,30 2009 First 1,217 East Asian, 100% 59.7� Gefitinib Platinum doublet 43.0 v 32.2 NA 5.7 v 5.8 18.8 v 17.4
IPASS

subgroup4,30 2009 First 261 East Asian, 100% 100 Gefitinib Platinum doublet 71.2 v 47.3 NA 9.5 v 6.3 21.6 v 21.9
WJTOG34056,31 2009 First 172 East Asian, 100% 100 Gefitinib Platinum doublet 62.1 v 32.2 NA 9.2 v 6.3 35.5 v 38.8
NEJ0027 2009 First 224 East Asian, 100% 100 Gefitinib Platinum doublet 73.7 v 30.7 4.4 v 0 10.8 v 5.4 30.5 v 23.6
OPTIMAL8,32 2011 First 165 East Asian, 100% 100 Erlotinib Platinum doublet 82 v 36 2 v 0 13.1 v 4.6 22.7 v 28.9
EURTAC9 2012 First 174 White, 100%

(Hispanic)
100 Erlotinib Platinum doublet 64 v 18 3 v 0 9.7 v 5.2 19.3 v 19.5

Abbreviations: CR, complete response; EGFR, epidermal growth factor receptor; EURTAC, European Tarceva Versus Chemotherapy; INTEREST, IRESSA
Non-Small-Cell Lung Cancer Trial Evaluating Response and Survival Against Taxotere; IPASS, Iressa Pan-Asia Study; ISEL, IRESSA Survival Evaluation in Lung
Cancer; NA, not applicable; OPTIMAL, Open Label, Phase III Study Comparing First Line Tarceva vs Cisplatin Plus Gemcitabine in Chinese Advanced/Metastatic
Non-Small-Cell Lung Cancer Patients With EGFR Activating Mutations; OS, overall survival; PFS, progression-free survival; RR, response rate; TKI, tyrosine kinase
inhibitor.

�Excludes people of Indian origin.
†26 positive in 215 tested samples.
‡40 positive in 177 tested samples.
§44 positive in 297 tested samples.
�261 positive in 437 tested samples.
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patients with EGFR wild-type tumors displayed 1% RRs and im-
proved PFS with chemotherapy rather than a TKI.4 To receive EGFR
TKIs in many regions, such as Canada and the European Union,
patients must now have a documented EGFR mutation. In the United
States, mutation testing is available in multiple molecular diagnostics
laboratories certified by the College of American Pathologists and
Certified Laboratory Improvements Amendment of 1988, but the US
Food and Drug Administration (FDA) has never required that only
patients with EGFR mutations should be treated with an EGFR TKI.
The rationale behind this was that the BR.21 trial, which compared
survival rates in unselected patients with NSCLC treated with erlotinib
versus placebo, showed a statistically significant survival benefit for
patients taking the drug, even though the absolute difference was a
mere 2 months (6.7 v 4.7 months; P � .001).28 However, consistent
with the notion that erlotinib is more effective against EGFR-mutant
tumors, a recent study reported that in patients with NSCLC harbor-
ing wild-type EGFR, docetaxel induced a higher RR (13.9% v 2.2%;
P � .004) and longer PFS (3.4 v 2.4 months; hazard ratio [HR], 0.69;
P � .014) in the second-line setting than erlotinib.34

IMPACT OF EGFR TKIS ON EGFR-MUTANT LUNG CANCER

No randomized prospective studies have yet officially shown that
EGFR TKIs prolong overall survival (OS) compared with chemother-
apy (Table 1). One explanation for this discrepancy is that once pa-
tients in the chemotherapy arm experience disease progression, they
can still display high RRs and prolonged PFS after switching to an
EGFR TKI.7 This crossover confounds subsequent survival analyses.

However, several lines of evidence clearly show that patients with
EGFR-mutant tumors and treated with TKIs experience historically
high survival rates. Multiple prospective first-line clinical trials have
now demonstrated that such patients live longer than 2 years.6,7 Such
long OS was not routinely observed before the approval of EGFR TKIs
(Table 1; Fig 2A). Consistent with these data, a retrospective analysis
recently showed that OS in Japanese patients who started first-line
chemotherapy after gefitinib was approved was much longer than the
OS in patients who started chemotherapy before gefitinib approval
(27.2 v 13.6 months; P � .001).41 Furthermore, although gefitinib was
withdrawn from the market in the United States in 2005, approxi-
mately 250 patients with NSCLC were still alive as of 2011 in the
AstraZeneca Iressa Expanded Access Program (NCT00034879), dem-
onstrating that long-term survival of patients with NSCLC is possible
while they receive EGFR TKIs.42

The impact of the introduction of EGFR TKIs on the treatment of
lung cancer can be further gleaned from an analysis of the US Surveil-
lance Epidemiology and End Results (SEER) program database.
Population-based resources like the SEER database do not include
detailed information about patients by tumor mutation status. How-
ever, inferences can be made based on the frequency of patients with
EGFR-mutant NSCLC among specific ethnic groups. For example,
the 12-month survival rates for metastatic NSCLC from 1997 to 2008
of the three different ethnic groups represented in the SEER database
(ie, white; African American; and Asian-Pacific Islander, Alaskan, and
Native American) show that compared with predicted rates, there has
been an increase in the survival rates of all groups. For Asians, the
growth was larger than that of the other groups. This increase coin-
cides with the widespread introduction of EGFR TKIs into the clinic;

gefitinib was FDA approved for use in NSCLC in May 2003, and
erlotinib was FDA approved in November 2004 (Fig 2B). As we have
stated, lung tumors from Asians are more likely to harbor EGFR
mutations and therefore to benefit the most from EGFR TKIs.

In another example, analysis of incidence and 3-year prevalence
data in SEER from 2002 to 2008 shows that the incidence of metastatic
NSCLC cases has decreased from 26.5 to 23.5 cases per 100,000,
whereas prevalence has increased from 14.8 to 15.1 cases per 100,000
(Fig 2C). Incidence represents the number of patients diagnosed with
metastatic NSCLC per year (of whom � 10% harbor EGFR muta-
tions), whereas 3-year prevalence represents those patients who were
diagnosed within 3 years and are still alive at the end of this time
period. The 10% decline in incidence is attributable to lower smoking
rates in the US population,43 and the 2% increase in prevalence oc-
curred concurrently with the introduction of EGFR TKIs into the
population (Fig 2C). If there is no change in the average survival rate of
patients during a period of observation, then the prevalence exactly
mimics the behavior of the incidence curve; however, if the survival
rate increases during a period of observation, then the prevalence may
increase even when the incidence decreases, if the increase of survival
rates is sufficiently large. Of course, other drugs (ie, pemetrexed and
bevacizumab) were also approved by the FDA for NSCLC treatment
during this time (2004 and 2006, respectively); thus, the changes in
prevalence cannot be entirely attributed to EGFR TKIs. More dra-
matic observations have been made in other oncogene-driven cancers
treated with TKIs, such as BCR-ABL–driven chronic myelogenous
leukemia treated with imatinib,44,45 but that disease is defined by the
BCR-ABL translocation and therefore more easily analyzed using
population-based databases.

EGFR MUTATIONS AND DRUG RESISTANCE

Unfortunately, approximately 30% of patients still do not experience
disease responses despite harboring EGFR-mutant disease,4,6-9 and
less than 5% experience a complete response7-9 (Table 1). Acquired
resistance to EGFR TKIs in the metastatic setting is inevitable. More-
over, although the average PFS is 10 to 16 months, treatment duration
can last as short as 1 month.7 Thus, drug resistance remains a major
problem in the clinic. Until new therapies and strategies are developed
to overcome such resistance, the new prevalence rate of lung cancer
(Fig 2C) will remain flat. Here, we focus on mechanisms of primary
and secondary resistance to EGFR TKIs.

Primary Resistance

De novo resistant EGFR mutations. Tumors with mostly EGFR
exon 20 insertions, which account for 4% of EGFR mutations, are
associated with a lack of drug sensitivity in preclinical models and in
patients.46 Another mutation in exon 20 conferring resistance involves
substitution of methionine for threonine at position 790 (T790M).
This alteration is found as a heterozygous germline variant in 0.5% of
never-smokers with lung adenocarcinoma47 and may confer genetic
susceptibility to EGFR-mutant lung cancer.48 Efforts are being made
to create an online registry of patients with germline EGFR T790M.49

When the T790M mutation occurs somatically, its frequency in EGFR
TKI–naive disease is somewhat controversial. Multiple studies have
reported rarely detecting it pretreatment,50,51 and mathematic mod-
eling studies have suggested that pre-existing resistance may be pres-
ent at a low frequency.51 Others have found frequencies as high as
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35%.52-54 By contrast, the data are much more consistent in showing
that more than half of patients with acquired resistance to gefitinib
or erlotinib develop the T790M mutation. Patients whose tumors
harbor somatic T790M mutations before treatment experience a
shorter PFS.52,54

Suboptimal drug exposure. Suboptimal drug exposure may
result in a lack of antitumor effect. In an interesting case report,
disease in a patient with EGFR-mutant lung cancer (exon 19 dele-
tion) progressed after only 2 months of erlotinib at the standard
dose (150 mg orally once per day). The patient was found to have a
low plasma concentration of drug, so the dose was increased. At
300 mg orally once per day, a significant response was achieved.
Further investigation implicated a drug-drug interaction with

fenofibrate. Erlotinib is extensively metabolized by the monooxy-
genase, cytochrome P450 3A4 (CYP3A4), which can be induced by
fenofibrate. Subsequent withdrawal of fenofibrate led to suprahigh
levels of erlotinib along with concomitant adverse effects, necessitating
a reduction of erlotinib back to 150 mg orally once per day.55 How
often such suboptimal dosing occurs is unknown. In an analogous
manner, smoking has also been shown to affect erlotinib dosing
through the upregulation of CYP1A1.56 Polymorphisms in the genes
involved in erlotinib metabolism could further influence drug con-
centrations in individual patients, as seen with sunitinib in patients
with renal cell carcinoma.57

Failure of apoptosis induction. Induction of the proapoptotic
BH-3– only molecule, BIM, is essential for apoptosis triggered by
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Fig 2. Impact of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) on survival in patients with lung cancers harboring EGFR mutations. (A) The
graph depicts the overall survival (OS) rates achieved in various prospective trials conducted in the United States/Europe (left panel) and East Asia (right panel) before
and after the introduction of EGFR TKIs. After 2006, OS was consistently longer than 18 months in patients with EGFR-mutant tumors.6,7,9,35-40 Five trials35-37,39,40

were conducted in unselected patients with non–small-cell lung cancer (NSCLC), and the other trials were performed in patients with EGFR-mutant tumors.9,6,7 One
trial38 was for never- or light former smokers; the OS data were from the subgroup of patients with EGFR-mutated lung cancers treated with erlotinib. (B) Age-adjusted
12-month survival rates in patients with metastatic NSCLC in the SEER database. The rate increases especially in the Asian population from 2003 to 2004 onward. The
thick lines are the trends for the years 1998 to 2003, and the thin lines are the predicted improvement in 12-month survival, given the 1998 to 2003 trends. (C)
Age-adjusted incidence and prevalence (per 100,000 people in the United States) of NSCLC in the SEER database. The incidence decreases starting from 2002,
whereas the prevalence displays a small increase. (A to C) Arrows indicate years in which drugs were approved.
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EGFR kinase inhibitors in mutant EGFR– dependent lung adeno-
carcinomas both in vitro and in vivo.58 Low expression levels of
BIM in primary tumors have been associated with shorter PFS in
patients treated with EGFR TKIs.59 Functional variants of BIM that
impair its function could also explain variability of response.60

Other potential mechanisms. Other cell intrinsic factors may
affect TKI sensitivity. Approximately 50% of NSCLCs, especially ade-
nocarcinomas, harbor recurrent somatic alterations in genes that en-
code components of major signaling pathways, including ALK, ROS1,
RET, HER2, KRAS, NRAS, PIK3CA, AKT1, BRAF, and MEK1.61-63

Among these, only PIK3CA mutations thus far have been shown to
commonly co-occur with EGFR mutations.64 Introduction of
PIK3CA into EGFR-mutant cells confers resistance to EGFR TKIs,65

and PIK3CA mutations have been shown to be acquired after pa-
tients develop resistance (Fig 3). The full spectrum of genome-wide
genetic alterations associated with untreated EGFR-mutant lung
cancer remains to be established. In another example, activation of
the FAS/NF�B signaling pathway may modulate EGFR depen-
dence in lung cancer cells (Fig 3).66 In this study, high expression of
NF�B correlated with a significantly shorter PFS in patients treated
with EGFR TKIs.

Exogenous factors may also affect EGFR TKI resistance in EGFR-
mutant tumors. For example, in one study, hepatocyte growth factor
(HGF), the ligand of the MET receptor tyrosine kinase, was found to
be overexpressed in 29% of primary resistant lung tumors with drug-
sensitive EGFR mutations (13 of 45).67 This result suggests that acti-
vation of the MET signaling pathway through HGF stimulation might
be associated with primary resistance as well as acquired resistance (Fig
3). In another example, inflammation has been implicated as a resis-
tance mechanism via activation of the interleukin-6/JAK2/STAT3
pathway (Fig 3).68 In xenograft models, administration of an anti–
interleukin-6 antibody restores drug sensitivity.

Secondary Resistance

As we have stated, all patients with metastatic EGFR-mutant lung
cancer will eventually develop disease progression. For more than 60%
of patients, a plausible mechanism of resistance has been identified
(Fig 4). The key to these studies has been analysis of new tumor tissue
after patients develop resistance,69,70 a practice which should be con-
sidered standard to help guide therapy. Here, we review known mech-
anisms observed in human lung tumors as well as potential
mechanisms found in preclinical models.

Second-site EGFR mutations. Second-site EGFR mutations are
the most frequent mechanism of acquired resistance to EGFR TKIs in
lung cancer, found in more than 50% of patients. Among the reported
mutations—L747S, D761Y, T790M, and T854A—more than 90% are
composed of the T790M gatekeeper mutation11,69-72 (Figs 1 and 4).
The T790M substitution alters proper binding of the drug to the ATP
pocket of EGFR and/or restores the affinity for ATP versus drug back
to the level of wild-type EGFR.18

Suboptimal drug exposure in the brain. Up to 33% of patients
with EGFR-mutant lung cancer treated with EGFR TKIs will experi-
ence disease progression in the CNS.73,74 Thus far, the second-site
EGFR T790M mutation has been found in only four (13%) of 30
examined, a frequency far lower than that seen in peripheral
organs.74-79 Concurrently, multiple studies have shown that the con-
centration of drug achievable in the brain is approximately 1% to 5%
of the level found in the plasma.75,77,80 Presumably, the selection
pressure for second-site mutations is thus different in the brain versus
the periphery. In those patients who experience disease progression
only in the brain but not in the rest of the body, brain metastasis
treatment should be administered, but erlotinib at standard daily
doses can be resumed after completion of the radiation course. In the
setting of leptomeningeal disease, which has been historically difficult
to treat with conventional chemotherapy, high-dose EGFR TKI has
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Fig 3. Schematic representation of the
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signaling pathway and molecules that may
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been shown to be clinically tolerable and potentially of some benefit
with no dose-limiting toxicity.75,77,78,81 Such a dosing regimen leads to
higher levels of drug in the cerebrospinal fluid (CSF; gefitinib 1,250 mg
once per day: serum, 3,730 nmol/L and CSF, 39.4 nmol/L; erlotinib
1,500 mg orally once per week: plasma, 11,300 nmol/L and CSF, 130
nmol/L).75,77 Whether plasma drug concentrations decrease over time
when EGFR TKIs are taken at standard doses remains unclear. In
chronic myelogenous leukemia, studies have shown that imatinib
levels can decrease the longer patients receive the drug.82

Activation of EGFR signaling pathways via other aberrant mole-
cules. Another 5% to 10% of cases of acquired resistance will display
amplification of the gene encoding MET.69,70,83,84 Overexpression of
MET activates the PI3K/AKT pathway via interaction with ERBB3,
rendering cells less solely dependent on mutant EGFR for survival.83 In
a tumor cell population, HGF may help expand pre-existing minor
populations of cells harboring MET amplification (Figs 3 and 4).85,86

Other mutant signaling proteins may also confer resistance.
Up to 5% of patients with acquired resistance examined in one
study developed new PIK3CA mutations.70 In another study of
nearly 200 tumor samples from patients with acquired resistance,
we recently found that approximately 1% of patients harbor BRAF
mutations.87 No common mutations in KRAS, NRAS, or MEK1
signaling genes were detected.87 We have also recently shown that
ERBB2 amplification may be associated with acquired resistance,
especially in patients without detected T790M mutations.88 Other
studies have suggested that CRKL or ERK amplification may be a
mediator of disease progression.89,89a

Histologic transformation. In a handful of cases, rebiopsy of
growing tumors has obtained cells that no longer display adenocarci-
noma histology. Although they still harbor a drug-sensitive EGFR

mutation, the cells display features of small-cell lung cancer70,90 or
epithelial-to-mesenchymal transition (EMT).70,91 How cells trans-
form to a different histology is not well understood. The RB and p53
pathways may have a role in the transformation to small-cell cancer,92

and the TGF� pathway may play a role in EMT.68 In preclinical
models, cells with EMT features seem to be no longer dependent on
EGFR signaling for survival, but drug sensitivity may be restored by
treatment with histone deacetylase inhibitors93 or inhibition of the
kinase AXL or the zinc finger protein Slug.91,94

Strategies to Overcome Resistance

To overcome EGFR TKI resistance, several new drugs or drug
combinations are being developed. To date, however, no agents have
been approved for either the first-line setting or patients with ac-
quired resistance.

Second- and third-generation EGFR TKIs. Second-generation
EGFR TKIs include canertinib, neratinib, afatinib, and dacomitinib
(Table 2). These irreversible ATP-competitive agents make covalent
bonds with a cysteine residue at position 797 in EGFR. They are more
potent than gefitinib and erlotinib and also affect other EGFR family
members (eg, ERBB2, ERBB4). However, they still inhibit EGFR drug-
sensitive mutations at lower concentrations of drug as compared with
the common T790M mutant and therefore eventually select for cancer
cells with EGFR T790M in preclinical models.51,98 In humans, the
concentration of drug needed to overcome T790M-mediated resis-
tance may be not achievable in the absence of significant toxicity.

Among these four drugs, afatinib has progressed the farthest in
development. In a phase III trial for TKI-naive patients with EGFR-
mutant tumors,afatinibwassuperior toplatinumdoubletchemother-
apy in terms of RR (56.1% v 22.6%; P � .001) and PFS (11.1 v 6.9

Activation of other receptor tyrosine kinases?

(eg, ERBB2 amplification) 

FAS/NFκB activation?

Epithelial-mesenchymal transition?

(AXL, Slug activation?)

Loss or spliced variant of BIM?

Other? (eg, CRKL or ERK
amplification)

5-10% MET amplification

~5% PIK3CA mutations

~5% small-cell cancer transformation

~1% BRAF mutations

± Pharmacokinetic 
failure

~60% second-site EGFR

mutations (mostly T790M)

~30%-40%

± Exogenous factors 

eg, HGF, IL-6

±

Fig 4. Mechanisms of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Multiple mechanisms have been elucidated in human
samples and preclinical models. Some factors may overlap. HGF, hepatocyte growth factor; IL-6, interleukin-6.

EGFR TKI–Resistant Disease

www.jco.org © 2013 by American Society of Clinical Oncology 1075

Downloaded from ascopubs.org by Dana-Farber Cancer Institute on October 5, 2017 from 155.052.045.239
Copyright © 2017 American Society of Clinical Oncology. All rights reserved.



months; P � .001).99 In a separate randomized phase IIb/III trial of
afatinib versus placebo for patients who “had disease progression after
at least 12 weeks of treatment with erlotinib or gefitinib”100(p529) (not
necessarily with EGFR-mutant tumors), RR and PFS were 7% ver-
sus � 1% and 3.3 versus 1.1 months, respectively.100 OS was 10.8
months in the afatinib arm and 12.0 months in the placebo arm.100 In
a phase II trial, dacomitinib also has shown promising results in
patients with untreated EGFR-mutant tumors (RR, 74%; preliminary
median PFS, 17 months).101

Third-generation EGFR inhibitors include WZ4002102 and CO-
1686.103 Whereas first- or second-generation EGFR TKIs have a
quinazoline core, WZ4002 has an anilinopyrimidine core, which fits
better into the ATP pocket of EGFR T790M. The structure of CO-1686
has not yet been released publicly. Notably, these reagents were de-
signed to specifically inhibit the EGFR T790M mutant. To date, no
clinical trials for WZ4002 have been initiated, but a phase I/II clinical
trial for CO-1686 started in January 2012 (NCT01526928). Another
new EGFR inhibitor is AP26113. This drug was originally character-
ized as an ALK inhibitor but has also been shown in preclinical models
to inhibit EGFR mutants including EGFR T790M.104 A phase I/II
clinical trial for AP26113 began in September 2011 (NCT01449461).

Drug combinations. Several studies have examined the addition
of an anti-EGFR antibody to an EGFR TKI to overcome resistance.
The combination of erlotinib with cetuximab showed no effect in
patients who acquired resistance to EGFR TKIs (RR, 0%).12 However,
the combination of afatinib and cetuximab has led to highly promising
results (RR, 36% in eight of 22 patients).105 Results from this trial
importantly demonstrate in patients that tumors remain dependent
on EGFR signaling for survival even after developing resistance. Inter-
estingly, 50% of the responders to this combination did not harbor
secondary EGFR T790M mutations, suggesting that there exist EGFR
signaling pathway–dependent but EGFR T790M–independent mech-
anisms of resistance.

Other trials have assessed the combination of EGFR TKIs with
other classes of inhibitors (eg, mammalian target of rapamycin inhib-
itors, SRC inhibitors, HSP90 inhibitors, and so on), but results have
been disappointing.12 If there is no universal Achilles’ heel in tumors,
specific combinations may need to be directed against the genetic
makeup of individual tumors (eg, adding a MET inhibitor for tumors
displaying no EGFR T790M but MET amplification, or adding a PI3K
inhibitor for tumors displaying a secondary PI3KCA mutation, and
so on65,83).

Table 2. Small-Molecule EGFR TKIs Clinically Available or in Development

Drug Name
Generic
Name

Trade
Name Manufacturer Target Recommended Dose MTD Status

Reversible
ZD1839 Gefitinib Iressa AstraZeneca,

Wilmington, DE
EGFR 250 mg once per day 750 mg once per day Approved (Asia/EU)

OSI-776 Erlotinib Tarceva Genentech, South San
Francisco, CA

EGFR 150 mg once per day 150 mg once per day Approved

BPI-2009H Icotinib Conmana BetaPharma, Branford,
CT

EGFR 150 mg once every 8
hours

Not reached Approved (China)

TAK-165 Mubritinib NA Takeda, Osaka, Japan EGFR/ERBB2 NA NA Phase I�

XL647 NA NA Kadmon, New York,
NY

EGFR/ERBB2† 300 mg once per day 300 mg once per day Phase II�

ZD6474 Vandetanib Zactima AstraZeneca EGFR/VEGFR2/RET 300 mg once per day 300 mg once per day Phase III�‡
GW572016 Lapatinib Tykerb GlaxoSmithKline,

Philadelphia, PA
EGFR/ERBB2 1,250-1,500 mg once

per day
Not reached Preclinical�§

Irreversible
EKB-569 Pelitinib NA Wyeth/Pfizer, New

York, NY
EGFR 50 mg once per day 75 mg once per day Phase I�

CI-1033 Canertinib NA Pfizer, New York, NY EGFR/ERBB2/ERBB4 150 mg once per day 150 mg once per day Phase II�

HKI-272 Neratinib NA Puma Biotechnology,
Los Angeles, CA

EGFR/ERBB2 320 mg once per
day�

320 mg once per day Phase II�

BIBW2992 Afatinib Tomtovok Boehringer Ingelheim,
Ingelheim, Germany

EGFR/ERBB2/ERBB4 50 mg once per day 50 mg once per day Phase III

PF-00299804 Dacomitinib NA Pfizer EGFR/ERBB2/ERBB4 45 mg once per day 45 mg once per day Phase III
Third generation

CO-1686 NA NA Clovis/Avila, Boulder, CO EGFR T790M NA NA Phase I/II
WZ4002 NA NA NA EGFR T790M NA NA Preclinical

Other
AP26113 NA NA Ariad Pharmaceuticals,

Cambridge, MA
ALK/EGFR¶ NA NA Phase I/II

Abbreviations: EGFR, epidermal growth factor receptor; EU, European Union; FDA, US Food and Drug Administration; MTD, maximum tolerated dose; NA, not
applicable; NSCLC, non–small-cell lung cancer; TKI, tyrosine kinase inhibitor; VEGFR2, vascular endothelial growth factor receptor 2.

�Currently, no additional trials are being planned for lung cancer.
†XL647 inhibits EGFR, ERBB2, VEGFR2, FLT-4, and EPHB4.
‡Vandetanib failed to show a survival benefit v placebo in unselected patients after prior therapy with EGFR TKI,95 showed efficacy equivalent to that of erlotinib

in unselected patients treated with one prior anticancer therapy for advanced NSCLC,96 and showed an additive effect with docetaxel in unselected patients treated
with one prior anticancer therapy for advanced NSCLC.97 The FDA has approved vandetanib as an RET inhibitor for medullary thyroid cancers under the trade name
Caprelsa (AstraZeneca, London, United Kingdom).

§The FDA has approved lapatinib as an ERBB2 inhibitor for breast cancers.
�Dose was reduced to 240 mg orally once per day during trial because of toxicity.
¶AP26113 is reported to reversibly inhibit ALK and EGFR mutant proteins, including EGFR T790M.
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Treatment beyond progression. Finally, recent preclinical and clin-
ical studies have revealed interesting properties of EGFR TKI–resistant
tumors. In standard practice, cytotoxic cancer drugs are usually dis-
continued when acquired resistance develops. However, many reports
have demonstrated that patients who acquire resistance can re-
respond to EGFR TKIs after a drug holiday.106 Multiple studies have
now shown that patients who acquire EGFR T790M may have a
favorable clinical outcome as compared with those who do
not.79,107,108 Consistent with these findings, preclinical studies have
demonstrated that cells that acquire EGFR T790M can actually grow
slower than parental cells, and after several passages in the absence of
TKIs, they become resensitized.51 These findings indicate that resis-
tant tumors are composed of mixed populations of sensitive and
resistant cancer cells and suggest a benefit of continued EGFR TKI
administration even after the acquisition of resistance. Several clinical
studies support this hypothesis,109-112 and prospective trials to test
whether an EGFR TKI beyond progression is better than stopping the
drugat thetimeofresistancearecurrently inprogress(AStudyofIRESSA
Treatment Beyond Progression in Addition to Chemotherapy Versus
Chemotherapy Alone [IMPRESS]) as well as in development.

Novel combinations. Evolutionary mathematic cancer modeling
in conjunction with in vitro experimental data was recently used to
predict alternative dosing strategies that delay the outgrowth of pre-
existing resistance using currently available EGFR TKIs.51 The most
promising strategy administers low-dose continuous EGFR TKI (eg,
erlotinib) in combination with high-dose pulsed doses (eg, afatinib)
with the goal of preventing both the replication of EGFR TKI–sensitive
cells as well as optimally delaying the emergence of resistant clones.
Such modeling also suggests that pulsed high doses alone will not be
sufficient to suppress resistance. The clinical utility of this strategy
should be validated. This integrated mathematic modeling and exper-
imental approach represents a new roadmap for the rational design of
clinical trials that can also be applied to other cancer types treated with
targeted therapy.

Other novel combinations could involve TKIs plus immuno-
logic therapies. BMS-936558 (MDX-1106), an antibody against
programmed death-1, a T-cell inhibitory receptor, has shown
promising activity in lung cancer with minimal toxicity.113 Addi-
tion of agents like BMS-936558 to erlotinib in TKI-naive patients

or potentially with more potent TKIs after the development of
resistance should be explored.

DISCUSSION

In conclusion, EGFR mutations define a distinct clinical entity of lung
cancer. EGFR TKIs such as gefitinib and erlotinib have increased the
OS of patients with EGFR-mutant lung cancer. However, despite
rapid progress over the past 8 years, a new plateau for survival of
patients with EGFR-mutant lung cancer already seems to have been
reached. Greater efforts need to be made not only to overcome ac-
quired resistance but also to induce greater responses and longer PFS
in the first-line setting. The goal should now be to become as creative
as possible with new strategies and therapies to make EGFR-mutant
lung cancer a chronic rather than fatal disease.
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