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Abstract Glioblastomas are the most aggressive primary brain tumor. Despite treat-
ment with surgery, radiation and chemotherapy, these tumors remain uncurable and
few significant increases in survival have been observed over the last half-century. We
recently employed a combined theoretical and experimental approach to predict the
effectiveness of radiation administration schedules, identifying two schedules that led
to superior survival in a mouse model of the disease (Leder et al., Cell 156(3):603–
616, 2014). Here we extended this approach to consider fractionated schedules to best
minimize toxicity arising in early- and late-responding tissues. To this end, we decom-
posed the problem into two separate solvable optimization tasks: (i) optimization of
the amount of radiation per dose, and (ii) optimization of the amount of time that
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passes between radiation doses. To ensure clinical applicability, we then considered
the impact of clinical operating hours by incorporating time constraints consistent with
operational schedules of the radiology clinic. We found that there was no significant
loss incurred by restricting dosage to an 8:00 a.m. to 5:00 p.m. window. Our flexible
approach is also applicable to other tumor types treated with radiotherapy.

Keywords Brain tumors ·Radiotherapy ·Nonlinear programming ·Linear-quadratic
model

Mathematics Subject Classification 90C11 · 90C26 · 90C30 · 90C90 · 65K05

1 Introduction

Glioblastomas (GBMs) are themost frequent andmalignant primary brain tumor, with
an incidence of about 3.4 per 100,000 people in the US (Howlader et al. 2013). These
tumors are aggressively treated with surgery, chemotherapy and radiation, but have
remained uncurable with little improvements in survival over the last 50 years. Recent
molecular profiling efforts have elucidated that GBMs consist of at least 3 subgroups
that are dominated by specific signaling pathways (Brennan et al. 2009; Phillips et al.
2006a, b; Verhaak et al. 2010). These subgroups include the proneural GBMs that
are related to abnormal platelet-derived growth factor (PDGF) signaling, the classical
GBMs that are driven by EGFR signaling, and the mesenchymal group that is asso-
ciated with NF1 loss. The discovery of these subgroups has enabled the development
of subtype specific mouse models to accurately mimic the different variants of GBM.
We recently took advantage of one such model to revisit the question of optimum
radiation administration in proneural GBMs (Leder et al. 2014).

Radiotherapy for glioblastoma is currently administered in 2Gy fractions five days a
week, for 6 weeks total, as the clinical standard of care. Over the past thirty years there
have been several clinical trials that have investigated the survival benefit of various
fractionation schedules for glioblastoma. In particular, studies have investigated the
benefits of hyper fractionated, hypo fractionated and accelerated fractionation sched-
ules. Unfortunately none of these schedules has yet shown a significant survival benefit
(Laperriere et al. 2002).

In our earlier work (Leder et al. 2014) we considered a dynamic radiation response
model calibrated to a PDGF-driven glioma mouse model. Our model considered two
separate populations of cells: stem-like glioma cells that are largely radio-resistant
(Pajonk et al. 2010; Rich 2007) and differentiated glioma cells that are predominantly
radiosensitive. The model stipulates that after exposure to radiation, a fraction of the
differentiated cells can rapidly revert to the radio-resistant state (Bleau et al. 2009;
Chen et al. 2012; Charles et al. 2010). We then used heuristic optimization techniques
to find radiation delivery schedules that would lead to a significant model-predicted
survival benefit over standard fractionation schedules. The increased efficacy of these
schedules was then verified experimentally by survival studies in a mouse model
of PDGF-driven glioma. In particular, 1-week optimized schedules predicted to out-
perform the standard schedule lead to a nearly 1.5-fold improvement in the median
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survival time following irradiation, and had a similar overall survival compared to two
weeks of standard therapy.

The building block for virtually all mathematical modeling of radiation response,
including our previous work, is the linear-quadratic model (LQ), which matches well
with experimental evidence across a wide range of clinically relevant radiation doses
and fractionation schemes (Fowler 1989; Brenner 2008). The basic model states that
following exposure to d Gy (SI derived unit of ionizing radiation), the reproductively
viable fraction of cells is given by e−αd−βd2 . The twoparametersα andβ depend on the
tissue type that is being irradiated. The parameter α represents killing of cells from a
single trackof radiation, andβ represents the killing of a cell via two independent tracks
of radiation (Hall and Giaccia 2006). There are several mathematical extensions to the
LQ framework to incorporate additional biological phenomena such as repopulation of
the tumor population between fractions, re-oxygenation of the tumor (this is required
for some radiation therapy tobe effective), the effectiveness ofDNArepairmechanisms
between fractions, and the redistribution of tumor cells within the cell cycle. Taken
together these four extensions are often referred to as the ‘4Rs’ and there have been
several works based on these extensions (Withers 1975).

Many researchers have used modified versions of the LQ model to find clinically
relevant optimal radiation delivery schedules. Previous reports have independently
modeled the effect of either fixed or dynamic fractionation schemes (Brenner et al.
1998; Lu et al. 2008), the effect of incomplete DNA damage repair (Bertuzzi et al.
2013), the impact of the 4R’s and tumor proliferation (Yang and Xing 2005), and the
impact of hyper- or hypo-fractionated schedules (Unkelbach et al. 2013; Mizuta et al.
2012).Dionysiou et al. (2004) further examined hyper-fractionating using a novel four-
dimensional simulation model of GBM and observed an increased tumor reduction
when compared to standard fractionation. Subsequent work (Stamatakos et al. 2006)
improved upon that simulation and found that an accelerated hyper-fractionated ther-
apy has a good performance. The LQ framework has also been combined with models
of glioma invasive growth patterns to predict the response to various radiation dose
schedules and distributions (Harpold et al. 2007; Rockne et al. 2009).

As outlined above, there has been a significant amount of research dedicated to
the subject of radiotherapy optimization. Some important questions in radiotherapy
optimization concern the best total treatment size, the best way to divide the total
dose into fractional doses, and the optimal inter-fraction interval times. An important
constraint to enforce when answering these questions is sufficiently low levels of
normal tissue toxicity. Thus a natural optimization problemwill be to design a schedule
that delivers radiation in such a way that does not exceed a given threshold level of
normal tissue damage while achieving the maximal amount of tumor damage. In order
to properly model normal tissue damage, we impose two simultaneous constraints: (i)
the normal tissue with a relatively high turnover rate that reacts quickly to radiation
(i.e. early-responding tissue, such as skin) does not experience excessive damage, and
(ii) the slow-responding tissue with a relatively slow turnover rate (late-responding
tissue, such as neurons) does not experience excessive damage. The two constraints
are achieved by insisting that BED levels for the two tissues stay within prescribed
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levels. Note that this problem is present in all uses of the standard BEDmodel of tissue
damage due to radiation.

Our prior results (Leder et al. 2014) demonstrated a proof of concept that radiation
scheduling decisions have the potential to impact treatment efficacy. In order to further
investigate this potential, we now construct a non-linear mathematical program to
address the issue of normal brain toxicity, which was not addressed in our initial work.
In our prior work it was observed that there was a leveling off of efficacy in the mouse
model at 10Gy, andwe thus limited our study to treatments that considered 10Gy total.
Further we observed that this amount of radiation, in mice, elicits no dose-limiting
toxicity even when administered all at once. However, in order to move the predictions
of thismodel to a clinical trialwith humanpatients, it is necessary to also ensure that any
recommended schedule maintains a fixed level of normal tissue damage. Therefore,
here we consider 10Gy schedules and add constraints that specify that the radiation
damage to normal tissue be within levels attained by a standard fractionation. The
standard method for measuring tissue toxicity is done via the biologically equivalent
dose (BED) (Fowler 1989, 2010).With these added constraints, the problem of finding
the optimal radiation delivery schedule becomes quite difficult. Specifically, it involves
finding optimal radiation doses at each fraction, time between fractions, and total
number of fractions administered. To tackle this complex question, we decompose the
optimization problem into two separate problems: (i) what is the optimal inter-fraction
times, and (ii) what is the optimal radiation dose per fraction.

This work focuses on 10Gy schedules, but we view it as an important step in the
study of 60Gy schedules used in the clinic. In particular, we believe that the methods
we study here can be further developed to allow for the study and optimization of
these larger schedules. These extensions are planned for future work.

In this paper, we will first review the mathematical model derived by Leder et al.
(2014) . We then formulate an optimization problem for the optimal radiation delivery
schedule and present a solution to the optimization problem. Subsequently optimized
schedules are foundbased onparameters fromLeder et al. (2014). In additionweutilize
simulated annealing to locate optimal inter-treatment times while observing standard
working hour constraints. Finally we discuss the results and provide an outlook to
future studies.

2 The mathematical model

Our model is based on a simplified version of the model studied by Leder et al. (2014).
In the remainder of this subsection wewill describe the model from the paper by Leder
et al. (2014), and point out along the way the simplifying assumptions we make to
develop the model for the current work.

Leder et al. (2014) studied response of a two cell type tumor model including stem-
like glioma (radio-resistant) cells and differentiated glioma (radio-sensitive) cells to
radiation. After exposure to radiation, a fraction of differentiated and stem-like tumor
cells dies. This fraction is calculated using the LQmodel. Of those differentiated cells
that survive, a fraction γ (which depends on time since previous dose of radiation)
dedifferentiate to a stem-like state at a rate ν. If it has been t0 hours since the previous
dose of radiation then we have
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Fig. 1 Mathematical model description

γ (t0) =
{

γ0 exp
[−(t0 − μ)2/σ 2

]
, t0 < ∞

γ0, t0 = ∞

where γ0, μ, and σ 2 are model parameters. The interpretation of t0 = ∞ is that we
are considering the effects of the first exposure to ionizing radiation. In particular,
after the first dose of radiation a fraction γ0 of cells is capable of dedifferentiation, the
fraction capable of dedifferentiation after each subsequent dose depends on the time
elapsed since the previous dose [as specified by the function γ (t) for t < ∞].

Following exposure to ionizing radiation stem-like and differentiated cells stay,
respectively, for Ts and Td hours in a quiescent state and once they return to the cycle,
they start to reproduce at a rate of rs and rd , respectively. Also stem-like cells produce
differentiated cells at a rate of as . Figure 1 describes themathematical model of glioma
cell dynamics in response to radiation therapy.

It has been observed in several experimental settings that stem cells do in fact have
a heightened radio resistance. Based on these observations in our previous work we
assumed that radiation response of differentiated and stem-like cells were given by
(αd , βd) and (αs, βs) with the simplifying assumption that (αs, βs) = ρ(αd , βd) for
some ρ ∈ (0, 1]. However in our previous work (Leder et al. 2014) we observed that
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due to the slow growth kinetics of the stem-like cell population the parameter ρ has
little impact on the system when considering disease dynamics over relatively short
time intervals (approximately 6–12weeks). Due to this phenomena discussed byLeder
et al. (2014) we observed that it was still possible to match experimental data with
ρ = 1, i.e., no added radio resistance in the stem-like cell population. It should be
noted that when modeling human disease dynamics, where recurrence occurs over a
much longer time scale, it is very possible that it is not appropriate to use ρ = 1. Since
this work is focused on shorter time scales of both treatment and possible recurrence
times we set ρ = 1, i.e., (αs, βs) = (αd , βd) = (α, β).

Based on the description given above we can specify a mathematical model for how
the two tumor cell populations evolve as a function of time since exposure to radiation,
time elapsed since previous exposure and amount of radiation given. Specifically, if
we assume there are Nd and Ns differentiated and stem-like cells respectively at the
time of exposure to dGy of radiation, it has been t0 hours since the previous exposure
to radiation, then the population of differentiated and stem-like cells t hours after this
exposure is given by

Nd(t, t0) = Nde−αd−βd2
[

(1 − γ (t0)) e
rd (t−Td )+ + γ (t0)e

−νt

+asγ (t0)ν
∫ t

0
erd (t−s)

∫ (s−Ts )+

0
e−νyers (s−y−Ts )+dyds

]

+ as N
se−αd−βd2

∫ t∨Ts

Ts
ers (s−Ts )erd (t−s)+ds

Ns(t, t0) =Nse−αd−βd2ers (t−Ts )+ + γ (t0)N
deαd−βd2ν

∫ t

0
e−νsers (t−s−Ts )+ds.

Since the mathematical model above is unwieldy and difficult to analyze, we will
make some parameter assumptions to simplify the analysis. In particular, we first send
ν → ∞, i.e., we assume that the dedifferentiation phenomena occurs immediately
after radiation. In Lemma 3 we show that for a > 0 and any function f continuous at
0 we have

lim
ν→∞ ν

∫ a

0
e−νy f (y)dy = f (0).

Which leads to the following

Nd(t, t0) = Nde−αd−βd2
[

(1 − γ (t0)) e
rd (t−Td )+

+ 1{t>Ts }asγ (t0)
∫ t

Ts
erd (t−s)ers (s−Ts )ds

]

+ as N
se−αd−βd2

∫ t∨Ts

Ts
ers (s−Ts )erd (t−s)+ds

Ns(t, t0) =Nse−αd−βd2ers (t−Ts )+ + γ (t0)N
de−αd−βd2ers (t−Ts )+ .

(1)
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Table 1 Definition of model parameters used in our study

Parameter Description

Nd
i and Ns

i The population of differentiated and stem-like cells prior to treatment i ,
respectively

Fd
i and Fs

i The fraction of differentiated and stem-like cells prior to treatment i ,
respectively

α and β The parameters characterize the response of glioma cells to radiation

γi The fraction of differentiated cells that revert to a stem-like state following
treatment i

Td Time it takes for differentiated cell to return to cycle

Ts Time it takes for stem-like cells to return to cycle

rd The rate at which differentiated cells reproduce once they return to cycle

rs The rate at which stem-like cells reproduce once they return to cycle

R The initial ratio of differentiated cells to stem-like cells

as The rate at which stem-like cells produce differentiated cells

Tp Time it takes to complete the treatment for a patient (planning period)

Te Time after the conclusion of therapy when the performance of a schedule is
evaluated

αe and βe The parameters characterize the response of early responding normal tissues to
radiation

αl and βl The parameters characterize the response of late responding normal tissues to
radiation

δe and δl The proportional of radiation doses absorbed by early and late responding
tissues, respectively

Ce and Cl The maximum limit of BED for early and late responding normal tissues,
respectively

The parameters used in our model are summarized in Table 1.

2.1 Decision variables and evolution during treatment

The primary goal of this paper is the mathematical optimization of radiotherapy frac-
tionation schedules. In order to do this we need to now describe the available decision
variables, and further how the tumor cell populations evolve during the course of
multiple exposures to radiation. Our decision variables are inter-fraction times, frac-
tion sizes, and number of fractions. Specifically we define ti as the intermediate time
between treatment i and i + 1, di the size of dose given in the i th fraction (Gy) and N
the total number of fractions delivered.

In order to describe the population evolution, we first define the population at the
epochs of fraction delivery. We denote the population of the differentiated and stem-
like cells immediately prior to fraction i by Nd

i and Ns
i respectively. In addition, we

will work with fraction of initial populations throughout this paper, i.e., Fd
i = Nd

i

Nd
1
and

Fs
i = Ns

i
Ns
1
. Lastly, we add the inter fraction times to the function γ (·),
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γi =
{

γ0 × e
−(ti−1−μ)2

σ2 , i ≥ 2
γ0, i = 1.

It is possible to substantially simplify (1) in the setting of tumor population evolution
between radiation fraction deliveries. This is achieved by assuming that the inter
fraction times are always less than Ts . If we know the fraction of differentiated cells,
Fd
i , immediately prior to treatment i and we administer di Gy in treatment i then

Fd
i+1 = Fd

i (1 − γi )e
rd (ti−Td )+e−αdi−βd2i , i = 1, . . . , N − 1.

If we further assume that the inter fraction times are less than Td then we have that

Fd
i+1 = Fd

i (1 − γi )e
−αdi−βd2i , i = 1, . . . , N − 1. (2)

Since we start the treatment with Fd
1 = 1, we have

Fd
N = e−∑N−1

i=1 (αdi+βd2i )
N−1∏
i=1

(1 − γi ) (3)

We can perform a similar simplification for the evolution of the stem-like cells between
fraction. Specifically if the fraction of differentiated and stem-like cells immediately
prior to treatment i are Fd

i and Fs
i respectively and di Gy of radiation are administered

in this fraction then

Fs
i+1 = e−αdi−βd2i Fs

i + Re−αdi−βd2i γi F
d
i , i = 1 . . . N − 1, (4)

where R = Nd
1 /Ns

1 .
We will denote the tumor populations t hours after the conclusion of N fractions of

radiation by (Nd
N (t), Ns

N (t)). These variables are evaluated using (1), of course after
normalizing by the initial tumor populations we get formulas for (Fd

N (t), Fs
N (t)).

3 Mathematical optimization

In this section, we define the objective function of our problem. Then we formulate
the radiation therapy scheduling problem as a non-linear mathematical model. Lastly
the structure of the optimal policies are described.

3.1 Objective function

The performance of a schedule is evaluated by the fraction of original cells that are
present Te hours after the conclusion of a fractionated radiotherapy treatment. Thus
the objective function of a schedule with N fractions is given by:
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Nd
N (Te) + Ns

N (Te)

Nd
1 + Ns

1

= Fd
N (Te) × Nd

1 + Fs
N (Te) × Nd

1
R

Nd
1 + Nd

1
R

= RFd
N (Te) + Fs

N (Te)

R + 1

Note that if we are interested in minimizing the expression in the previous display, it
of course suffices to minimize RFd

N (Te) + Fs
N (Te).

All considered fractionation schedules last the same number of hours, denoted by
Tp. In addition, as mentioned in the introduction the focus of this work is on shorter
length schedules and we therefore assume throughout the remainder of the work that
Tp < min(Ts, Td).

3.2 Problem formulation

We now consider the problem of finding fractionation schedules that lead to min-
imal population size while maintaining acceptable levels of normal tissue damage.
Specifically we consider the problem

Minimizedi ,ti ,N Fs
N (Te) + RFd

N (Te) (5)

Subject to:

N−1∑
i=1

ti = Tp

N∑
i=1

(
δldi + βl

αl
δ2l d

2
i

)
≤ Cl

N∑
i=1

(
δedi + βe

αe
δ2e d

2
i

)
≤ Ce

di ≥ δ ∀i
ti ≥ ε ∀i

where the formulas relating (Fd
N (Te), Fs

N (Te)) to (Fd
N , Fs

N ), i.e., the relationship
between the tumor cell populations Te hours after the final fraction and the tumor
cell population immediately prior to the final fraction are given by

Fd
N (Te) = [c2(1 − γN ) + c3γN ]e−αdN−βd2N Fd

N + c4e
−αdN−βd2N Fs

N

and

Fs
N (Te) = c5e

−αdN−βd2N Fs
N + c6γNe

−αdN−βd2N Fd
N .

The constants ci , i = 2, . . . , 6 are given by
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c2 = erd (Te−Td )

c3 = as

∫ Te

Ts
erd (Te−s)+rs (s−Ts )ds = as

rs − rd

[
ers (Te−Ts ) − erd (Te−Ts )

]

c4 = as
R

∫ Te

Ts
erd (Te−s)+rs (s−Ts )ds = as

R(rs − rd)

[
ers (Te−Ts ) − erd (Te−Ts )

]
c5 = ers (Te−Ts )

c6 = Rers (Te−Ts ),

and are derived using (1).
We use the first constraint to ensure that all fractionation schedules last for the same

length of time. The second and third constraints are BED limits for late and early
responding normal tissues, respectively. The terms (αe, βe) and (αl , βl) characterize
respectively the linear-quadratic response of early and late responding normal tissue
to ionizing radiation. The terms δe and δl are the sparing factors of the early and late
tissue that represent how much of the radiation dose these normal tissues receive.
Since for the late responding tissues, no allowance of repopulation should normally
be necessary, we can use the linear quadratic model to formulate their BED (Hall
and Giaccia 2006). However for early responding tissues, we cannot simply use the
linear quadratic model. One method of modeling BED for early responding tissue is
to use a repopulation correction factor which depends on the tissue doubling time and
the treatment duration (Dale and Jones 2007). Specifically, we use the Fowler (2010)
formulation to model the BED of early responding tissues as

BED =
N∑
i=1

(
δedi + βe

αe
δ2e d

2
i

)
− 0.693

αeTe f f
(Tp − Tk)

+ (6)

where Tef f and Tk are time parameters defined as effective cellular doubling time
and kick-off time, respectively. All parameters in 0.693

αeTe f f
(Tp − Tk) are constants in

our model, hence we can always assume this term as a constant and move it to the
right hand side of the third constraint. Thus we can view Cl as the amount of BED
incurred by late responding tissues from the standard fractionation, and Ce as the
amount of BED incurred by early responding tissues from the standard fractionation
after accounting for the repopulation correction in (6).

Since we are optimizing the number of fractions (N ) and dose per fraction (di ,
i = 1, . . . , N ) simultaneously, we cannot assign 0Gy of radiation to any fractions (if
one of the di becomes 0, we actually have N − 1 fractions). Also due to treatment
cost such as running cost, human resource cost and etc., it is uneconomical to deliver
very small dosages in treatment sessions. In order to address these issues we add the
fourth constraint. Finally, the last constraint indicates that two consecutive fractions
cannot be scheduled at the same time or immediately one after another (due to the
same reasoning we used for di 	= 0).
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In order to solve the optimization problem formulated in (5) it is necessary to express
the objective in terms of our decision variables. To address this issue we establish the
following result

Theorem 1 For any N,

Fs
N + RFd

N = (1 + R)e−∑N−1
i=1 (αdi+βd2i ).

Proof We will use induction to prove above theorem. First, it is obvious that above
relationship holds when N = 2, now suppose it holds for N − 1 too, which means

Fs
N−1 + RFd

N−1 = (1 + R)e−∑N−2
i=1 (αdi+βd2i )

Then Fs
N + RFd

N can be calculated by (2) and (4):

Fs
N + RFd

N = e−αdN−1−βd2N−1Fs
N−1 + Rγ0e

−αdN−1−βd2N−1e−(tN−2−μ)2/σ 2
Fd
N−1

+RFd
N−1(1 − γ0e

−(tN−2−μ)2/σ 2
)e−αdN−1−βd2N−1

= e−αdN−1−βd2N−1(Fs
N−1 + RFd

N−1)

= (1 + R)e−∑N−1
i=1 (αdi+βd2i )

Thus establishing the result. 
�

With this result we can replace Fs
N by (1+R)e−∑N−1

i=1 (αdi+βd2i )−RFd
N . Furthermore

the first two constraints can be placed into the objective function:

Minimizedi ,ti ,N (Rc4 + c5)(1 + R)e−∑N
i=1(αdi+βd2i ) + [−R(c5 + Rc4 − c2)

+ (c6 − Rc2 + Rc3)γ0e
−(tN−1−μ)2/σ 2 ]e−αdN−βd2N Fd

N .

By replacing Fd
N with its value from (3), we get:

Minimizedi ,ti ,N e−∑N
i=1(αdi+βd2i )

{
(Rc4 + c5)(1 + R)

+
[
−R(c5 + Rc4 − c2) + (c6 − Rc2 + Rc3)γ0e

−(tN−1−μ)2/σ 2
]

×
[
(1 − γ0)

N−2∏
i=1

(
1 − γ0e

−(ti−μ)2/σ 2
)]}

.

Finally by minimizing the natural logarithm of the objective function we get:
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Minimizedi ,ti ,N −
N∑
i=1

(αdi + βd2i ) + ln

{
(Rc4 + c5)(1 + R)

+
[
−R(c5 + Rc4 − c2) + (c6 − Rc2 + Rc3)γ0e

−(tN−1−μ)2/σ 2
]

×
[
(1 − γ0)

N−2∏
i=1

(
1 − γ0e

−(ti−μ)2/σ 2
)]}

(7)

Subject to:

N−1∑
i=1

ti = Tp

N∑
i=1

(
δedi + βe

αe
δ2e d

2
i

)
≤ Cl

N∑
i=1

(
δldi + βl

αl
δ2l d

2
i

)
≤ Ce

di ≥ δ ∀i
ti ≥ ε ∀i.

3.3 Solution approach

We start by fixing the number of fractions N , i.e., we assume it is a constant. Then
note that in the optimization problem in (7), we can divide the objective function in
two parts. The first term only includes {di } and the second term only contains {ti }. In
addition the constraints can be split in two sets as well. The first and last constraint
only depend on the inter fraction times {ti } and the remainder only depend on {di }.
Therefore for a fixed value of N , instead of solving (7), we can solve two independent
models, given in (8) and (17). For the first model (8), we have a quadratic objective
function constrained to two quadratic and N linear constraints where the decision
variables are simply di . Also for the second model (17), we have a log function of ti as
the objective function constrained to N linear constraints with ti as decision variables.
Therefore instead of solving (7), we can solve two independentmodels for a fixed value
of N and then find the optimal number of fractions (N ) via a simple search algorithm.

Note that the following formulations are obtained by making several important
assumptions. First, we assume dedifferentiation phenomena occurs immediately after
radiation. Second, we consider the same radio-sensitivity parameters in both differ-
entiated and stem-like cells, i.e. we assume there is no added radio resistance in the
stem-like cell population. Third, since the focus of this paper is on shorter length
schedules, we assume that treatment duration is shorter than the time to return to
cycle of both the differentiated and stem cells. Lastly, we fix the the duration of all
fractionation schedules to be Tp.
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3.3.1 Model I

We can define the first model as the optimization model of radiation doses under the
constraint of the radiation effect on normal tissues regardless of ti as (8).

Maximizedi

N∑
i=1

(αdi + βd2i ) (8)

Subject to:

N∑
i=1

(
δedi + βe

αe
δ2e d

2
i

)
≤ Ce

N∑
i=1

(
δldi + βl

αl
δ2l d

2
i

)
≤ Cl

di ≥ δ ∀i

Here, we are interested in finding the scheduled break-up of a radiotherapy treatment
into a set of treatment increments in a way that complications in normal tissues remain
within their acceptable limits. BED constraints can be transformed to the following
forms:

N∑
i=1

(
di + 1

2

αe

βeδe

)2

≤ αeCe

βeδ2e
+ N

(
1

2

αe

βeδe

)2

(9)

N∑
i=1

(
di + 1

2

αl

βlδl

)2

≤ αlCl

βlδ
2
l

+ N

(
1

2

αl

βlδl

)2

(10)

The set of fractionated doses (d1, . . . , dN ) satisfying (9) and (10) is represented by
two N -dimensional hyperspheres (HSE) and (HSL), respectively. We can argue that
the optimal solution lies on the feasible boundaries of (9) and (10). Since α and β

are positive values, the objective function in (8) is always increasing in di . Assume
(d∗

1 , . . . , d∗
N ) is optimal solution to (8) and it lies in the interior of the (9) and (10).

If we increase one arbitrary element of d∗
i , we can keep the solution feasible and

increase the objective function. Therefore it is not an optimal solution to our problem
and the optima must lie on the most confining constraint, the constraint that imposes
the largest restriction on the dose that can be delivered to the tumor [either (9) or (10)].

If we ignore the second constraint in (8) and only consider the BED limit for early
responding tissues, we can find the limit of

∑N
i=1 d

2
i from the first constraint as

N∑
i=1

d2i ≤ Ce − δe
∑N

i=1 di
βe
αe

δ2e
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1314 H. Badri et al.

Since β is a positive value, we see that:

N∑
i=1

αdi + βd2i ≤
N∑
i=1

αdi + β
Ce − δe

∑N
i=1 di

βe
αe

δ2e

If we maximize the upper bound of the above equation, we can find the optimal
answer to (8) while only considering one constraint. The upper bound optimization
problem can be defined as:

Maximizedi

N∑
i=1

αdi + β
Ce − δe

∑N
i=1 di

βe
αe

δ2e

Subject to:

N∑
i=1

(
δedi + βe

αe
δ2e d

2
i

)
= Ce

di ≥ δ ∀i

By rearranging objective function, we can simplify it as:

Maximizedi

(
α − βαe

βeδe

) N∑
i=1

di + β
αeCe

βeδ2e
(11)

The objective function can be interpreted as follows:

(a) Ifα− βαe
βeδe

> 0, the larger
∑N

i=1 di while restricted to the surface of the hypersphere
is, the larger the damage effect on tumor is.

(b) If α − βαe
βeδe

< 0, the smaller
∑N

i=1 di while restricted to the surface of the hyper-
sphere is, the larger the damage effect on tumor is.

Note thatwhenα− βαe
βeδe

= 0, any point of the early constraint boundary is optimal. If
we repeat the above stepswhen only considering the second constraint (late responding
tissues), we will get:

Maximizedi

(
α − βαl

βlδl

) N∑
i=1

di + β
αlCl

βlδ
2
l

Subject to:

N∑
i=1

(
δldi + βl

αl
δ2l d

2
i

)
= Cl

di ≥ δ ∀i
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The objective function can be interpreted as above in (a) and (b) with respect to
the sign of the α − βαl

βlδl
. Therefore optimal schedule can be found by minimizing

and maximizing
∑N

i=1 di on the feasible boundaries (9) and (10). We first need the
following technical lemma.

Lemma 1 The set of d1 = · · · = dN =
√

C
N + a and d1 = · · · = dN−1 = δ, dN =√

C − (N − 1)(δ − a)2 + a are maximizer and minimizer of
∑N

i=1 di under two con-
straints as

∑N
i=1(di − a)2 = C and di ≥ δ, respectively (C and δ are positive

numbers).

Proof The feasible region for the above model is compact and the objective function
is continuous on it. It is obvious from theWeierstrass theorem that optima exist (Pierre
1969). We can use the KKT conditions (Pierre 1969) to find the necessary conditions
for optima. We write down the KKT conditions (Pierre 1969) for the maximization
problem first. In particular we have the following Lagrangian:

L = −
N∑
i=1

di + ν

[
N∑
i=1

(di − a)2 − C

]
+

N∑
i=1

λi (di − δ)

The next step is constructing KKT conditions:

∂L

∂di
= −1 + 2ν(di − a) + λi = 0, i = 1, . . . , N

λi (di − δ) = 0, i = 1, . . . , N
N∑
i=1

(di − a)2 = C

ν = f ree, λi ≤ 0, i = 1, . . . , N

From the second condition, either λi = 0 or di = δ. Without loss of generality
we assume that there is an integer m such that for i = 1, . . . ,m, di = δ and for
i = m + 1, . . . , N , λi = 0. By using the first condition, for i = 1, . . . ,m, we have
−1+ 2ν(δ − a) + λi = 0 and for i = m + 1, . . . , N , we have −1+ 2ν(di − a) = 0.
Therefore we have optimal di as follow:

di =
{

δ, i = 1, . . . ,m
1
2ν + a, i = m + 1, . . . , N .

Note that ifm = 0 then this corresponds to the Hyper-Fractionated schedule (all doses
equal), and if m = N − 1 this is the Semi-Hypo-Fractionated schedule (all doses but
one equal to minimum value of δ).

From the third condition, we have

dm+1 = · · · = dN =
√
C − m(δ − a)2

N − m
+ a
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1316 H. Badri et al.

Using the previous two displays, we can get

N∑
i=1

di = mδ + a(N − m) +
√

(N − m)[C − m(δ − a)2]

Since ∂
∂m

∑N
i=1 di is always negative for all δ, then smaller m results in bigger

values of
∑N

i=1 di . Therefore m = 0 maximizes
∑N

i=1 di . If we repeat these steps for
the minimization problemwe will get the second statement of the lemma (in particular
we get that m = N − 1). 
�

The previous lemma shows how the maximizer or minimizer of
∑N

i=1 di on the
surface of a N dimensional hypersphere can be located. Therefore when the hypersh-
peres HSE and HSL do not intersect we can easily find the optimal solutions based on
the relative magnitude of the ratios of the α

β
for the tumor and sensitive tissues using

Lemma 1.
We now consider the setting where the hyperspheres HSE and HSL intersect on the

feasible region, i.e.when all coordinates are greater than δ.Note that if the hyperspheres
intersect on this region then one of them will be closer to the origin along the hyper-
fractionation plane, i.e. the plane d1 = · · · = dN , we will denote this as HS1 from
this point forward. The remaining hypersphere will be denoted by HS2. We identify
HS1 with either HSE or HSL by setting

I = argmin

{√
1

N

αeCe

βeδ2e
+ 1

4

α2
e

β2
e δ

2
e

− 1

2

αe

βeδe
,

√
1

N

αlCl

βlδ
2
l

+ 1

4

α2
l

β2
l δ2l

− 1

2

αl

βlδl

}
,

(12)

if I = 1 then HS1 = HSE; otherwise HS1= HSL. We will now study the extrema of∑N
i=1 di on the intersection of HS1 and HS2.

Lemma 2 The minimum (maximum) value of
∑N

i=1 di when HS1 (HS2) is the most
restrictive constraint occur at the intersection of HS1 and HS2.

Proof First we find the separating hyperplane of the two hyperspheres at their inter-
section. Assume the two hyperspheres have the following equations:

N∑
i=1

(di − a1)
2 = C1

N∑
i=1

(di − a2)
2 = C2

For every point (d1, . . . , dN ) that lies on the intersection of two hyperspheres, the
following two equations are satisfied:
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N∑
i=1

d2i − 2a1

N∑
i=1

di + Na21 = C1

N∑
i=1

d2i − 2a2

N∑
i=1

di + Na22 = C2

Hence by subtracting above equations, we can get:

N∑
i=1

di = C1 − Na21 − C2 + Na22
2(a2 − a1)

Therefore the intersection of two hyperspheres can be described by a separating hyper-
plane having above equation. The regions where the first and second hypersphere are
the most restrictive constraints can be viewed as

A1 =
{

(d1, . . . , dN ) :
N∑
i=1

di ≥ C1 − Na21 − C2 + Na22
2(a2 − a1)

;
N∑
i=1

(di − a1)
2 = C1

}

A2 =
{

(d1, . . . , dN )

∣∣∣∣∣
N∑
i=1

di ≤ C1 − Na21 − C2 + Na22
2(a2 − a1)

;
N∑
i=1

(di − a2)
2 = C2

}

The minimization of
∑N

i=1 di on A1 is given by the following:

Minimize
N∑
i=1

di

subject to

N∑
i=1

(di − a1)
2 = C1

N∑
i=1

di ≥ C1 − Na21 − C2 + Na22
2(a2 − a1)

Obviously the minimum value of the objective function in the previous display

occurs when
∑N

i=1 di = C1−Na21−C2+Na22
2(a2−a1)

.

The maximization of
∑N

i=1 di when HS2 is the most restrictive constraint can be
formulated as:

Maximize
N∑
i=1

di
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1318 H. Badri et al.

subject to

N∑
i=1

(di − a2)
2 = C2

N∑
i=1

di ≤ C1 − Na21 − C2 + Na22
2(a2 − a1)

The equation
∑N

i=1 di = C1−Na21−C2+Na22
2(a2−a1)

satisfies the first constraint and also
defines the upper bound of objective function, therefore it is the optimal solution to
the maximization problem. 
�

In Lemma 1, the problem of optimal fractionation was considered with only a
single normal tissue constraint. In the previous lemma, we studied optimizing the
total radiation delivered when considering two overlapping normal tissue constraints.
In the next result we use these two lemmas to solve the optimal fractionation problem
posed in (8).

Before stating the result we need further notation. In particular, if the two hyper-
spheres HSE and HSL do not intersect then denote the parameters of the more
restrictive hypersphere by αx , βx , and δx . If the hyperspheres intersect then denote the
parameters corresponding to HS1 [as identified in (12)] by α1, β1, and δ1; similarly
denote the parameters corresponding to HS2 by α2, β2, and δ2

Theorem 2 There are three different solutions for (8). The solutions may be grouped
into the three following classes:

I. If α − βαl
βlδl

and α − βαe
βeδe

are both positive; or HSE and HSL don’t intersect and

α− βαx
βx δx

is positive, then the optimal dose vector is a hyperfractionationed schedule
with all doses equal to

d∗ = min

{√
1

N

αeCe

βeδ2e
+ 1

4

α2
e

β2
e δ

2
e

− 1

2

αe

βeδe
,

√
1

N

αlCl

βlδ
2
l

+ 1

4

α2
l

β2
l δ2l

− 1

2

αl

βlδl

}
.

(13)

II. If both α − βαl
βlδl

and α − βαe
βeδe

are negative; or HSE and HSL don’t intersect

and α − βαx
βx δx

is negative then the optimal dose vector is a semi-hypofractionated
schedule where

di = min

⎧⎨
⎩
√

αeCe

βeδ2e
+ N

(
1

2

αe

βeδe

)2

− (N − 1)

(
δ + 1

2

αe

βeδe

)2

−1

2

αe

βeδe
,

√
αlCl

βlδ
2
l

+ N

(
1

2

αl

βlδl

)2

− (N − 1)

(
δ + 1

2

αl

βlδl

)2

− 1

2

αl

βlδl

⎫⎬
⎭

d j = δ ∀ j = 1, . . . , N ( j 	= i). (14)
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III. If HSE and HSL intersect, α− βα1
β1δ1

is negative and α− βα2
β2δ2

is positive the solution
vector lies on the surface of the two hyperspheres:

N∑
i=1

(
di + 1

2

αe

βeδe

)2

= αeCe

βeδ2e
+ N

(
1

2

αe

βeδe

)2

(15)

N∑
i=1

(
di + 1

2

αl

βlδl

)2

= αlCl

βlδ
2
l

+ N

(
1

2

αl

βlδl

)2

(16)

Proof First we analyze the case that HSE and HSL do not intersect. In this case, one
of them is redundant and we need only consider the most restrictive hypersphere. For
two-dimensional case, this problem is described in Fig. 2. In Fig. 2a, the ratio of βαl

βlδl
or

βαe
βeδe

related to the smaller circle determines the optimal schedule regime and in Fig. 2b,

the optimal doses can be found with respect to the ratio of βαl
βlδl

or βαe
βeδe

related to the

bigger circle. According to Lemma 1,
∑N

i=1 di is maximized when d1 = · · · = dN
(Hyper-Fractionated) and is minimized when one of the di is big and others take δ

(Semi-Hypo-Fractionated). Optimal doses can be calculated by the maximum amount
of BED that late and early tissues can bear. From Lemma 1 and the discussion after
(11), the optimal doseswhenα− βαx

βx δx
≥ 0 are given by the hyper-fractionated schedule

with all di = d∗ and

d∗ = min

{√
1

N

αeCe

βeδ2e
+ 1

4

α2
e

β2
e δ

2
e

− 1

2

αe

βeδe
,

√
1

N

αlCl

βlδ
2
l

+ 1

4

α2
l

β2
l δ2l

− 1

2

αl

βlδl

}
.

When α − βαx
βx δx

< 0 the optimal solution are given by the Semi-Hypo-Fractionated
schedules

di = min

⎧⎨
⎩
√

αeCe

βeδ2e
+ N

(
1

2

αe

βeδe

)2

− (N − 1)

(
δ + 1

2

αe

βeδe

)2

−1

2

αe

βeδe
,

√
αlCl

βlδ
2
l

+ N

(
1

2

αl

βlδl

)2

− (N − 1)

(
δ + 1

2

αl

βlδl

)2

− 1

2

αl

βlδl

⎫⎬
⎭

d j = δ ∀ j = 1, . . . , N ( j 	= i)

In the case that HSE and HSL intersect,we face four different situations:

1. α − βα1
β1δ1

≥ 0 and α − βα2
β2δ2

≥ 0: In this case, we want to maximize
∑N

i=1 di on

both hyperspheres. According to Lemma 1, the maximum value of
∑N

i=1 di on the
surface of a hypersphere is given by a Hyper-Fractionated schedule. Based on our
assumption, Hyper-Fractionated schedule is only feasible onHS1. In Lemma 2, we
showed that theminimum (maximum) of

∑N
i=1 di on the boundaries ofHS1 (HS2),

occurs at the intersection of two hyperspheres. Therefore d1, . . . , dN obtained by
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Fig. 2 a, bMaximum and minimum conditions of d1 + d2 under the constraint for the radiation effect on

tumor (two hyperspheres don’t intersect). The ratio of βαl
βl δl

or βαe
βeδe

related to the smaller circle determines
the optimal schedule regime in a and the optimal doses (d1 and d2) can be found with respect to the ratio of
βαl
βl δl

or βαe
βeδe

related to the bigger circle in b. c Feasible region for two-dimensional case (two hyperspheres
intersect). The feasible boundaries are arcs between points Z1, Z2, Z3, Z4 andZ5. Themaximum (minimum)
value of d1 + d2 on both quadrants happens at Z3 (Z1 and Z5). Also the maximum (minimum) value of
d1 + d2 on the red (green) quadrant and the minimum (maximum) value of d1 + d2 on the green (red)
quadrant happen at Z2 and Z4 (either Z3 or Z1 and Z5) (color figure online)

Hyper-Fractionated schedule on hypersphere 1 have the biggest value of
∑N

i=1 di
among all feasible points. Thus the optimal schedule is Hyper-Fractionated sched-
ule with equal doses obtained from (13). For 2-dimensional case, the feasible
boundaries in the Fig. 2c are arcs between points Z1, Z2, Z3, Z4 and Z5. We draw
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Optimization of radiation dosing schedules for... 1321

4 contours of the function d1 + d2 = c for different c in Fig. 2c (contours are
illustrated by l1, l2, l3 and l4 which except l1, others touch feasible region). In
Fig. 2c, a point with the largest distance from origin is Z3.

2. α− βα1
β1δ1

< 0 andα− βα2
β2δ2

< 0: In this case, the optimal schedule is a schedulemin-

imizing
∑N

i=1 di on both hyperspheres. According to Lemma 1, minimum value
of
∑N

i=1 di on the surface of the hypersphere restricted to all coordinates being
greater than δ is obtained by a Semi-Hypo-Fractionated schedule. By definition the
Semi-Hypo-Fractionated schedule is only feasible on HS2. Based on Lemma 2,
we know that the intersection has the lowest (highest) value of objective function
on the boundaries of HS1 (HS2), therefore the optimal schedule is located on the
boundaries of HS2 and is given by the Semi-Hypo-Fractionated schedule (14).
For two-dimensional case, the optimal solution is the contour with the smallest
distance from origin on l0 crossing feasible region. By looking at Fig. 2c, points
having this feature can be either Z1 or Z5.

3. α− βα1
β1δ1

≤ 0 and α− βα2
β2δ2

> 0: In this case, we are looking for the minimum value

of
∑N

i=1 di on the boundary of HS1 and its maximum on the boundary of HS2.
From Lemma 1 and scenarios 1 and 2 above, we know that schedules having this
property lie at the intersection of HS1 and HS2. Therefore we can reach optimal
schedule which is represented by a N − 1 dimensional hypersphere satisfying
(15) and (16). For two dimensional case, the feasible region of circle 1 are two
arcs which connect Z1 to Z2 and Z4 to Z5. Also the feasible region of circle 2
is the arc which connects Z2 to Z4. If we move from Z1 (Z5) toward Z2 (Z4),
d1 + d2 increases and if we move from Z3 toward Z2 or Z4, d1 + d2 decreases. So
the optimal point on both circles are Z2 and Z4 which maximize d1 + d2 on the
feasible region of circle 1 and minimize d1 + d2 on the feasible region of circle
2.

Note that the situation where HSE and HSL intersect, α− βα1
β1δ1

is positive and α− βα2
β2δ2

is negative cannot happen, because requiring α1
δ1β1

< α
β

< α2
δ2β2

and the definition of
HS1 (and HS2) in (12) leads to a contradiction of the intersection HSE and HSLwhere
di ≥ δ ≥ 0 . 
�

In setting (4) we are not able to exactly specify the optimal dose allocation, but
instead specify that the dose allocation vector lies on the intersection of two hyper-
sphere surfaces. However, it should be noted that any vector (d1, . . . , dN ) satisfying
(15) and (16) will necessarily have both

∑N
i=1 di and

∑N
i=1 d

2
i fixed. In particular, the

effect of any dose allocation vector satisfying (15) and (16) on either normal or tumor
tissue is fixed.

3.3.2 Model II

In the second model, we only optimize inter-fraction intervals while assuming that the
optimal number of fractions is N . This model can be defined as:

123



1322 H. Badri et al.

Minimizeti ln {(Rc4 + c5)(1 + R) + [−R(c5 + Rc4 − c2)

+(c6 − Rc2 + Rc3)γ0e
−(tN−1−μ)2/σ 2

] [
(1 − γ0)

N−2∏
i=1

(1 − γ0e
−(ti−μ)2/σ 2

)

]}

(17)

Subject to:

N−1∑
i=1

ti = Tp

ti ≥ ε ∀i.

For ease of notation we define the terms A = −R(c5 + Rc4 − c2) and B = (c6 −
Rc2 + Rc3)γ0.

Theorem 3 If σ < 2 time units, A > 0, and there exists k ≥ 5 such that

Nmax (μ + σ
√
k) < Tp (A)

4e−k < γ0 (A1)

then the optimal inter-fraction times are of the form ti ∈ [μ,μ+σe−k/2] for i ≤ N−2,
and tN−1 = Tp − (t1 + · · · + tN−2).

Proof Instead of optimizing the logarithm of (17), we can minimize the term inside
the logarithm. By replacing the value of ci with their definitions in (5), it can be seen
that B = −γ0A and therefore the objective function can be simplified by ignoring the
terms A, (Rc4 + c5)(1+ R) and (1− γ0), since they are positive constants. Again we
optimize the logarithm of the objective function and observe:

Minimizeti

N−1∑
i=1

ln(1 − γ0e
−(ti−μ)2/σ 2

)

Subject to:

N−1∑
i=1

ti = Tp

ti ≥ ε, ∀i

Since the feasible region for the above optimization problem is compact and the
objective function is continuous on it, the problem admits at least one optimum. It
is evident that our mathematical model is not convex, so that we can only use the
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optimality necessary conditions provided by the Karush Kuhn Tucker (KKT) (Pierre
1969). The first step is constructing the Lagrangian function. Thus for the vector of
inter-fraction times t = (t1, . . . , tN−1):

L(t, ν, λ) =
N−1∑
i=1

ln
(
1 − γ0e

−(ti−μ)2/σ 2
)

+ ν

(
N−1∑
i=1

ti − Tp

)
+

N−1∑
i=1

λi (ti − ε)

(18)

We thus have the KKT conditions:

∂L

∂ti
= 2γ0(ti − μ)

σ 2(e(ti−μ)2/σ 2 − γ0)
+ ν + λi = 0; ∀i (19)

N−1∑
i=1

ti − Tp = 0 (20)

λi × (ti − ε) = 0, ∀i (21)

ti ≥ ε, λi ≤ 0, ν : f ree (22)

From (21), it is obvious that one of the conditions ti = ε or λi = 0 must hold
for each i , and further that only one of these conditions may hold at a time. Consider
two disjoint sets S1 and S2 such that for i ∈ S1, ti = ε, for i ∈ S2, λi = 0, and
S1 ∪ S2 = {1, . . . , N − 2}.

Assume that S1 	= ∅, and observe that for i ∈ S1, we have the following KKT
condition:

∂L

∂ti
= 2γ0(ε − μ)

σ 2(e(ε−μ)2/σ 2 − γ0)
+ ν + λi = 0. (23)

Since ε < μ, 0 ≤ γ0 ≤ 1 and λi ≤ 0, then ν > 0; thus if S1 	= ∅, we have ν > 0.
Also for every i ∈ S2, we have:

∂L

∂ti
= 2γ0(ti − μ)

σ 2(e(ti−μ)2/σ 2 − γ0)
+ ν = 0. (24)

Thus from (24), we see ti < μ for every i ∈ S2. Since we impose the condition
N ≤ Nmax , and assumption (A) we see that if S1 	= ∅ then we cannot satisfy condition
(20). Therefore we will always have ν ≤ 0, S1 = ∅ and λi = 0. Note that if ν ≤ 0,
then necessarily the optimal ti ≥ μ.

Next define the function

h(t) = 2γ0(t − μ)

σ 2
(
e(t−μ)2/σ 2 − γ0

) . (25)
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From straightforward calculations we observe that h′(t) < 0 for t ≥ μ + σ/
√
2.

For k from condition (A) define νk = h
(
μ + σ

√
k
)
, and observe that

νk = max
t≥μ+σ

√
k
h(t).

The previous display implies that if we choose ν such that −ν ≥ νk then in order
to satisfy Eq. (24) it is necessary that ti ≤ μ + σ

√
k for all i . However condition

(A) will then imply it is impossible to satisfy condition (20). We thus conclude that
ν ∈ [−νk, 0].

It now follows that the optimal times necessarily belong to the set

{μ ≤ t ≤ Tp : h(t) ∈ [0, νk]} ⊂ [μ,μ + ε(k)] ∪ [μ + σ
√
k, Tp],

where ε(k) = inf{t ≥ μ : h(t) = νk}. Note that since we require k ≥ 5 we have that
ε(k) ≤ e−k/2σ . Define the set of indices with large inter-fraction times as

J = { j : t j ∈ [μ + σ
√
k, Tp]}.

In order to establish the result it remains to show that for any optimal set of inter-
fraction times |J | = 1. Thus consider a set of inter-fraction times t = (t1, . . . , tN−1)

such that t1 + . . . + tN−1 = Tp and |J | ≥ 2. Define

tm = min{t j ; j ∈ J }
tM = max{t j ; j ∈ J }.

Then consider the new set of feasible inter-fraction times t′ = (t ′1, . . . , t ′N−1), where
t ′m = μ and t ′M = tM + (tm − μ). We will now establish that

L(t′, ν, λ) ≤ L(t, ν, λ). (26)

Define

(t) = log
(
1 − γ0e

−(t−μ)2/σ 2
)

,

then in order to establish (26) it suffices to show

(tm) + (tM ) − (t ′m) − (t ′M )

= log

⎛
⎝
(
1 − γ0e−(tm−μ)2/σ 2

) (
1 − γ0e−(tM−μ)2/σ 2

)
(1 − γ0)

(
1 − γ0e−(t ′M−μ)2/σ 2

)
⎞
⎠ > 0,

or equivalently

(
1 − γ0e

−(tm−μ)2/σ 2
) (

1 − γ0e
−(tM−μ)2/σ 2

)
> (1 − γ0)

(
1 − γ0e

−(t ′M−μ)2/σ 2
)

.

123



Optimization of radiation dosing schedules for... 1325

To establish the previous display it suffices to show that

γ0 > γ0e
−(t ′M−μ)2/σ 2 + e−(tm−μ)2/σ 2 + e−(tM−μ)2/σ 2

,

which is of course implied by

e−(tm−μ)2/σ 2 + e−(tM−μ)2/σ 2
< γ0

(
1 − e−(t ′M−μ)2/σ 2

)
. (27)

Note that by construction tm ≥ μ + σ
√
k and tM ≥ μ + σ

√
k, and therefore

e−(tm−μ)2/σ 2 + e−(tM−μ)2/σ 2 ≤ 2e−k .

We also have that t ′M = tM + tm −μ ≥ μ+2σ
√
k and therefore e−(t ′M−μ)2/σ 2 ≤ e−2k ,

or in other words

1 − e−(t ′M−μ)2/σ 2 ≥ 1 − e−2k .

Thus (27) is implied by

2e−k ≤ γ0(1 − e−2k). (28)

The quadratic equation gives that the previous display holds for

e−k ≤
√
1 + γ 2

0 − 1

γ0
.

However, we use the inequality

√
1 + γ 2

0 − 1

γ0
≥ γ0

4

to see that (28) is implied by condition (A1). 
�
It should be noted that for the parameters studied in this work we are able to take

k = 15. Therefore the interval [μ,μ+σe−k/2] in any practical setting can be thought
of as simply the point {μ}. Thus we will assume in Sect. 4 that the optimal treatments
are of the form that N −2 inter-fraction times are of lengthμ and the remaining length
is given by Tp − (N − 2)μ.

In order to prove Theorem 3 we needed to assume A > 0. One setting where we
would lose that assumption is if rs > rd , in which case the goal would no longer be
to minimize the differentiated cell population but instead to minimize the stem-like
cell population. Due to the known association between stem-like cells and treatment
resistance it might be the case that when dealing with larger schedules and longer time
frames it might be of general interest to minimize the stem-like cell population. In
future work we will explore counter parts to Theorem 3 when A < 0.
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3.4 Optimal number of fractions

As mentioned earlier, there are three types of decision variables in this problem (N ,
{di } and {ti }). By fixing N we were able to locate optimal values of {di } and {ti }
using methods of non-linear programming. In order to find the optimal value of N ,
we implemented the following algorithm.

Inputs:

• Nmax : The maximum number of radiation fractions.

Output:

• N∗: The optimal number of radiation fractions.
• t∗i : The optimal intermediate times between radiation fractions.
• d∗

i : The optimal radiation doses.

Steps:

1. Put N∗ = 1, and set global objective function as ∞.
2. Calculate the optimal t∗i , i = 1, . . . , N∗ − 1 using the approach presented in

3.3.2.
3. Find the optimal doses for N∗ using methodology presented in Sect. 3.3.1.
4. Calculate objective function using t∗i and d∗

i in (5). If it improves the objective
function, save it as the new global optimal solution. Otherwise if N∗ < Nmax set
N∗ = N∗ + 1 and go to step 2, otherwise return the optimal global d∗

i , t
∗
i and N∗.

Since this approach is guaranteed to terminate after Nmax steps and each step is
a direct calculation based on straightforward formulas we see that as long as Nmax

is not too large this is a feasible algorithm. In our examples we consider Nmax to be
at most 21, but it is clear that this algorithm would also remain feasible for the more
realistic value of Nmax = 75.

4 Empirical results

4.1 Parameter values

In order to estimate model parameters, the same approach implemented by Leder et al.
(2014) is used. Model fit is carried out by minimizing the mean square error (MSE)
between the model predictions and the observed values of volumetric time series data
presented in the paper by Leder et al. (2014). Since we assume the same level of radio-
sensitivity for both stem-like and differentiated cells, ρ is excluded from our parameter
set. The minimization is performed under two constraints. First, the stem-like cells
divide less frequently than the differentiated cells, and second that the differentiated
cells exit quiescencemore quickly than stem-like cells. In addition, based on sensitivity
analysis performed by Leder et al. (2014), there are several feasible ranges for some
of the model parameters. The relevant ranges for these parameters are reported in the
Table 2. The Gradient Descent method is utilized to find the optimal values of model
parameters presented in Table 2. The remainder of the tumor parameters in Table 3 are
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Table 2 The feasible range for
several of our model parameters
based on the sensitivity analysis
performed by Leder et al. (2014)

Parameter Range Unit

α [0.005, 0.22] 1/Gy

β [0, 0.0025] 1/Gy2

γ0 [0.15, 1] –

rd [0.0028, 0.0045] 1/h

rs [0, 0.0015] 1/h

as [0, 0.0025] 1/h

Td [0, 160] h

λd [0.023,∞] 1/Gy

μ [1.6, 4] h

σ 2 [0, 2] h2

Table 3 Parameters used for finding optimal schedule derived by minimizing the mean square error (MSE)
between the model predictions and the observed values of volumetric time series data presented by Leder
et al. (2014)

Parameter Value Unit Parameter Value Unit

α 0.2 1/Gy rs 0.0008 1/h

β 0.0011 1/Gy2 as 0.0019 1/h

γ0 0.4 – R 20 –

ρ 1 – μ 3.25 h

Td 159.01 h σ 2 1.46 h2

λd 0.0654 1/h Tp 120 or 168 h

Ts 477.02 h Te 1000 h

λs 0.0328 1/h αe/βe 10 Gy

rd 0.0038 1/h αl/βl 3 Gy

based on the values reported by Leder et al. (2014). It should be noted that quiescence
exit for differentiated cells was modeled by a random variable Ld + Xd by Leder
et al. (2014) where Ld is a positive constant and Xd is an exponential random variable
with mean 1/λd for a positive rate λd . In order to allow for a mathematically tractable
model we replaced Ld + Xd with the constant value Td = Ld + 1/λd . An exactly
analogous approach is used for the stem-like cell exit time from quiescence.

For normal tissueswe setα = 0.315/Gy for both late-responding and early respond-
ing tissues. The α/β ratio is chosen to be 3 and 10Gys, for the late-responding and
early responding normal tissues, respectively (Yang and Xing 2005). We use the BED
of the standard scheme (2 Gys/day × 5) as the maximum limit of BED for early
and late responding normal tissues, Ce and Cl , respectively. Moreover we study opti-
mal schedules for different values of δe and δl . Table 3 summarizes the values of
model parameters used in this paper for tumor, early and late responding normal tis-
sues.

We tested our optimization model for schedules with total time of 120h when
considering weekends as break and 168h while allowing treatments during weekend.
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Table 4 Optimal dose per fraction for different δe and δl (d
∗
1 = d∗

2 = · · · = d∗
N )

Number of fractions δe = δl

0.25Gy 0.5Gy 0.75Gy 1Gy

Nmax = N∗ = 15 0.6882 0.7083 0.727 0.7446

Nmax = N∗ = 21 0.4939 0.5108 0.5268 0.542

The response to a given radiation schedule in the context of our mathematical model
is measured by the number of tumor cells present 6weeks after treatment conclusion
as an endpoint (approximate tumor doubling time for standard schedule).

4.2 Determination of optimum dosing schedules

Since in clinical practice, patients may visit the clinic at most three times a day, two
values for Nmax are considered: Nmax = 15where radiation treatments are not allowed
onweekends and Nmax = 21where radiation treatments are allowed duringweekends.
We constrained the number of patient weekly visits to the clinic by Nmax , however
when solving model II we allowmore than 3 visits per day. In both cases, the optimum
number of fractions equals to N∗ = 15 and N∗ = 21, respectively. Table 4 displays
the optimum dose per fraction (optimum times can be calculated from Theorem 3) for
δe = δl = 0.25, 0.5, 0.75, 1. As expected, the total dose increases with the number of
fractions and the dose proportion received by normal tissues. For the same amount of
complications in early responding and less amount of complications in late responding
tissues than standard schedule, we can increase the total dose by 3.23–11.69% for
N = 15 and by 3.72–13.82% for N = 21 for low and high value of δ, respectively.
The optimal dosing times as determined by Theorem 3 are presented in Fig. 3 for
Tp = 120 and Tp = 168.

Due to clinical restrictions, the optimal schedule provided by Theorem 3 is difficult
to implement in practice. For example based onour parameter set, the solution toModel
II recommends 14 fractions (Nmax = 15) or 20 fractions (Nmax = 21) of radiation in
the first two days of their treatment and receive the last dose of radiation on the last day
of treatment. In order to study the impact of working hour constraints on the objective
function, we find the near optimal schedules in the case that working hour constraints
are imposed on the schedules. Specificallywe say thatworking hour constraints require
that radiation can only be delivered hourly between 8 a.m. and 5p.m. It is not possible to
find the exact optimal schedule while not violating clinical operating hour constraints
using the approach presented in Sect. 3 . In this case, our problem is a non-linear
interger-programmingproblem, andwewere not able tofind the exact optimal solution.
We thus utilized the heuristic method of simulated annealing (SA) to locate near
optimal schedules satisfying the working hours constraint. In all examples we use 5
million iterations of the SAalgorithm. Figure 3 displays the optimal treatment schedule
while complying with clinical operating hour constraints for δe = δl = 0.25, 0.5, 0.75
and 1, respectively. These data are obtained with maximum fractional dose constraint
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Table 5 BED of early responding tissues for different schedules

Schedules δe

0.25 0.5 0.75 1

Standard schedule 2.625 5.5 8.625 12

Constrained schedule (SA) 2.6242 5.4969 8.618 11.9875

Optimal schedule, N = 15 2.625 5.5 8.625 12

Optimal schedule, N = 21 2.625 5.5 8.625 12

Table 6 BED of late responding tissues for different schedules

Schedules δl

0.25 0.5 0.75 1

Standard schedule 2.9167 6.667 11.25 16.6667

Constrained schedule (SA) 2.9141 6.6563 11.2266 16.625

Optimal schedule, N = 15 2.7286 5.9389 9.6656 13.9403

Optimal schedule, N = 21 2.5997 5.8196 9.3899 13.4397

of 5Gys, administering doses in a multiple of 0.25Gy of radiation in a single dose
and no more than 3 daily visits to the clinic by patient. Furthermore in each iteration,
we insure that any schedule created meets the BED constraints for normal tissue. The
structure of the optimized therapy focuses most of the radiation on the first and the
last slots, has three positive slots per day separated by μ (3h) and has a large dose of
radiation (4Gys) in an arbitrary slot.

Tables 5 and 6 display BED for early and late responding tissues of different sched-
ules. It is found that the optimized therapy has a BED for late responding tissues
that is strictly less than that of the standard and optimized therapy obtained by SA.
For the optimal schedules, while delivering more total dose to the tumor, we can
reduce BED for late responding tissues for low and high values of δ by 6.5–20%,
respectively.

Figure 4 and Table 7 show the predicted tumor growth in response to standard,
optimum constrained and unconstrained schedules for different δe and δl . It is found
that the optimum schedules without imposing clinical operating constraint are better
than other schedules. The model predicts that optimal unconstrained schedules can
increase the tumor doubling time by 400–450h (37–41%) than standard schedule for
low and high values of δ, respectively. Since we can deliver more total dose for high
δe and δl , tumor doubling time increases with the proportionality factor for the normal
tissues.The optimum schedule found under working hour constraints is also able to
improve predicted survival time. In particular tumor doubling time changes by 325h
(30%) compared to the standard schedule. Note that there is only a loss of roughly
100h of survival time by imposing working hour constraints.
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5 Conclusion

In this work, we have analyzed the problem of finding optimum radiation adminis-
tration schedules for PDGF-driven primary glioblastomas (GBMs). In particular, we
aimed to identify the optimized total dose, number of fractions, dose per fraction and
inter-fraction intervals for a schedule with a pre-determined fixed treatment duration.
We used a simplified version of our previously published model (Leder et al. 2014)
to investigate the dynamics of radiation response in two separate populations of cells,
stem-like and differentiated cells. We assumed that the dosage delivered to the tumor
is constrained by two sensitive structures: the early responding normal tissues that
have a relatively high turnover rate, and the late responding tissues that have a slow
to undetectable turnover rate.

We have shown that if we fix the number of fractions, our problem can be split
into two independent models that can be solved separately. The first model contains
only the dose per fraction (which can be used to determine the optimal total dose) as
its decision variable. In contrast, the second model only has inter-fraction intervals
as its decision variable. For the first model, we proved that any solution must lie on
the boundary of the feasible set, i.e., the maximum allowable BED for (at least) one
normal tissue complying the second normal tissue constraint. We found that the ratio
of the dose that normal tissues absorb and the magnitude of the alpha/beta ratio for
both normal tissue and the tumor determine the optimal radiation scheme. Depending
on the model parameters, the optimal schedule can be either Hyper-Fractionated or
Semi-Hypo-Fractionated (i.e., a fractionation schedule where all doses, but one are
equal to minimum value of δ). Note that this solution is valid for the linear-quadratic
model with two normal tissue constraints, and is not specific to the de-differentiation
model previously developed by Leder et al. (2014).

For the second model, we showed that optimal inter-fraction intervals only depend
on the time dynamics of the dedifferentiation process and treatment duration. In par-
ticular, in a treatment with N fractions, we found that N − 2 inter-fraction intervals
are equal to the dose spacing that leads to the maximal amount of cell reversion to the
stem-like state (μ), and can be calculated from number of fractions, treatment duration
and μ. Lastly, since the total number of fractions is generally limited to be a rather
small number, it is then feasible to search through all possible fraction numbers and
find the optimal number of fractions.

Using data gathered previously (Leder et al. 2014), we parametrized our model to
investigate the behavior of optimal schedules. The theoretical optimum is observed to
be a hyper-fractionated schedule with the maximum number of allowable fractions.
This optimum is found to increase the model-predicted doubling times from roughly
1000h with standard therapy to roughly 1500h. If we impose realistic operating hours
for a radiation clinic (i.e., 8 a.m. to 5 p.m. every day), then the optimization of inter-
fraction times becomes too difficult to solve mathematically. We thus utilized the
heuristic method of simulated annealing, which is able to find schedules that satisfy
working hours constraints and have very good performance. Interestingly we found
that for the parameters we considered, there is only a minor cost to adding the working
hours constraint. Specifically, Fig. 4 shows that the doubling time for the working
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hour constraint problem is roughly 1400h versus the 1500h obtained by ignoring the
constraint.

An important extension of this work will be to consider the problem of larger scale
schedules, i.e., 60Gy over 6weeks. A mathematical issue that will make the solution
of such problems difficult is that it might not be biologically reasonable to assume
that ρ = 1 (radio-sensitivity factor for stem-like cells) any longer. In particular, over
such long time scales it could be that the stem-like cell population plays a much larger
role in tumor repopulation and it is therefore important to incorporate the increased
radio-resistance of stem-like cells. If we allow ρ < 1 then it appears to us that it will
no longer be possible to mathematically optimize this system and it will be necessary
to rely purely on heuristic approaches such as simulated annealing. This is currently
the subject of ongoing work.

This work considers the problem of finding radiation schedules that optimally delay
regrowth of tumor populations. The response to radiation is based on the model devel-
oped by Leder et al. (2014). While the parameters for the present work are focused
on glioma and a particular mouse models of the PDGF-driven subtype of the disease,
our work is applicable to a wider range of cancers that are treated via ionizing radi-
ation. In particular, we are very eager to further investigate additional cancers where
we can leverage our ability to split the optimization problem (7) into two tractable
optimization problems.
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Appendix

Technical lemma

We prove here a technical lemma, which is quite standard but we provide a proof for
completeness.

Lemma 3 For a > 0 and f a bounded function on [0, a] and continuous at 0,

lim
ν→∞ ν

∫ a

0
e−νy f (y)dy = f (0).

Proof First note that

ν

∫ a

0
e−νy f (y)dy − f (0) = ν

∫ a

0
e−νy( f (y) − f (0))dy − f (0)e−aν,

and it thus suffices to establish that

lim
ν→∞ ν

∫ a

0
e−νy( f (y) − f (0))dy = 0.
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For ν > 0, define (ν) = log(ν)/ν and then consider the decomposition

ν

∫ a

0
e−νy( f (y) − f (0))dy = ν

∫ (ν)

0
e−νy( f (y) − f (0))dy

+ ν

∫ a

(ν)

e−νy( f (y) − f (0))dy

≤ max
y≤(ν)

| f (y) − f (0)|ν
∫ (ν)

0
e−νydy

+ 2max
y≤a

| f (y)|ν
∫ a

(ν)

e−νydy

≤ max
y≤(ν)

| f (y) − f (0)| + 2max
y≤a

| f (y)|/ν.

Both terms on the final line in the previous display then go to 0 as ν → ∞ due to our
assumptions on the function f . 
�
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