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Abstract

We analyze models for the evolutionary dynamics of viral or other infectious agents within a host. We study how the invasion of a

new strain affects the composition and diversity of the viral population. We show that—under strain-specific immunity—the

equilibrium abundance of uninfected cells declines during viral evolution. In addition, for cytotoxic immunity the absolute force of

infection, and for non-cytotoxic immunity the absolute cellular virulence increases during viral evolution. We prove global stability

by means of Lyapunov functions. These unidirectional trends of virus evolution under immune selection do not hold for general

cross-reactive immune responses, which introduce frequency-dependent selection among viral strains. Therefore, appropriate cross-

reactive immunity can lead to a viral evolution within a host which limits the extent of the disease.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many pathogenic microbes have high mutation rates
and evolve rapidly within a single infected host
individual. For example, the human immunodeficiency
virus (HIV) can generate mutations, on the time-scale
of weeks, which contribute to escape from immune
responses and drug treatment (Hahn et al., 1986;
Holmes et al., 1992; Fenyo, 1994; McMichael and
Phillips, 1997; Borrow et al., 1997; Nowak and May,
2000; Wei et al., 2003). The continuous evolution of
HIV within an infected individual over several years is
likely to shift the balance of power between the immune
system and the virus in favor of the virus. Hence,
evolution of HIV within a host can drive disease
progression (Nowak et al., 1991).
Here we analyse three models for the interaction

between a virus population and immune responses
(Perelson, 1989; McLean and Nowak, 1992; Perelson
et al., 1993; De Boer and Boerlijst, 1994; Nowak et al.,
1995a, b; Nowak and Bangham, 1996; De Boer and
Perelson, 1998; Bittner et al., 1997; Perelson and
Weisbuch, 1997; Wodarz et al., 1999; Regoes et al.,
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1998; Wahl et al., 2000; Nowak and May, 2000). The
models describe deterministic evolutionary dynamics in
terms of uninfected cells, infected cells, and strain-
specific immune responses. This means, there are n virus
strains (or mutants) which induce n immune responses.
The immune responses are directed at the strains that
induce them. Two of the three models describe cytotoxic
immunity: the immune responses reduce the life-time of
infected cells. The third model deals with non-cytotoxic
immunity: the immune responses reduce the rate of
transmission of virus from infected to uninfected cells.
Virus mutants can differ in all virological and immuno-
logical parameters.
In the absence of immune responses only one virus

strain can survive at equilibrium. This is the top
competitor with maximum fitness. In the presence of
immune responses there can be coexistence of several
different strains. Consider a population of viral strains
at a stable equilibrium. Imagine a new strain is
generated by mutation. We calculate the conditions for
the new strain to invade the existing population. There
are three possibilities: (i) the new strain may simply
be added to the existing population thereby increasing
the number of strains by one; (ii) the new strain may
invade the existing population and other strains may
become extinct; (iii) the new strain may not be able to
invade.
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The most fascinating question is whether we can find
quantities that will consistently increase (or decrease)
during such viral evolution. We can show that neither
viral load nor diversity increases monotonically with
virus evolution (although they are likely to increase in a
probabilistic sense). Instead, we prove that any success-
ful invasion of a new virus strain always decreases the
total abundance of uninfected cells. This holds for all
three models. For the models with cytotoxic immune
responses, we find that any successful invasion increases
the total force of infection, denoted by

Pn
i¼1 biyi: For

the model with non-cytotoxic immune responses, we
find that any successful invasion increases the total
cellular virulence, denoted by

Pn
i¼1 aiyi: Here yi denotes

the abundance of cells infected by strain i; while bi and
ai denote, respectively, the infectivity and cellular
virulence of strain i: Importantly, these results hold in
the limit of strain-specific immunity, but not in the
presence of general cross-reactive immunity. It remains
an open problem to characterize the degree of cross-
reactivity that is still compatible with our results.
Our analysis is part of a larger effort to understand

the evolutionary dynamics of infectious agents (Sasaki,
1994; Levin and Bull, 1994; Gupta et al., 1998; Levin
et al., 1997, 1999).
2. Cytotoxic immunity, model 1

Let us first consider a model, where cytotoxic immune
responses reduce the life-time of infected cells. Denote
by x the abundance of uninfected target cells and by yi

the abundance of cells infected with virus strain i: Let zi

denote the abundance of immune cells specific to strain
i: Consider the following system of ordinary differential
equations (cytotoxic immunity, or CTL model):

d

dt
x ¼ l� dx �

Xn

i¼1

bixyi; ð1aÞ

d

dt
yi ¼ ðbix � ai � piziÞyi; i ¼ 1; 2; 3;y; n; ð1bÞ

d

dt
zi ¼ ciyi � bizi; i ¼ 1; 2; 3;y; n: ð1cÞ

Target cells are supplied at a constant rate, l; and die at
a rate proportional to their abundance, dx: The
infection rate is proportional to the abundance of
uninfected and infected cells, bixyi: Infected cells die at
rate aiyi because of viral cytopathicity. The immune
response zi is specific to virus strain i: The efficacy of the
immune response in killing infected cells is given by pi:
Immune activity increases at a rate proportional to
pathogen abundance, ciyi; and decreases at rate bizi:
In the present paper, we assume that virus load (the
abundance of virions) is proportional to the amount of
(productively) infected cell. There is no need to model
the dynamic of free virions explicitly, because it occurs
(for HIV) on a much faster time scale than what we are
considering here.

2.1. The equilibrium

The model given by Eq. (1) always has a single stable
equilibrium, which can be calculated as follows. The
equilibrium values of yi and zi can be written as
functions of x; derived from Eq. (1b) and (1c). We
denote these by yiðxÞ and ziðxÞ for i ¼ 1; 2;y; n: For
given x; these values are either positive or zero, because
some of these strains go extinct as an outcome of
competition between strains, and have yiðxÞ ¼ ziðxÞ ¼ 0:
The equilibrium abundance of infected cells is

yiðxÞ ¼

bi

pici

ðbix � aiÞ for x >
ai

bi

;

0 for xp
ai

bi

:

8>><
>>: ð2Þ

The immune response is proportional to the abundance
of infected cells, ziðxÞ ¼ ciyiðxÞ=bi: The equilibrium level
of uninfected cells is determined by Eq. (1a), which can
be rewritten as

l
x
¼ d þ

Xn

i¼1

ciðxÞ: ð3Þ

Here ci is the force of infection by strain i: For Eq. (1),
we have

ci ¼ biyi: ð4Þ

From, Eqs. (2) and (4), ciðxÞ is zero for xpai=bi; but is
positive and an increasing function of x for x > ai=bi:
Thus, the minimum level of uninfected cells that is
needed to sustain virus strain i is given by ai=bi: The
right-hand side of Eq. (3) is a sum of increasing
functions, and hence it is also an increasing function
of x; whilst the left-hand side of Eq. (3) is a decreasing
function of x ranging from infinity to zero as x changes
from zero to infinity. Hence there is always a single
solution of Eq. (3), which is positive. Let x� be the
equilibrium number of uninfected cells. Let us renumber
the strains so that ai=bi increases with i: Suppose that
the equilibrium abundance of uninfected cells x�

satisfies

a1

b1
o?o

ak

bk

ox�o
akþ1

bkþ1
o?o

an

bn

: ð5Þ

From Eq. (2), the abundances of the first k strains are
positive: y�1 > 0;y; y�k > 0; but the remaining strains are
absent: y�kþ1 ¼ 0;y; y�n ¼ 0: The immune responses are
positive only for the first k types: z�1 > 0;y; z�k > 0; but
z�kþ1 ¼ 0;y; z�n ¼ 0:
This equilibrium is globally stable. The proof uses a

Lyapunov function and is shown in Appendix A.
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Fig. 1. Graphical representation of Eq. (3) for a population including

two strains. Three arcs connected by kink is the right-hand side of

Eq. (3), indicating per capita risk of uninfected cells. The curves with

negative slopes are the left-hand side of Eq. (3), l=x; with different

value of l: Horizontal axis is the abundance of uninfected cells. P; Q

and R are for the equilibrium corresponding to three different values of

l: P indicates the equilibrium with two strains; Q; the one with strain 1
only; and R; the one without pathogen. The model is given by Eq. (1).

Fig. 2. Graphical representation of Eq. (3) for a population before and

after the invasion of a new strain. Broken curve is for the population

with strains 1 and 3. Solid curve is for the population with strain 2 is

added. The explanation is the same as in Fig. 1.

Y. Iwasa et al. / Journal of Theoretical Biology 229 (2004) 179–188 181
2.2. Graphical representation

To obtain the equilibrium solution x satisfying Eq. (3)
and to know its parameter dependence and the change
after invasion of a new strain, graphical representation
of both sides of Eq. (3) is very useful. A typical case is
illustrated in Fig. 1. Here there are two strains, differing
in the minimum level of uninfected cells
0oa1=b1oa2=b2: The solid curve indicates the right-
hand side of Eq. (3). It is a constant d for 0oxoa1=b1;
which corresponds to the absence of strains. It is
positive for x > a1=b1; in which it is an increasing
function of x: The arc for a1=b1oxoa2=b2 corresponds
to the state including strain 1 only, and the arc for
a1=b1oxoa2=b2; corresponds to the state including
both strains 1 and 2. Three curves with negative slopes
indicate l=x with three different levels of l: The x value
of cross-points, indicated by solid circles, indicates the
abundance of uninfected cells in the equilibrium.
Corresponding to three different values of l; Fig. 1
has three cross-points. The one denoted by P satisfies
x > a2=b2; in which both strains have positive abun-
dance at equilibrium. The cross-point denoted by Q

satisfies a1=b1oxoa2=b2; in which only strain 1 has
positive abundance, and strain 2 is absent. The cross-
point R with very small l is for 0oxoa1=b1; in which
neither strain exists in the system at equilibrium.

2.3. Invasion of a new strain

The possibility of invasion of a new strain into the
population and its outcome can also be analysed from
the graphical representation of both sides of Eq. (3). The
right-hand side of Eq (3) increases by cjðxÞ: First, if the
population before the invasion of a new strain j has a
level of uninfected cells less than aj=bj ; then the invasion
is not successful. If instead the level of uninfected cells
before the invasion is greater than aj=bj ; then invasion
by strain j is possible. As an outcome of invasion, the
level of uninfected cells is always smaller than before the
invasion, and the per capita loss of uninfected cells d þPn

i¼1 ciðxÞ is always larger than before the invasion.
Fig. 2 illustrates the situation where two strains

(strain 1 and strain 3) exist in the initial population, and
then strain 2 invades it. The broken curve in Fig. 2 is for
the population before the invasion including strains 1
and 3 only. It consists of three arcs connected by kinks.
The four curves with negative slopes are l=x for four
different levels of l: Both P and Q are the communities
with two strains. Both R and S indicate a population
with strain 1 only. In these equilibria, the abundance of
uninfected cells satisfies a1=b1oxoa3=b3; and strain 3
cannot be maintained.
Strain 2 with an intermediate value of a2=b2 is added

to the population. Whether or not this invasion is
successful, and if so what would be the outcome to the
population composition can be known from the graph.
A solid curve indicates the population with three strains.
It consists of four arcs connected with kinks. These arcs
correspond to: (1) the absence of strains, (2) strain 1
only, (3) strains 1 and 2, and (4) all three strains (strains
1–3), respectively. It has a cross-point with l=x at P0; Q0;
R0 and S; for four different levels. At P0; three strain
coexist. At Q0 and R0 both strain 1 and species 2 coexist
but strain 3 is absent. At S; only strain 1 exists.
Consider the case in which population indicated by P

is realized before the invasion of strain 2. When the
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strain 2 invades, the equilibrium would be shifted to P0

in which all the three strains coexist. Hence, in this case
the outcome of invasion is simply the addition of a new
strain 2 without extinction of resident strain.
If the population before invasion is the one indicated

by Q with strains 1 and 3. The outcome of the invasion
of strain 2 is the one indicated by Q0 in which strains 1
and 2 coexist, but strain 3 is not maintained. This
implies that the invasion of strain 2 is successful, but it
drives out one of the resident strain 3 to extinction—the
replacement of strain 3 by strain 2 happens. The new
level of uninfected cells x is too low for the strain 3 to be
maintained.
If the original population is indicated by R that

includes strain 1 only, the outcome of the invasion of
strain 2 is given by R0; including both strains 1 and 2.
This is the addition of invading strain.
Finally when the original population is the one

indicated by S: Strain 2 cannot invade this system,
because the level of uninfected cells x is already too low
for strain 2.
We can summarize these results as follows:

Proposition 1. For model 1, any successful invasion

reduces the number of uninfected cells, x; and increases

the force of infection,
P

i biyi; at equilibrium.

Note that the number of coexisting strains may not
increase monotonically, because the invasion of a strain
may cause the extinction of many existing residents. We
also note that the total virus load

P
i yi may decrease,

but a properly weighted sum of viruses would increase
all the time as stated in Proposition 1.
Fig. 3. Graphical representation of Eq. (8) for a population before and

after the invasion of a new strain. The model is for non-CTL immunity

(model 2). The lines with negative slope are for l� dx with different l:
Broken curve is for the population with strain 2 only; it changes to

solid curves after invasion of strain 1. P and Q are the equilibria with

strain 2, but R includes no strain. After invasion of strain 1, P shifts to

P0; in which strains 1 and 2 coexist (addition of species); Q shifts to Q0;
in which strain 2 is replaced by strain 1 (replacement). Strain 1 cannot

invade R:
3. Non-cytotoxic immunity, model 2

Let us now consider the situation where the immune
response decreases the rate of infection, but not the
lifespan of infected cells. We have

d

dt
x ¼ l� dx �

Xn

i¼1

bixyi

1þ Zizi

; ð6aÞ

d

dt
yi ¼

bixyi

1þ Zizi

� aiyi; i ¼ 1; 2; 3;y; n; ð6bÞ

d

dt
zi ¼ ciyi � bizi; i ¼ 1; 2; 3;y; n: ð6cÞ

This is the model studied by Regoes et al. (1998) (i.e. the
case without immune impairment). The infection rate
in the absence of immunity is given by bi: Immune
responses reduce the infection rate to bi=ð1þ ZiziÞ:
Concerning the location of equilibrium, the invasion

condition, and the outcome of a successful invasion, a
similar argument as used for CTL model in the last
section applies to the non-CTL model Eq. (6). From
Eqs. (6b) and (6c), the equilibrium abundance of virus
strain i is

yiðxÞ ¼

bi

Zici

bix

ai

� 1

� �
for x >

ai

bi

;

0 for xp
ai

bi

:

8>><
>>: ð7Þ

As before, the immune activity is proportional to the
pathogen abundance

ziðxÞ ¼
ciyiðxÞ

bi

:

At equilibrium we have

l� dx ¼
Xn

i¼1

aiyiðxÞ: ð8Þ

Note that both sides of Eq. (8) are the total rate of
production and death of uninfected cells, rather than per
capita rates used in Eq. (3). The right-hand side of
Eq. (8) is the total number of excess cell death per unit
time due to the viral infection, and is called cellular
virulence.
Fig. 3 illustrates the graphs of the both sides of

Eq. (8). Again there is a single positive equilibrium x�

that satisfies Eq. (8). A similar result for the equilibrium,
its parameter dependence, the invasibility of a new
strain, and the outcome of the new strain can be
discussed, in the same manner as in the last section (see
caption to Fig. 3).
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Concerning the location of the equilibrium, we can
again conclude that (1) if the population before the
invasion of a new strain j has the level of uninfected cells
less than aj=bj ; the invasion is not successful. (2) If
instead the level of uninfected cells before the invasion is
greater than aj=bj ; invasion of strain j is successful. (3)
As an outcome of invasion, the level of uninfected cells
always decreases (x becomes smaller), and the total rate
of new infection of cells, or the total rate of cellular
virulence,

Pn
i¼1 aiyiðxÞ; always increases. (4) The out-

come of successful invasion can be accompanied by
the extinction of some resident species, and this can be
known from the new cross-point in the graph of
both sides of Eq. (8). Hence, we have the following
propositions.

Proposition 2. For model 2, any successful invasion

reduces the number of uninfected cells, x; and increases

the total viral cytopathicity,
P

i aiyi; at equilibrium.
4. Cytotoxic immunity, model 3

Finally, we study model 3, given by

d

dt
x ¼ l� dx �

Xn

i¼1

bixyi; ð9aÞ

d

dt
yi ¼ ðbix � ai � piziÞyi; i ¼ 1; 2; 3;y; n; ð9bÞ

d

dt
zi ¼ ðciyi � biÞzi; i ¼ 1; 2; 3;y; n: ð9cÞ

Here the immune response reduces the lifetime of
infected cells, as in model 1, but the population growth
rate of immune cells specific to strain i is proportional to
their current number as well as the number of infected
cells: the rate of immune cell production in Eq. (9c) is
given by ciyizi instead of ciyi as in Eq. (1c). If viral
abundance is kept constant, the immune activity shows
an exponential increase in Eq. (9c), but a linear increase
in Eq. (1c). Again, there is a single, globally stable
equilibrium (see Appendix A).
In a similar vein as in the previous cases, we consider

the equilibrium abundance of strain i and the number of
specific immune cells. These values, when uninfected cell
number x is given, are calculated as follows:

Case 1:

xo
ai

bi

; yi ¼ 0; zi ¼ 0: ð10aÞ

Case 2:

x ¼
ai

bi

; 0oyio
bi

ci

; zi ¼ 0; ð10bÞ

yi takes the value that realizes x ¼ ai=bi:
Case 3:

x >
ai

bi

; yi ¼
bi

ci

; zi ¼
1

pi

ðbix � aiÞ: ð10cÞ

Again we have ciðyiÞ ¼ biyi for the per capita risk of
infection for uninfected cells. If we draw the relationship
between ciðyiÞ ¼ biyi and x; it is of a ‘‘step’’ shape. For
x smaller than ai=bi; we have ciðyiðxÞÞ ¼ 0: For x greater
than ai=bi; we have ciðyiÞ ¼ bibi=ci: At the boundary
between these two situations, x ¼ ai=bi; the risk function
can take any value between two values: 0ociobibi=ci:
Hence, ci is not given as a function of x, but it should be
adjusted to satisfy relationship x ¼ ai=bi:
In models 1 and 2, immune activity is proportional to

the pathogen abundance ðzi ¼ ciyi=biÞ: In contrast, in
the current model given by Eq. (9), the immune activity
level zi is not proportional to the pathogen abundance.
Even if there is some pathogen in the body, the immune
activity stays zero if the pathogen abundance is lower
than a threshold: 0oyiobi=ci (case 2). When the
pathogen abundance reaches the maximum value yi ¼
bi=ci; the immune activity becomes positive, and
increases with the abundance of uninfected cells x;
without changing the abundance of viral strain i (case
3). The number of cells infected by strain i cannot exceed
the maximum value bi=ci; because it is suppressed to the
level by the enhanced immune activity.
In the system of n viral strains and n specific immune

reactions to them, the equilibrium must have either of
the two types. The first is similar to the last two models.
Namely the equilibrium abundance of the uninfected
cells satisfies Eq. (5). It is greater than ai=bi of the first k

strains, but is smaller than that of the remaining n � k

strains. From Eq. (10), number of cells infected by the
first k strains are positive: y�1 > 0;y; y�k > 0; but the
remaining strains are absent: y�kþ1 ¼ 0;y; y�n ¼ 0: The
immune reactions are positive for the first k types: z�1 >
0;y; z�k > 0; but z�kþ1 ¼ 0;y; z�n ¼ 0: In addition to the
equilibrium of this type, we have the second case in
which the following relation holds:

a1

b1
o?o

ak�1

bk�1
o

ak

bk

¼ x�o
akþ1

bkþ1
o?o

an

bn

: ð11Þ

Here the equilibrium level of uninfected cells is adjusted
to be exactly the same as ak=bk of strain k: For the first
k � 1 strains, the number of cells infected by the strain
and its immune reaction level are positive: y�1 >
0;y; y�k�1 > 0; and z�1 > 0;y; z�k�1 > 0: Both viral abun-
dance and the specific immune activity are zero for
the last n–k strains: y�kþ1 ¼ 0;y; y�n ¼ 0 and z�kþ1 ¼
0;y; z�n ¼ 0: What is quite notable is that there is one
boundary strain, with positive abundance y�k > 0; but
there is no immune activity specific to it: z�k ¼ 0: For this
strain, Case 2 holds at equilibrium.
If we draw the graph of per capita loss of uninfected

cells, d þ
Pn

i¼1 ciðxÞ; it is a sum of n step functions.
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Broken curve in Fig. 4 is for the initial population in
which only strain 2 is available. If the cross-point with
the curve of l=x has x less than the critical point a2=b2;
as indicated by point S; no viral strain is maintained at
equilibrium. Both R and Q are the cases in which strain
2 exists with positive abundance, but no immune
reaction is invoked ðy2 > 0; z2 ¼ 0Þ: In contrast for the
cross-point P; the equilibrium includes strain 2 and
some immune reaction to it (y2 > 0; z2 > 0).
A step function drawn in a solid line in Fig. 4 is for

the case in which both strains 1 and 2 with
0oa1=b1oa2=b2: Now after the invasion of strain 1, P

(with strain 2 only) shifted to P0 in which both strains 1
and 2 exist. Hence this invasion ends up with the
addition of strain 1 without losing resident strain 2. For
the population indicated by R would be shifted to R0; in
which resident strain 2 goes extinct and it is replaced by
strain 1. The cross-point labeled S has no strain, and the
invader cannot be established there because the supply
rate is too slow.
What is very interesting is the equilibrium indicated

by cross-point Q: Here the invasion of strain 1 occurs,
but the cross-point remains the same as before. To
examine this case more closely, we choose parameters
satisfying a2b1=b2c1oloa2b2=b2c2: Then we consider
the initial population composed only of strain 2. The
equilibrium is

x ¼
a2

b2
; y2 ¼

l
a2

�
d

b2
; and z2 ¼ 0: ð12aÞ

In this system, strain 1 can invade the population, and
two strains coexist. The new equilibrium is

x ¼
a2

b2
; y1 ¼

b1

c1
; z1 ¼

1

p1
b1

a2

b2
� a1

� �
;

y2 ¼
l
a2

�
1

b2
d þ

b1b1
c1

	 

; and z2 ¼ 0; ð12bÞ
Fig. 4. Graphical representation of Eq. (3) for a population before and

after the invasion of a new strain. The model is given by Eq. (9).
which has exactly the same number of uninfected cells x

as before invasion of strain 1. And yet the strain
composition is changed greatly. Equilibrium x does not
decrease after invasion, but may remain the same as
before, even if there is a considerable change in strain
composition.
In this argument, we used the equilibrium values of yi

and zi for a given x: If x were in fact a constant, the
dynamics of yi and zi would be the same as the Lotka–
Volterra predator–prey system with neutral stability—a
boundary case between stability and instability, in which
the system would fluctuate forever. However in the
present model, x is not fixed but changes responding to
y; and hence the dynamics of x; yi and zi make the
equilibrium globally stable. In Appendix A, using a
Lyapunov function, we can prove that the equilibrium
obtained as above is globally stable, and that the system
starting from any initial point would converge to it.
We have the following propositions:

Proposition 3. For model 3, any successful invasion of a

new mutant leads to a reduced or an unchanged

equilibrium abundance of uninfected cells, x: In these

two situations, the force of infection,
Pn

i¼1 biyi; increases

or remains the same, respectively.

The analysis can be applicable not only to these three
models, but also a wider class of models of immune
system in which the force of infection can be written as
the sum of contributions of different strains:

Pn
i¼1 ciðxÞ;

which always increases by the addition of a new strain.
Addition of a mutant strain always increase this
function and makes the equilibrium level of uninfected
cells smaller.
5. Cross-immunity violates the trends

In the argument leading to the general decrease
principle, we assumed that the equilibrium risk of
infection ciðxÞ is given as a function of uninfected cell
abundance x; only, irrespective of the presence of other
strains. This assumption is valid for the cases of Eqs. (1),
(6) and (9) in which the dynamics of the ith pathogen yi

and the corresponding immune activity zi include only
themselves and x; but are independent of the abundance
of other strains nor their immune reactions (i.e. yj ; zj ;
jai). The immune reactions of different specificity
interact only through the abundance of uninfected cells
x; which is their common resources.
However, in general cases the immune reaction to a

specific pathogen can be affected by the presence of
other pathogens, named cross-immunity. In the presence
of cross-immunity, the decrease in the equilibrium
abundance of uninfected cells no longer holds, as
illustrated by the following two examples.
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Example 1. Symmetric cross-immunity in cytotoxic
immunity model
Consider the following mode l of cytotoxic (CTL)

immune activity:

d

dt
x ¼ l� dx �

Xn

i¼1

bixyi; ð13aÞ

d

dt
yi ¼ bix � ai � pi

Xn

j¼1

cijzj

 !
yi;

i ¼ 1; 2; 3;y; n; ð13bÞ

d

dt
zj ¼

Xm

j¼1

yicij � bjzj ; j ¼ 1; 2; 3;y;m: ð13cÞ

Here i distinguishes viral strains, and j indicates
epitopes. zj is the number of immune cells specific to
epitope j: The number of epitopes is m; which can be
different from the number of strains n: If two strains
share a common epitope, the abundance of one strain
stimulates the immune reaction to the epitope and
affects the other strain, which causes cross-immunity. In
Eq. (13), cij is the rate of stimulation of strain i to
activate the immune reaction to the jth epitope. The
same matrix is used in Eq. (13b), which indicates that a
strain stimulating an epitope is more likely to be
suppressed by the corresponding immunity.
Here we consider a case of two strains and 1 epitope

(n ¼ 2; m ¼ 1). We choose the following parameters:
b1 ¼ b2 ¼ a1 ¼ a2 ¼ 1; d ¼ 0; c1 ¼ 1; c2 ¼ 5; p1 ¼ 10;
p2 ¼ 1: We have

d

dt
x ¼ l� ðy1 þ y2Þx; ð14aÞ

d

dt
y1 ¼ ðx � 1� 10zÞy1; ð14bÞ

d

dt
y2 ¼ ðx � 1� 5zÞy2; ð14cÞ

d

dt
z ¼ ðy1 þ 5y2 � 1Þz: ð14dÞ

There are equilibrium with only strain 1

x ¼ l; y1 ¼ 1; y2 ¼ 0; z ¼
l� 1

10
ð15aÞ

and another equilibrium with only strain 2

x ¼ 5l; y1 ¼ 0; y2 ¼
1

5
; z ¼

5l� 1

5
: ð15bÞ

We assume that l > 1: There is no equilibrium in which
both strains 1 and 2 coexist. In fact comparing per
capita rate of increase for strains 1 and 2, it is always the
case that strain 2 has a higher rate of increase if z is
positive. The equilibrium Eq. (15a) is unstable against
the invasion of strain 2, and Eq. (15b) cannot be invaded
by strain 1. Hence we can conclude that Eq. (15a) is
invaded by mutant strain 2 which replaces strain 1. The
system converges to Eq. (15b). The evolutionary change
makes the number of uninfected cells at equilibrium
five times greater than before. Hence, the conjectured
statement of monotonic decrease in uninfected cell
number does not hold.

Example 2. Asymmetric cross-immunity in non-cyto-
toxic immunity.
The second examine is the model for non-cytotoxic

immunity (model 2). Suppose that strain 1 does not
stimulate the immunity, but has a high infection rate b;
reducing the equilibrium abundance of uninfected cells
effectively. Strain 2 can invade the population domi-
nated by strain 1, but it strongly activates the immunity,
which suppresses not only strain 2 but also strain 1. Due
to the presence of this activated immunity, strain 1
cannot invade the population dominated by strain 2.
Strain 2 has a smaller effectiveness of infecting cells than
strain 1, resulting in more uninfected cells x at
equilibrium. To represent the idea, we consider the
following example:

dx

dt
¼ l� x 1þ

y1

1þ z2
þ

2y2

1þ z2

� �
; ð16aÞ

dy1

dt
¼

x

1þ z2
� 1

� �
y1; ð16bÞ

dy2

dt
¼

2x

1þ z2
� 1

� �
y2; ð16cÞ

dz2

dt
¼ y2 � z2: ð16dÞ

First the equilibrium in with strain 1 only is: x ¼ 1; y1 ¼
l� 1; y2 ¼ 0; z2 ¼ 0: The strain 2 can invade this
equilibrium, and it replaces the resident strain 1. This is
because strain 2 has always greater per capita rate of
population increase than strain 1 (compare Eqs. (16b)
and (16c)). The final equilibrium with strain 2 only is

x ¼
lþ 1

3
; y1 ¼ 0; y2 ¼

2l� 1

3
; z2 ¼

2l� 1

3
:

The abundance of uninfected cells increases if l > 2:
6. Discussion

Here, we show that for a wide range of models
describing the dynamical interaction of viruses and the
immune system, virus evolution reduces the equilibrium
abundance of uninfected cells. Consider a population of
different virus strains that coexist in a particular host in
the presence of strain specific immune responses. If a
new strain invades this population then complicated
changes can occur in the composition of the virus
population. A number of strains could die out as a
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result, and then the diversity of viral strains in the host
may decrease. The total viral load may also decrease.
However, a successful invasion will reduce the equili-
brium abundance of uninfected cells. This result holds in
great generality. Furthermore, in specific models we
show that any successful invasion will either increase the
total force of infection or the total viral cytopathicity.
Note that viral evolution in such systems need not
increase viral load or diversity, although both of these
quantities are likely to increase.
Our results do not hold for general cross-reactive

immunity. In this case, it is possible that viral evolution
increases the equilibrium abundance of uninfected cells,
reduces viral cytopathicity and reduces the force of
infection. This has important implications for a com-
pletely new approach to anti-viral therapy: persistent
infections in a host individual could be combated by
introducing specific strains that reduce the extent of
disease and/or eliminate infection (see also, Bonhoeffer
and Nowak, 1994). An ordinary form of cross-immunity
is the one in which the presence of a particular antigen
enhances the immune activity to other antigens, but it
may impair the immune reaction, as studied by Regoes
et al. (1998).
The monotonicity of evolution might be understood

as analogous to the rule of resource competition in
ecology. If there are n strain sustained by the same
resources R; the strain with the strongest competitive
advantage is the one with the smallest (Tilman, 1982). In
this context, there is no possibility of stable coexistence,
but the outcome of the new strain invasion always ends
up with either the failure of invasion or the replacement.
The successful invasion and replacement would causes
the equilibrium resource level lower than the before.
In the present context, multiple strains can coexist

because of the specific immune reactions. Here the
strains are competitors that consume the common
resources, uninfected target cells, and the presence of
specific immune activities corresponds to the specific
parasites or predators. Whilst these allow the stable
coexistence of multiple strains, it also affect the rule of
resource depletion. For this to hold, immune activity
must be quite specific.
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Appendix A

Here we consider the global stability of the equili-
brium. The argument in the text is on the location of the
equilibrium. For these to hold, we need to make sure
that the equilibrium is stable. We can use Lyapunov
functions to do this.

A.1. Stability of Model 1, given by Eq. (1)

Here we prove the global stability of the positive
equilibrium of Eq. (1). Let x�; y�1 ; z�i (for i ¼ 1; 2;y; n)
are the values at the positive equilibrium. We need to
distinguish the strains with positive abundance at
equilibrium, and those with zero abundance. We assume
y�1 > 0;y; y�k > 0; and y�kþ1 ¼ 0;y; y�n ¼ 0; and also
z�1 > 0;y; z�k > 0; and z�kþ1 ¼ 0;y; z�n ¼ 0: Eq. (2) is
rewritten as

d

dt
x ¼ l

1

x
�

1

x�

� �
�
Xn

i¼1

biðyi � y�i Þ

" #
x; ðA:1aÞ

d

dt
yi ¼ ½biðx � x�Þ � piðzi � z�i Þ�yi;

i ¼ 1; 2; 3;y; k; ðA:1bÞ

d

dt
yi ¼ ½biðx � x�Þ � piðzi � z�i Þ�yi þ ðbix

� � aiÞyi;

i ¼ k þ 1;y; n; ðA:1cÞ

d

dt
zi ¼ ciðyi � y�i Þ � biðzi � z�i Þ; i ¼ 1; 2; 3;y; n:

ðA:1dÞ

We consider the following function:

V ¼ ð�x� ln x þ xÞ

þ
Xn

i¼1

ð�y�i ln yi þ yiÞ

þ
Xn

i¼1

pi

2ci

ðzi � z�i Þ
2: ðA:2Þ

Then after standard calculation, we can show that

dV

dt
¼ � ðx � x�Þ2

l
xx�

�
Xn

i¼1

pibi

ci

ðzi � z�i Þ
2

�
Xn

i¼kþ1

ðai � bix
�Þyi

p 0: ðA:3Þ

Hence Eq. (A.2) monotonically decreases with time.
This suggests that the equilibrium is in fact globally
stable. We also can show that V ðx; y1;y; yn; z1;y; znÞ
has a Hessian negative definite, and has the minimum
only at the equilibrium. By examining the dynamics in
detail, we can show that trajectories will not stay in the
set in which the equality of Eq. (A.3) holds except for
the equilibrium, and V ðx; y1;y; yn; z1;y; znÞ is a
Lyapunov function. We can conclude that all the
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trajectories converge to the equilibrium (La Salle and
Lefschetz, 1961).

A.2. Stability of Model 3, given by Eq. (9)

Here we prove the global stability of the positive
equilibrium of Eq. (9). Let x�; y�i ; z�i (for i ¼ 1; 2;y; n)
are the values in the equilibrium obtained by the method
given in the main text. We need to distinguish the
pathogens with positive abundance at the equilibrium,
and those with zero abundance. We assume y�1 >
0;y; y�k > 0; and y�kþ1 ¼ 0;y; y�n ¼ 0; and also z�1 >
0;y; z�k�1 > 0; and z�kþ1 ¼ 0;y; z�n ¼ 0: However, un-
like model 1 or 2, both z�k > 0 and z�k are possible.
Eq. (9) is rewritten as

d

dt
x ¼ l

1

x
�

1

x�

� �
�
Xn

i¼1

biðyi � y�i Þ

" #
x; ðA:4aÞ

d

dt
yi ¼ ½biðx � x�Þ � piðzi � z�i Þ� yi;

for i s:t: y�i > 0; ðA:4bÞ

d

dt
yi ¼ ½biðx � x�Þ � piðzi � z�i Þ� yi

� ðai � bix
�Þ yi; for i s:t: y�i ¼ 0; ðA:4cÞ

d

dt
zi ¼ ciðyi � y�i Þzi; for i s:t: z�i > 0; ðA:4dÞ

d

dt
zi ¼ ciðyi � y�i Þ zi � ðbi � ciy

�
i Þ zi;

for i s:t: z�i ¼ 0: ðA:4eÞ

The suffixes of i’s for y�i ¼ 0 and those for z�i ¼ 0 may
differ in this model, and hence the classification of
strains are more complicated than Eq. (A.1). However,
from the way to construct the equilibrium, we know that
ai � bix

� > 0 for all i s.t. y�i ¼ 0; and bi � ciy
�
i > 0 for all

i s.t. z�i ¼ 0: Now we consider the following function:

V ¼ ð�x� ln x þ xÞ

þ
Xn

i¼1

ð�y�i ln yi þ yiÞ

þ
Xn

i¼1

pi

ci

ð�z�i ln zi þ ziÞ; ðA:5Þ

then we can show that using dynamics Eq. (9) the
following holds:

dV

dt
¼ � ðx � x�Þ2

l
xx�

�
X

i:y�
i
¼0

ðai � bix
�Þyi

�
X

i:z�
i
¼0

ðbi � ciy
�
i Þzi

p 0: ðA:6Þ
Hence Eq. (A.5) monotonically decreasing with time.
Note that the Hessian matrix of (A.5) is negative definite
everywhere, implying that the equilibrium is the global
minimum. By examining the set in which the equality of
(A.6) holds, we can conclude that Eq. (A.5) is the
Lyapunov function of the dynamics Eq. (9), and that the
equilibrium is globally stable (La Salle and Lefschetz,
1961).
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