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Abstract

For most cancer cell types, the acquisition of metastatic ability leads to clinically incurable disease. Twelve metastasis suppressor genes

(MSGs) have been identified that reduce the metastatic propensity of cancer cells. If these genes are inactivated in both alleles, metastatic

ability is promoted. Here, we develop a mathematical model of the dynamics of MSG inactivation and calculate the expected number of

metastases formed by a tumor. We analyse the effects of increased mutation rates and different fitness values of cells with one or two

inactivated alleles on the ability of a tumor to form metastases. We find that mutations that are negatively selected in the main tumor are

unlikely to be responsible for the majority of metastases produced by a tumor. Most metastases-causing mutations will be present in all

(or most) cells in the main tumor.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Tumor metastasis is a significant contributor to death in
cancer patients (Vogelstein and Kinzler, 2002). Metastases
arise when cancer cells leave the primary tumor site and
form new tumors elsewhere (Weiss, 2000; Chambers et al.,
2000, 2001, 2002). Metastasis formation is driven by
genetic alteration of many genes, including activation of
oncogenes such as RAS and MYC (Pozzatti et al., 1986;
Wyllie et al., 1987). The hypothesis that metastasis might
also involve loss of gene functions that maintain the
normal state of a cell emerged after the identification of RB
as a tumor suppressor gene. In 1988, the first metastasis
suppressor, NM23, was identified (Steeg et al., 1988). Since
then, 12 metastasis suppressor genes (MSGs) have been
confirmed (Steeg, 2004) (Table 1).

NM23 was identified by its reduced expression in highly
metastatic melanoma cell lines and has been shown to
reduce the in vivo metastatic potential of cells when
transfected into metastatically competent cell lines (Steeg et
al., 1988). However, NM23 expression does not affect
e front matter r 2006 Elsevier Ltd. All rights reserved.
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proliferation in vitro or primary tumor size in vivo. NM23
is a histidine kinase that phosphorylates the kinase
suppressor of RAS (KSR) protein and reduces the
metastatic potential of melanoma, breast, colon and oral
squamous cell carcinomas (Backer et al., 1993).
MKK4 phosphorylates JNK and p38 and its loss

facilitates metastatic colonization, may be by preventing
apoptosis in response to the stress of a foreign environ-
ment. It is a functional metastasis suppressor when
transfected into metastatic prostate and ovarian cancer
cell lines (Yoshida et al., 1999). Furthermore, MKK4 has
been found to have reduced expression in primary prostate
tumors of increasing Gleason Grade and in metastatic
ovarian carcinomas (Kim et al., 2001; Yamada et al., 2002).
The breast cancer metastasis suppressor 1 gene (BRMS1)

inhibits metastasis in breast carcinoma and melanoma cell
lines with no effect on tumorigenicity (Seraj et al., 2000).
BRMS1 functions in Gap-junctional communication and
its identification as an MSG suggests that increased GAP-
junctional communication among metastatic tumor cells
might contribute to the inhibition of metastatic outgrowth
(Saunders et al., 2001).
In a previous paper, we have developed a model for the

situation where cells acquire metastatic ability by one
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Table 1

Twelve metastasis suppressor genes have been identified so far that are involved in the metastatic ability of diverse types of cancer

Gene Cancer type Function

BRMS1 Breast, melanoma Gap-junctional communication

CLAUDIN4 Pancreas Tight-junctional constituent

CRSP3 Melanoma Transcriptional co-activator

DRG1 Prostate Unknown

KAI1 Prostate, breast Integrin interaction

KiSS1 Melanoma, breast G-protein-coupled receptor ligand

MKK4 Prostate, ovarian Activation of p38 and JNK kinases

NM23 Melanoma, breast, colon, oral squamous cell Histidine kinase

RKIP Prostate Inhibits RAF function

RHOGDI2 Bladder Regulates RHO and RAC function

SSeCKs Prostate Scaffolding protein for protein kinases A and C

VDUP1 Melanoma Thioredoxin inhibitor
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genetic alteration (Michor et al., 2006). In the present
paper, we develop a mathematical representation of
situations where two genetic alterations are needed to
confer metastatic ability to the cell. These two genetic
alterations can be the mutations inactivating an MSG, or
they can be mutations in two independent genes, both of
which are needed for metastatic ability. We calculate the
number of metastases generated by a tumor of size N. The
number of metastases depends on the two mutation rates,
the fitness values of cells with one or two mutations, the
population size of the main tumor, and the rate at which
cells with both mutations are exported from the main
tumor to found distant metastases.

Note that our formulas for the expected number of
MSG-deficient cells in the main tumor can also be used to
calculate the expected number of cells with two inactivated
alleles of a tumor suppressor gene. A tumor suppressor
gene contributes to tumorigenesis if both alleles are
inactivated (Vogelstein and Kinzler, 2002). A quantitative
theory of tumor suppressor gene inactivation is essential
for a complete understanding of tumorigenesis (Nowak
et al., 2004; Michor et al., 2004a; Iwasa et al., 2005).

Mathematical models of metastasis have provided
considerable insights. Bosl et al. (1983) use a multivariate
analysis of prognostic variables to study metastatic
testicular cancer. Panetta (1996) develops a competition
model to describe tumor-normal cell interaction with
chemotherapy. Thames et al. (1999) determine the fre-
quency of first metastatic events in breast cancer.
Pescarmona et al. (1999) design a non-linear model of
cancer growth and metastasis. Delsanto et al. (2000) study
a mathematical model of the spatiotemporal evolution of
neoplasias. Wodarz and Krakauer (2001) use a mathema-
tical model to examine the role of genetic instability in
angiogenesis and metastasis. Suzuma et al. (2001) design a
mathematical model of axillary lymph node involvement in
breast cancer metastases. Wodarz et al. (2004) study a
mathematical model of multifocal tumors, suggesting that
the sum of the tumor sizes across all lesions is the best
characteristic which correlates with the stage and meta-
static potential of the tumor. These papers contribute to
deriving a quantitative understanding of tumorigenesis
(Nordling, 1953; Armitage and Doll, 1954, 1957; Fisher,
1959; Goldie and Coldman, 1979; Moolgavkar and
Knudson, 1981; Goldie and Coldman, 1983; Sheratt and
Nowak, 1992; Taddei et al., 1997; Anderson and Chaplain,
1998; Strauss, 1998; Nunney, 1999; Owen and Sherrat,
1999; Chang et al., 2001; Knudson, 2001; Komarova et al.,
2002; Luebeck and Moolgavkar, 2002; Nowak et al., 2002;
Tomlinson et al., 2002; Chang et al., 2003; Frank et al.,
2003; Gatenby and Maini, 2003; Gatenby and Vincent,
2003; Komarova et al., 2003; Little and Wright, 2003;
Michor et al., 2003; Nowak et al., 2003; Iwasa et al., 2004;
Michor et al., 2004a, b, 2005a,b, 2006; Wodarz and
Komarova, 2005).

2. The model

Consider a population of N cancer cells proliferating
according to the Moran process (Moran, 1962). Initially,
all cells are wild type with respect to the MSG. Such cells
are called type 0 cells. At each time step, a cell is chosen for
reproduction at random, but proportional to fitness. Here
a time unit is equal to the mean time of one cell generation.
A mutated cell can be neutral ðr ¼ 1Þ, advantageous ðr41Þ
or deleterious ðro1Þ as compared to wild type cells. If there
are i mutated cells with relative fitness r, then the
probability that a mutated cell is chosen for reproduction
is ri=ðri þN � iÞ. The chosen cell produces a daughter cell
that replaces another randomly chosen cell. The total
number of cells remains strictly constant. If the mutated
cell has relative fitness r41 or ro1, then the probability
that it will take over the whole population is given by r ¼
ð1� 1=rÞ=ð1� 1=rN Þ (Moran, 1962). If the mutated cell has
relative fitness r ¼ 1, then r ¼ 1=N. The quantity r is
called fixation probability. An advantageous mutation has
a higher fixation probability than a neutral mutation,
which has a higher fixation probability than a deleterious
mutation. The events in a small population, however, are
dominated by random drift: if N is small, then even a
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deleterious mutation has a certain probability of reaching
fixation due to chance events. The transition probabilities
of the Moran process per time interval Dt are given by

Pði; i þ 1Þ ¼
ri

N � i þ ri
Nð1� iÞ

� �
Dt,

Pði; i � 1Þ ¼
N � i

N � i þ ri
Ni

� �
Dt,

Pði; iÞ ¼ 1� Pði; i þ 1Þ � Pði; i � 1Þ.

The two MSG alleles are inactivated at rates u1 and u2
per cell division, respectively. Inactivation of both alleles is
necessary to confer metastatic potential to the cell. Let
u1ou2 because there are more possibilities, such as mitotic
recombination and loss of heterozygosity, for the second
hit. The mutation inactivating the first MSG allele confers
a relative fitness r1 to the cell. Let us call such a cell type 1
cell. If r141, then the first mutation is advantageous and a
type 1 cell has a higher fitness than a type 0 cell; if r1o1,
then the first mutation is deleterious and a type 1 cell has a
lower fitness than a type 0 cell; if r1 ¼ 1, then the first
mutation is neutral and a type 1 cell has the same fitness as
a type 0 cell. The mutation inactivating the second allele
confers a relative fitness r2 to the cell. Such a cell is called
type 2 cell. The second mutation, too, can be advantageous
ðr241Þ, deleterious ðr2o1Þ, or neutral ðr2 ¼ 1Þ as compared
to type 0 cells. The rate of metastasis formation is
proportional to the number of type 2 cells in the main
tumor,

R ¼ q

Z T

0

EðtÞdt. (1)

Here EðtÞ ¼ Nz̄ðtÞ denotes the expected number of type 2
cells in the tumor, where z̄ðtÞ is the expected fraction of type
2 cells in the tumor at time t. The rate at which type 2 cells
are exported from the main tumor to found distant
metastases is denoted by q.

Denote the frequencies of type 0, 1 and 2 cells by x0, x1,
and x2, respectively. Let r̄ ¼ x0 þ r1x1 þ r2x2. Then,
assuming deterministic dynamics, the frequencies of type
0, 1 and 2 cells change according to

_x0 ¼ ð1� r̄Þx0 � u1x0,

_x1 ¼ ðr1 � r̄Þx1 þ u1x0 � u2x1,

_x2 ¼ ðr2 � r̄Þx2 þ u2x1. ð2Þ

The expected number of type 2 cells at time t is given by
EðtÞ ¼ Nx2ðtÞ. However, Eq. (2) holds only for large
population sizes and small fitness values. In the following,
we develop stochastic formulas for the expected number of
type 2 cells for several cases differing in the fitness of type 1
and 2 cells.

2.1. Exact stochastic computer simulation

We compare our analytical results with direct stochastic
computer simulations of the Moran process. We define
three integer variables for the numbers of type 0, 1, and 2
cells, x0 2 f0; 1; . . . ; Ng, x1 2 f0; 1; . . . ; Ng and x2 2 f0;
1; . . . ; Ng, subject to the constraint x0 þ x1 þ x2 ¼ N.
Each process is initiated with N type 0 cells, x0 ¼ N. Let
G ¼ x0 þ r1x1 þ r2x2. The transition probabilities between
states are given by

Pr ½x0! x0 þ 1� ¼
x0ð1� u1Þ

G
x1 þ x2

N
,

Pr ½x1! x1 þ 1� ¼
x0u1 þ r1x1ð1� u2Þ

G
x0 þ x2

N
,

Pr ½x2! x2 þ 1� ¼
r1x1u2 þ r2x2

G
x0 þ x1

N
.

For each parameter choice, we average over many
independent runs of the stochastic process to account for
random fluctuations. Due to computational restrictions, we
scale the parameter values such that we can use small
population sizes. The data points generated by the
computer simulation are compared with the analytical
results in Figs. 1–7.

2.2. Neutral mutations

Let us first discuss the case in which both type 1 and 2
cells are neutral as compared to type 0 cells. In that case,
Eq. (2) holds with r1 ¼ r2 ¼ 1 (see Appendix A). Then the
expected number of type 2 cells at time t is given by

EðtÞ ¼ Nx2ðtÞ ¼ N 1�
u2e
�u1t

u2 � u1
þ

u1e
�u2t

u2 � u1

� �
. (3)

Fig. 1 shows the results of the exact stochastic computer
simulation of the two-hit process (as discussed in Section
2.1) and the numerical simulation of Eq. (3). We plot the
expected number of type 2 cells, E, at time t. The mutation
rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the
population size ranges from N ¼ 10 to 100, 1000 and
10,000 in Figs. 1a–d.

2.3. Advantageous mutations

Let us now discuss the case in which a type 1 cell has
fitness r1X1, and a type 2 cell is advantageous with relative
fitness r241. If population size and mutation rates are
large, then the deterministic model, Eq. (2), applies and the
expected number of type 2 cells at time t is given by
EðtÞ ¼ Nx2ðtÞ. If the population size is small, however, the
stochasticity of the production and spread of mutated cells
cannot be neglected. Hence we consider a stochastic
approach. The dynamics can be decomposed into two
parts: (i) the time of appearance of the first successful
mutated cell, and (ii) the growth of this cell clone; the latter
will be approximated by a deterministic trajectory.

2.3.1. Fitness values 1, 1, r with r41

Assume that the fitness values of type 0, 1 and 2 cells are
1, 1 and r41, respectively. This case represents genes that
are homozygously sufficient (recessive), i.e. one wild type
allele is enough to maintain the normal function of the
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(a) (b)

(c) (d)

Fig. 1. The figure shows the expected number of type 2 cells if both mutations are neutral as compared to a cell with two wild type alleles of the metastasis

suppressor gene, r1 ¼ r2 ¼ 1. We compare the results of the exact stochastic computer simulation of the two-hit process (circles) with the numerical

simulation of Eq. (3) (line) at time t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the population size is (a) N ¼ 10, (b) N ¼ 100,

(c) N ¼ 1000, and (d) N ¼ 10; 000.
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gene. If the population size of the main tumor is much less
than the inverse of the mutation rates, N51=u1 and
N51=u2, we can assume that the tumor is almost always
homogeneous, i.e. consists only of a single cell type. In that
limit, a mutation will either go extinct or take over the
tumor, and two mutations will not coexist at the same time.
Denote the probabilities that the population consists only
of type 0, 1 or 2 cells by X0, X1, and X2, respectively. Then
we have

dX 0=dt ¼ �bX 0 � dX 0,

dX 1=dt ¼ bX 0 � cX 1,

dX 2=dt ¼ dX 0 þ cX 1. ð4Þ

Here b ¼ u1, c ¼ Nu2rðrÞ and d ¼ Nu1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2rðrÞ

p
�

�
1=N�þ

(Iwasa et al., 2004). The notation ½x�þ means maxf0;xg.
The process described by d is called stochastic tunneling
(Iwasa et al., 2004). With the initial conditions X 0ð0Þ ¼ 1
and X 1ð0Þ ¼ X 2ð0Þ ¼ 0, the expected fraction of type 2
cells is given by dX 2=dt. The growth of the lineage is
described by

ZðtÞ ¼ 1=ð1þ ðN � 1Þe�ðr�1ÞtÞ.
Then the number of type 2 cells at time t is given by

EðtÞ ¼ N

Z t

0

Zðt� t0Þ
dX 2

dt
ðt0Þdt0

¼ N

Z t

0

1

1þ ðN � 1Þe�ðr�1Þðt�t0Þ

� u1e
�2u1t0 þ c

u1

2u1 � c
e�ct0 � e�2u1t0
� �� �

dt0. ð5Þ

Fig. 2 compares the results of the exact stochastic
computer simulation with the numerical simulation of Eqs.
(2) and (5). We plot the expected number of type 2 cells, E,
at time t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2

per cell division, and the population size ranges from N ¼

10 to 100, 1000 and 10,000 in Figs. 2a–d.

2.3.2. Fitness values 1, r, r with r41
Now assume that type 1 and 2 cells are advantageous

and have the same relative fitness, r1 ¼ r2 ¼ r41; hence the
fitness values of type 0, 1 and 2 cells are 1, r and r. This case
represents genes that are homozygously insufficient (domi-
nant), i.e. one wild type allele alone cannot maintain the
normal function of the gene. In this case and with
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(a) (b)

(c) (d)

Fig. 2. The figure shows the expected number of type 2 cells if type 1 cells are neutral, r1 ¼ 1, and type 2 cells are advantageous, r2 ¼ 1:2. We compare the

results of the exact stochastic computer simulation of the two-hit process (circles) with the numerical simulation of Eq. (2) (solid line) and Eq. (5) (broken

line) at time t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the population size is (a) N ¼ 10, (b) N ¼ 100, (c) N ¼ 1000, and (d)

N ¼ 10; 000.
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b ¼ Nu1rðrÞ, the expected number of type 2 cells at time t is
given by

EðtÞ ¼ N

Z t

0

e�bt0bdt0ð1� e�u2ðt�t0ÞÞ

¼
N

b� u2
ðb� u2 � be�u2t þ u2e

�btÞ. ð6Þ

Fig. 3 shows the results of the exact stochastic computer
simulation and the numerical simulation of Eqs. (2) and
(6). We plot the expected number of type 2 cells, E, at time
t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell
division, and the population size ranges from N ¼ 10 to
100, 1000 and 10,000 in Figs. 3a–d.
2.3.3. Fitness values 1or1or2
Assume that both type 1 and 2 cells are advantageous

and have relative fitness 1or1or2, and the population size
is small. The probabilities that the tumor consists only of
type 0, 1, or 2 cells at time t are again denoted by X 0ðtÞ,
X 1ðtÞ and X 2ðtÞ. Tunneling can be neglected. We have Eq.
(4) with b ¼ Nu1rðr1Þ, c ¼ Nu2rðr2=r1Þ and d ¼ 0. With the
initial conditions X 0ð0Þ ¼ 1 and X 1ð0Þ ¼ X 2ð0Þ ¼ 0, the
expected number of type 2 cells at time t is given by

EðtÞ ¼

Z t

0

dX 2

dt
ðsÞ

N

1þ ðN � 1Þe�ðr2�r1Þðt�sÞ
ds

¼

Z t

0

bc

b� c
ðe�cs � e�bsÞ

N

1þ ðN � 1Þe�ðr2�r1Þðt�sÞ
ds. ð7Þ

Fig. 4 shows the results of the exact stochastic computer
simulation and the numerical simulation of Eqs. (2) and
(7). We plot the expected number of type 2 cells, E, at time
t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell
division, and the population size ranges from N ¼ 10 to
100, 1000 and 10,000 in Figs. 4a–d.
2.3.4. Summary of the advantageous parameter regimes

The deterministic formula, Eq. (2), predicts a faster
spread of mutated cells than the corresponding stochastic
formulas, Eqs. (5)–(7). The stochastic computer simula-
tions show that the exact number of cells generally lies
between these two predictions. It is closer to the prediction
by the deterministic formula when the population size and
mutation rates are large and the selective advantage is
small. It is closer to the prediction by the stochastic model,
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(a) (b)

(c) (d)

Fig. 3. The figure shows the expected number of type 2 cells if both type 1 and 2 cells are advantageous and have the same fitness, r1 ¼ r2 ¼ 1:2. We

compare the results of the exact stochastic computer simulation of the two-hit process (circles) with the numerical simulation of Eq. (2) (solid line) and

Eq. (6) (broken line) at time t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the population size is (a) N ¼ 10, (b) N ¼ 100,

(c) N ¼ 1000, and (d) N ¼ 10; 000.
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however, when the population size and mutation rates are
small and selective advantage is large (see Figs. 2–4).
Therefore, both the deterministic and the stochastic
approach have to be used to obtain a valid prediction for
the number of type 2 cells in a tumor.

2.4. Deleterious mutations

We will now discuss the situations in which type 1 cells
have relative fitness r1p1, and type 2 cells have relative
fitness r2o1.

2.4.1. Fitness values 1, 1, r with ro1
First assume that type 1 cells are neutral, r1 ¼ 1, and

type 2 cells are deleterious with relative fitness r2 ¼ ro1;
hence the fitness values of type 0, 1 and 2 cells are 1, 1, and
r. This case again represents genes that are homozygously
sufficient (recessive). The dynamics can be decomposed
into three different phases. During the first phase, the
population is dominated by type 0 cells, but a fraction of
type 1 cells is maintained. Type 1 cells produce an even
smaller fraction of type 2 cells. The second phase starts
when type 1 cells take over the population and type 0 cells
go extinct. Then the population consists of type 1 and 2
cells. The third phase begins once type 2 cells reach
fixation. The lengths of these phases depend on the
mutation rates, the population size, and the relative fitness
of type 2 cells. The formulas are derived in Appendix A.

Phase I: During the first phase, type 1 cells coexist with
type 0 cells at an approximately constant proportion.
Furthermore, fixation of type 1 cells occurs much later than
expected of a neutral mutant. These observations suggest
that type 1 cells do not behave like neutral mutants, but
have a slight fitness disadvantage. The observed fitness
disadvantage is caused by the constant mutation of type 0
cells to give rise to type 1 cells and the mutation of type 1
cells to give rise to type 2 cells. Therefore, type 1 cells can
be maintained at the mutation-selection balance expected
for slightly deleterious mutants. During the first phase, the
fractions of type 1 cells, x1, and type 2 cells, x2, are given by

x1 ¼
eðu2�u1Þt � 1

ðu2=u1Þeðu2�u1Þt � 1
, (8a)

x2 ¼
u2

1� r
x1. (8b)

Here we neglect the time delay of 1=ð1� rÞ. See
Appendix A for derivations.

Phase II: The second phase starts once type 0 cells go
extinct and type 1 cells reach fixation. Then the fraction of
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(a) (b)

(c) (d)

Fig. 4. The figure shows the expected number of type 2 cells if both type 1 and 2 cells are advantageous and have fitness values r1 ¼ 1:1 and r2 ¼ 1:2. We

compare the results of the exact stochastic computer simulation of the two-hit process (circles) with the numerical simulation of Eq. (2) (solid line) and

Eq. (7) (broken line) at time t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the population size is (a) N ¼ 10, (b) N ¼ 100, (c)

N ¼ 1000, and (d) N ¼ 10; 000.
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type 2 cells is given by

x2 ¼
u2

1� r
. (9)

Eq. (9) exceeds Eq. (8) because u1ou2, and the latter
converges to a value of u1=u2 of the former. The time of
fixation of type 1 cells is random, and the average fraction
of type 2 cells before and after the fixation of type 1 cells is
given by Eqs. (8) and (9). The effective fitness of type 1 cells
is given by ð1� u2Þ=ð1� u1Þ, which is less than one.
Therefore, the fixation probability of type 1 cells is given
by rðð1� u2Þ=ð1� u1ÞÞo1=N, and the rate of their fixation
in the population is given by

a ¼ Nu1r
1� u2

1� u1

� �
¼ Nu1

u2 � u1

exp ½Nðu2 � u1Þ� � 1
.

The frequency of type 2 cells is given by

x2 ¼
u2

1� r

eðu2�u1Þt � 1

ðu2=u1Þeðu2�u1Þt � 1
e�at þ

u2

1� r
ð1� e�atÞ.

Phase III: The third phase begins once type 2 cells reach
fixation. This transition rate is given by b ¼ Nu2ð1� 1=rÞ=
ð1� 1=rN Þ.
Denote by T1 and T2 the times at which type 1 and 2 cells
reach fixation in the population. There are three possibi-
lities: (i) type 1 cells have not yet reached fixation and the
population is dominated by type 0 cells, toT1; (ii) type 1
cells but not type 2 cells have reached fixation, T1otoT2;
and (iii) type 2 cells have reached fixation, t4T2. These
probabilities are given by

Pr ½toT1� ¼ e�at,

Pr ½T1otoT2� ¼
a

a� b
ðe�bt � e�atÞ,

Pr ½t4T2� ¼ 1�
a

a� b
e�bt þ

b

a� b
e�at.

The expected fraction of type 2 mutants is given by

E ¼ N
u2

1� r

eðu2�u1Þt � 1

ðu2=u1Þeðu2�u1Þt � 1
e�at

þN
u2

1� r

a

a� b
ðe�bt � e�atÞ

þN 1�
a

a� b
e�bt þ

b

a� b
e�at

� �
. ð10Þ



ARTICLE IN PRESS

(a) (b)

(c) (d)

Fig. 5. The figure shows the expected number of type 2 cells if type 1 cells are neutral, r1 ¼ 1, and type 2 cells are deleterious with relative fitness r2 ¼ 0:8.
We compare the results of the exact stochastic computer simulation of the two-hit process (circles) with the numerical simulation of Eq. (2) (solid line) and

(a,b,d) Eq. (10) and (c) Eq. (A.1) (broken line) at time t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the population size is

(a) N ¼ 10, (b) N ¼ 100, (c) N ¼ 1000, and (d) N ¼ 10; 000.
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This formula accurately predicts the fraction of type 2
cells in populations of size N ¼ 10, 100, and 10,000,
but gives a 10% lower estimate if N ¼ 1000. A more
accurate formula for the latter parameter regime can be
obtained by considering the variance of the fraction of type
1 mutants before reaching fixation (see Appendix A,
Eq. (A.1)).

Fig. 5 shows the results of the exact stochastic computer
simulation of the two-hit process and the numerical
simulation of Eqs. (2),(10) and (A.1). We plot the expected
number of type 2 cells, E, at time t. The mutation rates are
u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the
population size ranges from N ¼ 10 to 100, 1000 and
10,000 in Figs. 5a–d.
2.4.2. Fitness values 1, r, r with ro1
Now assume that type 1 and 2 cells are deleterious and

have the same relative fitness, r1 ¼ r2 ¼ ro1; hence the
fitness values of type 0, 1 and 2 cells are 1, r, and r, and the
gene is homozygously insufficient (recessive deleterious
mutation). As explained in Appendix B, the expected
number of type 2 cells at time t is given by

EðtÞ ¼ Ne�ðbþcÞt ru1u2

ð1� rÞ2
1� ð1þ ð1� rÞtÞe�ð1�rÞt
� 	

þN
b

bþ c
ð1� e�ðbþcÞtÞ

�

� b 1�
ru2

1� r


 � e�ðbþcÞt � e�ru2t

ru2 � b� c

�

þN
c

bþ c
ð1� e�ðbþcÞtÞ. ð11Þ

Here b ¼ Nu1rðrÞ and c ¼ ½Nu1=ð1� rÞ�ru2rðrÞ.
Fig. 6 shows the results of the exact stochastic computer

simulation of the two-hit process and the numerical simula-
tion of Eqs. (2) and (11). We plot the expected number of type
2 cells, E, at time T. The mutation rates are u1 ¼ 10�3 and
u2 ¼ 10�2 per cell division, and the population size ranges
from N ¼ 10 to 100, 1000 and 10,000 in Figs. 6a–d.
2.4.3. Fitness values 14r14r2
Finally, assume that both type 1 and 2 cells are

deleterious and have fitness values 14r14r2. In this case,
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(a) (b)

(c) (d)

Fig. 6. The figure shows the expected number of type 2 cells if both type 1 and 2 cells are deleterious and have the same relative fitness, r1 ¼ r2 ¼ 0:8. We

compare the results of the exact stochastic computer simulation of the two-hit process (circles) with the numerical simulation of Eq. (2) (solid line) and

Eq. (11) (broken line) at time t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the population size is (a) N ¼ 10, (b) N ¼ 100,

(c) N ¼ 1000, and (d) N ¼ 10; 000.
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we consider tunneling and the mutation-selection balance
in the population. Let b ¼ Nu1rðr1Þ, c ¼ Nr1u2rðr2=r1Þ, and
d ¼ ½Nu1=ð1� r1Þ�r1u2rðr2Þ. Then the expected number of
type 2 cells before the fixation of type 1 cells is given by

E0ðtÞ ¼ N
r1u2

1� r2

u1

1� r1
ð1� e�ð1�r1ÞtÞe�ðbþdÞt. (12a)

The expected number of type 2 cells after the fixation of
type 1 cells, but before the fixation of type 2 cells, is given by

E1ðtÞ ¼ N
r1u2

r1 � r2

Z t

0

e�ðbþdÞse�cðt�sÞbds

¼ N
r1u2

r1 � r2
b
e�ct � e�ðbþdÞt

bþ d � c
. ð12bÞ

The expected number of type 2 cells after the fixation of
type 2 cells is given by

E2ðtÞ ¼ N

Z t

0

e�ðbþdÞsd dsþN

Z t

0

e�ðbþdÞsð1� e�cðt�sÞÞbds

¼ N
d

bþ d
ð1� e�ðbþdÞtÞ

þNb
1� e�ðbþdÞt

bþ d
�

e�ct � e�ðbþdÞt

bþ d � c

� �
. ð12cÞ
Here the first term accounts for tunneling and the second
for the two-step evolution. In total, the expected number of
type 2 cells given by

EðtÞ ¼ E0ðtÞ þ E1ðtÞ þ E2ðtÞ. (12d)

Fig. 7 shows the results of the exact stochastic computer
simulation of the two-hit process and the numerical simula-
tion of Eqs. (2) and (12). We plot the expected number of type
2 cells, E, at time t. The mutation rates are u1 ¼ 10�3 and
u2 ¼ 10�2 per cell division, and the population size ranges
from N ¼ 10 to 100, 1000 and 10,000 in Figs. 7a–d.

3. Discussion

In a previous paper (Michor et al., 2006), we have
discussed the dynamics of metastasis formation if one
genetic alteration is sufficient to confer metastatic ability to
the cell. In the present paper, we extend the analysis to
situations in which both alleles of a MSG need to be
inactivated such that a cell can metastasize.
Let us call cells with two wild type alleles of the MSG

type 0, cells with one inactivated allele type 1, and cells with
two inactivated alleles type 2 cells. In this paper, we
calculate the risk of metastasis formation of tumors as a
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(a) (b)

(c) (d)

Fig. 7. The figure shows the expected number of type 2 cells if both type 1 and 2 cells are deleterious and have fitness values r1 ¼ 0:9 and r2 ¼ 0:8. We

compare the results of the exact stochastic computer simulation of the two-hit process (circles) with the numerical simulation of Eq. (2) (solid line) and

Eq. (12) (broken line) at time t. The mutation rates are u1 ¼ 10�3 and u2 ¼ 10�2 per cell division, and the population size is (a) N ¼ 10, (b) N ¼ 100,

(c) N ¼ 1000, and (d) N ¼ 10; 000.
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function of their population size, N, the rates at which the
two MSG alleles are inactivated per cell division, u1 and u2,
the fitness values of type 1 and 2 cells, r1 and r2, and the
rate of export of type 2 cells from the main tumor, q. We
obtain different formulas for different parameter regimes.

If MSG-deficient cells have a fitness advantage, then they
have a large probability of taking over the entire main
tumor. Therefore, if metastases are caused by mutations
that are positively selected in the main tumor, then
metastatic ability will be the property of all (or the
majority of) cells in the tumor. Conversely, if MSG-
deficient cells have a fitness disadvantage, then they will be
maintained at a quasi-equilibrium determined by the
mutation-selection balance in the main tumor. This
quasi-equilibrium is temporary and eventually, one cell
type will take over the tumor. Nevertheless, the presence of
the quasi-equilibrium is very important for calculating the
risk of metastasis. If metastases are caused by mutations
that are negatively selected in the main tumor, then
metastatic ability will be the property of only a small
fraction of cells in the tumor (Fig. 8). Hence, most
metastases will arise by advantageous mutations as long
as both advantageous and deleterious mutants have
comparable rates of being exported from the main tumor
and forming metastases elsewhere. Only if the export rate
or efficiency at forming metastases is greatly enhanced in
deleterious mutants, then they will outperform the ad-
vantageous ones (Table 2).
However, we can also imagine scenarios where deleter-

ious mutations are more effective. If the effective popula-
tion size of the tumor is small, then deleterious mutations
are more effective at taking over and hence producing
metastases (Fig. 8c). The main cancer can be subdivided
into small spatial compartments, again rendering deleter-
ious mutations more important. Also, there could be many
more genes that confer metastatic ability together with a
fitness disadvantage than metastasis-promoting genes with
a fitness advantage.
Even if type 1 cells are perfectly neutral as compared to

type 0 cells, they behave as slightly deleterious mutants if
the rate inactivating the second MSG allele is larger than
the rate inactivating the first MSG allele. In that case, type
1 cells are mutating to become type 2 cells more quickly
than they are being replenished by mutating type 0 cells.
This effect represents a fitness loss for type 1 cells. This
observation is not important in conventional population
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Table 2

The expected number of metastases if type 1 and type 2 cells are

deleterious (r1 ¼ r2 ¼ 0:9), neutral (r1 ¼ r2 ¼ 1), or advantageous

(r1 ¼ r2 ¼ 1:1)

r1 ¼ r2 ¼ 0:9 r1 ¼ r2 ¼ 1:0 r1 ¼ r2 ¼ 1:1

q ¼ 100 37 41000 41000

q ¼ 10 4 813 41000

q ¼ 1 0 81 41000

q ¼ 0:1 0 8 41000

q ¼ 0:01 0 1 41000

q ¼ 0:001 0 0 41000

q ¼ 0:0001 0 0 41000

q ¼ 0:00001 0 0 130

q ¼ 0:000001 0 0 13

Mutated cells are exported at rate q from the main tumor to form

metastases elsewhere. The main tumor consists of N ¼ 108 cells.

Advantageous mutations are likely to reach fixation in the main tumor

and hence are much more successful in establishing metastases. Neutral

and deleterious mutations, however, are maintained at low levels in the

main tumor. Deleterious cells are as successful as advantageous cells only

if their rate of export is 108-fold higher (grey cells). It is therefore very

unlikely that mutations that are negatively selected in the main tumor are

responsible for most metastases produces by the tumor. We use Eqs. (2)

and (3), and parameter values N ¼ 108, u1 ¼ 10�7 and u2 ¼ 10�6.
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Fig. 8. The figure shows the dependence of the number of type 2 cells on

the population size of the cancer. (a) Type 0, 1 and 2 cells have fitness

values 1, 1 and r with r41. We show the numerical simulation of Eq. (5)

with r ¼ 1:2. (b) Type 0, 1 and 2 cells all have fitness value 1. We show Eq.

(3). (c) Type 0, 1 and 2 cells have fitness values 1, 1 and r with ro1. We

show Eq. (10) with r ¼ 0:8. The lines represent different times, with time

flowing upwards in the graph. The mutation rates are u1 ¼ 10�3 and u2 ¼

10�2 per cell division.
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genetics where the mutation rate is assumed to be much
smaller than the fitness difference between cell types. For
carcinogenesis, however, the mutation rates can be as large
as or even larger than the selection coefficient, especially if
the tumor has already evolved some kind of genetic
instability (Lengauer et al., 1998; Nowak et al., 2002).
The results presented in this paper do not only apply to

the inactivation of a MSG in a tumor. We can also
calculate the number of cells harboring mutations in two
independent genes, both of which are necessary for
metastatic ability. For example, mutation of two onco-
genes could be needed to confer metastatic propensity to a
cell. Furthermore, our results are relevant to the dynamics
of tumor suppressor gene inactivation. In previous work,
we have calculated the probability of inactivating a
tumor suppressor gene in a population of cancer cells
(Nowak et al., 2004; Iwasa et al., 2005). In this paper, we
extend the analysis to calculate the expected number of
cells with an inactivated tumor suppressor gene in a cancer.
Hence the present paper contributes not only to a
quantitative understanding of metastasis, but also to
(early) tumorigenesis.
In this paper, we assume that the population size of the

tumor is approximately constant over time. This assump-
tion applies for tumors that expand very slowly, and for
tumors that cannot grow further until accumulating
another mutation. It is also possible to assume exponential
growth of the cancer. The dynamics of cells that are
generated by a single mutation in an exponentially growing
population has been investigated in a previous paper
(Iwasa et al., 2006). The dynamics of cells that are
generated by two mutations in an exponentially growing
population is the topic of ongoing investigation.



ARTICLE IN PRESS
F. Michor, Y. Iwasa / Journal of Theoretical Biology 241 (2006) 676–689 687
A quantitative understanding of metastasis dynamics
crucially relies on a knowledge of the fitness values of cells
harboring metastasis-promoting mutations. Only if these
fitness values are known, a prediction can be made about
the dynamics of different mutations. Therefore, it should
be an important goal of the field to investigate fitness
effects of metastasis-promoting alterations.
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Appendix A

Let x0, x1, and x2 be the fraction of type 0, 1 and 2 cells,
respectively. We have x0 þ x1 þ x2 ¼ 1. Their fitness values
are 1, 1, and rp1. Type 0 cells produce type 1 cells at rate
u1 per cell division, and type 1 cells produce type 2 cells at
rate u2 per cell division. Initially, the population is
dominated by type 0 cells. The change in the fraction of
type 1 cells per generation is the sum of the effects of
selection, mutation, and drift. Even though type 1 cells are
neutral, the selection term is positive, because they
constantly produce type 2 cells which have fitness ro1.
Therefore, the mean population fitness is less than one, and
there is positive selection favoring both type 0 and 1 cells.
The mean fitness is given by w̄ ¼ x0 þ x1 þ rx2 ¼

1� ð1� rÞx2. Hence the selection term for type 1 cells is
given by

ðDx1Þsel ¼
1

1� ð1� rÞx2
� 1

� �
x1 ¼

ð1� rÞx2

1� ð1� rÞx2
x1.

Therefore, we have

Dx1 ¼ u1ð1� x1 � x2Þ � u2x1 þ
ð1� rÞx2

1� ð1� rÞx2
x1 þ drift;

Dx2 ¼ u2x1 �
ð1� rÞð1� x2Þ

1� ð1� rÞx2
x2 þ drift:

Let us first consider the neutral case ðr ¼ 1Þ. In this case,
the selection terms vanishes. We then introduce the
arithmetic average of the gene frequency. Since all the
remaining terms are either the first order or the zeroth
order with respect to gene frequencies x1 and x2, we can
derive Eq. (2) without selection terms. This implies that the
deterministic model Eq. (2) holds exactly if we regard x1

and x2 as arithmetic averages.
For non-neutral cases (r 6¼1), we cannot apply the

average without considering higher order terms, and we
need a different way to simplify the dynamics. Note that
the mutation rates, u1 and u2, are both small ðOðuÞ5Oð1ÞÞ,
and 1�r is not small (O(1)). If we consider the situation in
which neither type 1 nor type 2 cells reach fixation, then x2
is maintained at a low level (O(u)), but x1 is not small
(O(1)). Calculating the averages removes the drift terms
and the approximation of difference equations by differ-
ential equations gives

dx1=dt ¼ u1 � ðu1 þ u2Þx1 þ ð1� rÞx1x2 þOðuÞ,

dx2=dt ¼ u2x1 � ð1� rÞx2 þOðu2Þ.

The average fraction of type 2 cells quickly converges to
x2 ¼ x1u2=ð1� rÞ. Therefore, we have

dx1=dt ¼ u1 � ðu1 þ u2Þx1 þ u2x
2
1.

We approximate the difference equation by a differential
equation and solve by integration by parts to obtain
Eq. (8a) in the text. Note that

lim
t!1

x1 ¼
1 if u14u2;

u1=u2 if u1ou2:

(

A.1. The effect of variance

Let us now derive a formula for the quasi-equilibrium
distribution of type 1 cells before reaching fixation. It
follows a diffusion process. The stochastic differential
equation and the diffusion equation (above) are respec-
tively given by

dZ ¼ ðu2Z � u1ÞðZ � 1Þdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N
Zð1� ZÞ

r
dW ,

qp

qt
¼ �

q
qz
fðu2z� u1Þðz� 1Þpg þ

1

2

q2

qz2
2

N
zð1� zÞp

� 
.

We neglect the third order and higher moments in order
to close the dynamics. With f ðzÞ ¼ ðu2z� u1Þðz� 1Þ and
gðzÞ ¼ ð2=NÞzð1� zÞ, we have

d

dt
z̄ ¼ u1 � ðu1 þ u2Þz̄þ u2z̄

2 þ u2v,

d

dt
v ¼ 2ð�ðu1 þ u2Þ þ 2u2z̄Þvþ

2

N
z̄ð1� z̄Þ þ

1

2

�4

N

� �
v.

Based on these equations, Eq. (8) gives a greater value of
z̄ than it would without the variance.
The calculation of the above equation generates the

mean frequency of type 1 cells and its variance. The
effective relative fitness of type 1 cells over type 2 cells is

1� u2

1� u2ðu1=u2Þ � u1ð1� u1=u2Þ
¼

1� u2

1� 2u1 þ u2
1=u2

.

Let the fixation rate of type 1 cells be

a ¼ u1
Nðð1� 2u1 þ u2

1=u2Þ=ð1� u2Þ � 1Þ

ðð1� 2u1 þ u2
1=u2Þ=ð1� u2Þ

N
� 1

.

This rate is slower than the rate of fixation of a neutral
mutant, u1. Let the rate of fixation of type 2 cells be
b ¼ Nu2ð1� 1=rÞ=ð1� 1=rN Þ. With these assumptions, we
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can calculate the expected number of type 2 cells as

EðtÞ ¼ N
u2

1� r
z̄e�at þN

u2

1� r

a

a� b
ðe�bt � e�atÞ

þN 1�
a

a� b
e�bt þ

b

a� b
e�at

� �
. ðA:1Þ
Appendix B

Consider the situation in which type 1 and 2 cells are
deleterious and have the same relative fitness, r1 ¼ r2 ¼

ro1. In this case, the frequencies of type 1 and 2 cells are
given by

dx1

dt
¼ u1ð1� x1 � x2Þ � ru2x1 þ

ðr� 1Þð1� x1 � x2Þ

1þ ðr� 1Þðx1 þ x2Þ
x1

þ ½random drift�,

dx2

dt
¼ ru2x1 þ

ðr� 1Þð1� x1 � x2Þ

1þ ðr� 1Þðx1 þ x2Þ
x2 þ ½random drift�.

By taking the arithmetic average with respect to the runs,
m1 ¼ E[x1] and m2 ¼ E[x2], and if x151 and x251, we
have

dm1

dt
¼ u1 � ð1� rÞm1,

dm2

dt
¼ ru2m1 � ð1� rÞm2.

The initial conditions are given by m1ð0Þ ¼ m2ð0Þ ¼ 0.
From these, we have

m2ðtÞ ¼
ru1u2

ð1� rÞ2
½1� ð1þ ð1� rÞtÞe�ð1�rÞt�.

This holds before the fixation of type 1. After the fixation
of type 1 cells, which occurs at t0, we have

m2ðtÞ ¼ 1� 1�
ru2

1� r


 �
e�ru2ðt�t0Þ.

Here the initial condition is given by the mutation
selection balance.

Let b ¼ Nu1rðrÞ and c ¼ ½Nu1=ð1� rÞ�ru2rðrÞ. At time t,
there are three different possibilities: (i) neither type 1 nor
type 2 cells are fixed, (ii) type 1 cells are fixed before time t,
and (iii) type 2 cells are fixed before time t. Then we have
the following estimate for the fraction of type 2 cells:

E½x2ðtÞ� ¼ e�ðbþcÞt ru1u2

ð1� rÞ2
½1� ð1þ ð1� rÞtÞe�ð1�rÞt�

þ

Z t

0

e�ðbþcÞt0bdt0 1� 1�
ru2

1� r


 �
e�ru2ðt�t0Þ


 �

þ

Z t

0

e� bþcð Þt0cdt0 � 1.

Therefore, the expected number of type 2 cells at time t is
given by Eq. (11) in text.
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