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Abstract

Genetic instability is a defining characteristic of cancers. Microsatellite instability (MIN) leads to by elevated point mutation rates,

whereas chromosomal instability (CIN) refers to increased rates of losing or gaining whole chromosomes or parts of chromosomes

during cell division. CIN and MIN are, in general, mutually exclusive. The quasispecies model is a very successful theoretical framework

for the study of evolution at high mutation rates. It predicts the existence of an experimentally verified error catastrophe. This

catastrophe occurs when the mutation rates exceed a threshold value, the error threshold, above which replicative infidelity is

incompatible with cell survival. We analyse the semiconservative quasispecies model of both MIN and CIN tumors. We consider the role

of post-methylation DNA repair in tumor cells and demonstrate that DNA repair is fundamental to the nature of the error catastrophe

in both types of tumors. We find that CIN introduces a plateau in the maximum viable mutation rate for a repair-free model, which does

not exist in the case of MIN. This provides a plausible explanation for the mutual exclusivity of CIN and MIN.

r 2005 Published by Elsevier Ltd.
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1. Introduction

Genetic instability is a hallmark of human cancers
(Lengauer et al., 1998; Loeb, 2001), and two main types
have been identified. Microsatellite instability (MIN) refers
to subtle sequence changes that alter one or a few base
pairs (Kinzler and Vogelstein, 1996; Perucho, 1996). MIN
is caused by a deficiency of the mismatch repair (MMR)
pathway, and six human genes are known that, when
recessively inactivated lead to a MIN phenotype in cancer
patients. MIN, however, is fairly uncommon in human
cancers and is only found in a small fraction of colorectal,
endometrial and gastric cancers.

The majority of human cancers have chromosomal
instability (CIN) (Rajagopalan et al., 2003). CIN refers
to an increased rate of losing or gaining whole chromo-
somes or parts of chromosomes during cell division. The
consequence of CIN is an imbalance in chromosome
number (aneuploidy) and an increased rate of loss of
e front matter r 2005 Published by Elsevier Ltd.
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heterozygosity. A large number of genetic alterations can
trigger CIN in yeast (Kolodner et al., 2002), but so far,
only a few genetic causes of CIN have been identified in
humans. These so-called ‘CIN genes’ include MAD2,
hBUB1, hCDC4, and BRCA2 (Michor et al., 2004).
CIN and MIN are generally mutually exclusive

(Lengauer et al., 1998). MIN cancers are diploid and
exhibit normal rates of gross chromosomal change,
whereas CIN cancers are usually aneuploid and exhibit
increased rates of chromosomal change, but have normal
point mutation rates.
Mathematical modeling of genetic instability has led to

considerable insight into human tumorigenesis. Nowak
and his group used stochastic processes to determine the
role of CIN in colorectal tumor initiation (Michor et al.,
2004; Nowak et al., 2002). They found that, in dependence
of tissue organization and the number of CIN genes in an
organism, CIN is very likely to initiate tumorigenesis
(Michor et al., 2003, 2004). Little and Wright (2003) used
the multi-stage stochastic model of carcinogenesis (Armi-
tage and Doll, 1954) to describe colorectal tumorigenesis
with genetic instability, finding that a model with five
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Fig. 1. Quasispecies replication. Double-stranded chromosomes unzip

and initiate replication. Mutation and recombination cause deviation of

the sequence from the consensus (master) sequence. Here, point mutations

and reciprocal translocation are shown. During segregation, sister

chromosomes might not be partitioned perfectly into the two daughter

cells. The chromosomal instability phenotype increases the probability of

segregation errors.
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stages and two levels of genomic destabilization fits colon
cancer incidence data. Breivik and Gaudernack (2004)
analysed genetic instability from the perspective of
molecular evolution and information processing. They
presented a mathematical model that predicts loss of
genetic stability in environments where the evolutionary
cost of DNA repair exceeds the cost of errors.

A particularly useful model for the study of evolution at
high mutation rates is the quasispecies model (Eigen, 1971;
Eigen et al., 1989). A quasispecies is a ‘‘cloud’’ of
genetically related genomes. The quasispecies model is
based on a phenomenological description of an explicit
population of genomes and incorporates a fitness land-
scape, i.e. the assignment of reproductive fitnesses to
specific genomes. The model has provided an impressive
number of experimentally verified predictions, ranging
from the existence of an error catastrophe to a quantita-
tively accurate prediction of human B-cell mutation rates
(Kamp and Bornholdt, 2002) and novel anti-viral therapies
(Crotty et al., 2001; Loeb et al., 1999).

In 1989, Nowak and Schuster (1989) investigated error
thresholds in finite populations. They determined that, at
error rates above the critical value, the quasispecies ceases
to be localized in sequence space and starts to drift
randomly. Solé and Deisboeck (2004) used the quasispecies
model to investigate the error threshold in cancer cells.
They demonstrated that, once the threshold is reached, the
highly unstable cancer cells become unable to maintain
their genetic information, leading to a decrease in the
velocity of tumor growth. Recently, Brumer and Shakhno-
vich (2004) demonstrated that incorporation of semicon-
servative replication into the quasispecies model
(Tannenbaum et al., 2004) presents a paradox in tumor
progression, discussed in detail below.

The original quasispecies model assumes that genomes
replicate conservatively, i.e. each single-stranded genome
replicates by producing a new, possibly error-prone, single-
stranded copy without affecting the original. In this form,
the quasispecies model predicts the existence of an error
catastrophe or ‘‘error threshold’’, a threshold mutation rate
above which no viable species can exist. This threshold
depends on the replication rate of the fittest sequence, the
master sequence. In the commonly used single fitness peak
landscape, the threshold mutation rate increases indefi-
nitely with master sequence fitness. Qualitatively, this
occurs because no information is lost upon conservative
replication. Although a perfect copy is rarely created, the
viable genome remains in the population as long as the
replication rate is high enough. Cancer cells, for example,
replicate very fast, thus allowing for the high mutation
rates they exhibit without passing the error threshold
(Solé, 2003).

The conservative model, however, is applicable only to
RNA genomes. In contrast, DNA genomes replicate
semiconservatively: each double-stranded genome repli-
cates by unzipping and producing a complementary copy
of each single strand (Fig. 1). Semiconservative replication
drastically alters the behavior of the system (Tannenbaum
et al., 2004). The threshold mutation rate plateaus at a low
value of the master sequence fitness and never increases
above a low error rate (Fig. 2a). For the conservative
system, there exists a master sequence fitness for any given
mutation rate such that the quasispecies survives. For the
semiconservative system, however, this is not true. Muta-
tion rates above the plateau will cause the error catastrophe
independent of the master sequence fitness. The existence of
this plateau can be understood best by considering the
nature of error repair in semiconservative systems. Post-
methylation repair yields a non-zero chance that a master
sequence will be changed to a sequence of lower fitness
upon replication. The chance of this occurring increases
with increasing replication rate. Thus, master sequences
can be lost through replication. In the conservative model,
master sequences can be overwhelmed by the creation of
sequences with lower fitness, but replication never affects
the original sequence. Thus, in the conservative case, a
master sequence can always ‘‘out-replicate’’ the error rate:
that is, with a high enough replication rate, the master
sequence can produce enough copies that a finite number
of new master sequences are produced, no matter what the
error rate. However, this is not true in the semiconservative
case. For high error rates, a higher replication rate may not
lead to any new master sequences, as the original master
may be destroyed in the process. This means that there are
error rates which are past the error threshold for all values
of the master sequence fitness, resulting in the plateau.
This plateau creates a paradox in cancer models (Brumer

and Shakhnovich, 2004), as cancer cells routinely display
mutation rates that far exceed any reasonable estimate of
the error threshold plateau in semiconservative systems.
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Fig. 2. (a) The value of the error threshold vs. the fitness of the master

sequence relative to the population on a single fitness peak landscape. The

genome length is L ¼ 1� 104. Conservative, semiconservative and

semiconservative systems without post-methylation lesion repair are

shown. (b) Analytical solution compared directly to the stochastic

simulations. Parameter values are L ¼ 10 and N ¼ 10 000. The ‘x’s

correspond to semiconservative runs without DNA repair, and ‘o’s

correspond to perfect DNA repair. Note that, as s approaches the scales

associated with the population size, the stochastic error begins to increase.
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The rapid replication rates cannot resolve the paradox, as
increasing the replication rate does not increase the
maximum viable mutation rate. Failure of post-methyla-
tion DNA repair, however, can resolve the paradox
(Brumer and Shakhnovich, 2004). For a specific single
fitness peak landscape, DNA genomes mimic their RNA
counterparts as post-methylation DNA repair begins to
fail. Once repair fails completely, the DNA genome
becomes identical to a conservatively replicating RNA
genome on a transformed landscape. Hence, removing
post-methylation DNA repair causes DNA genomes to
display, qualitatively, the error catastrophe behavior
associated with RNA genomes.
In this paper, we analyse both MIN and CIN tumors in

the semiconservative quasispecies model. We use finite
population sizes and finite genome lengths and investigate
the effect of post-methylation DNA repair on the error
catastrophe. We demonstrate that the qualitative behavior
of CIN tumors mimics that of their MIN counterparts in
that degradation of lesion repair leads to an increase in the
error threshold. We demonstrate that novel CIN dynamics
can be used to provide a plausible explanation for the
mutual exclusivity of CIN and MIN.

2. Microsatellite instability

MIN refers to increased point mutation rates due to
MMR deficiency. MIN tumors can conveniently be
described by the quasispecies model.
The original quasispecies model uses a set of differential

equations to describe the changing concentrations of all
possible genomes in a population (Eigen, 1971; Eigen et al.,
1989). Each genome f consists of a set of letters f ¼
s1s2 . . . sL, where each letter is chosen from an alphabet of
size S. Here S is four to mimic the nucleotides. Define
A � 1;G � 2;T � 3;C � 4. Each possible string of letters
is assigned a replication rate (fitness) and the population
size is held constant, yielding a set of differential equations
shown in the Appendix (Eigen et al., 1989). In the
semiconservative form, we deal with double-stranded
genomes ff;f0g and their corresponding equations (Tan-
nenbaum et al., 2004). To model MIN, we consider varying
rates of point mutations and assume that the probability of
point mutations is base pair and genome independent. We
study the single fitness peak landscape; we define a single-
stranded master sequence, f0, such that the fitness of a
double-stranded genome f is AðfÞ ¼ sb1 if both strands
are equivalent to f0 or its perfect complement f0, and
AðfÞ ¼ 1 otherwise. The single fitness peak model has been
shown to accurately capture the local dynamics of genomic
evolution about a fitness peak, and yields the same
qualitative behavior as some more delocalized landscapes.
Insisting that at least one strand be perfect is a reasonable
model for essential housekeeping genes. Other landscapes
will be treated in future work (Brumer et al., 2004). For
more details on the quasispecies model, we refer the
interested reader to the excellent review by Eigen (Eigen
et al., 1989) and the original work on the semiconservative
quasispecies (Tannenbaum et al., 2004).
The system can be treated using stochastic simulations

with the following procedure. A set of N double-stranded
genomes of length L are initialized. In our case, all are
equal to the perfect double-stranded genome ff0;f0g.
Below the error threshold, there are two stable equilibrium
conditions, a random set of genomes, and a quasispecies
surrounding the most probable sequence. Above the error
threshold, the second equilibrium condition disappears. By
employing an initial population of viable genomes, we
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approach the equilibrium from above (i.e. from higher
values of the concentration of master sequences) and thus
lessen the probability that we will locate the random set of
genomes (the first equilibrium condition) below the error
threshold by random fluctuation. This is fundamental to
allowing an accurate determination of the error threshold.
Using a time step small enough to ensure convergence of
the computational results (in our case, Dt ¼ 0:33=
Aðff0;f0gÞ), we propagate the system using the following
set of steps. For each time step, each double-stranded
genome ff;f0g in the population reproduces with prob-
ability Aðff;f0gÞDt. When a double-stranded genome
replicates, it unzips and two new complementary strands
are synthesized. Each base in the new strand is correctly
replicated with probability 1� �, where � represents the
point mutation rate. Methyl-directed MMR would, in
nature, repair many of these errors, but this simply rescales
the mutation rate �. In a system with perfect post-
methylation DNA repair, global genomic repair and
transcription coupled repair find and repair base mis-
matches caused by transcription errors. However, these
enzymes cannot distinguish the new strand from the old
strand. Thus, the error is fixed correctly (replacing the
erroneous base on the new strand) with 50% probability
and incorrectly (replacing the correct base on the old
strand to create a base pair) with 50% probability. For
more details on this model of semiconservative replication,
see Tannenbaum et al. (2004). Since we are interested in the
failure of post-methylation DNA repair, we introduce a
parameter, l, representing the efficiency of repair. An error
is repaired, either correctly or incorrectly, with probability
l. Hence, a base pair mismatch remains with probability
1� l. Note that by allowing unrepaired errors, double-
stranded genomes no longer have to be perfectly comple-
mentary. Lastly, N genomes are chosen to survive to the
next step, thus keeping the population size constant; this
synchronous updating of generations is known as Wright–
Fisher process in population genetics (Wright, 1931;
Fisher, 1930). The steps are iterated to create a trajectory
in concentration space.

3. Chromosomal instability

CIN refers to increased rates of losing or gaining
chromosomes during cell division. We denote the prob-
ability that a CIN error occurs per replication by PC ,
experimentally determined to be on the order of 0:01 per
cell division (Lengauer et al., 1998). Our model describes
cells with n chromosomes each. During each cell division
with a CIN error, the n chromosomes unzip to form 2n

single strands. We use the definition of recombination
commonly adopted for the quasispecies model (Boerlijst
et al., 1996; Barnett, 2003), dubbed uniform crossover.
Each base pair in a new strand is chosen with equal
probability from one of the 2n separated strands. The
direction of the strand, however, is kept the same. Thus,
each new chromosome will on average contain 1=ð2nÞ of
the base pairs of any one of the original strands. Lastly, the
2n new double-stranded chromosomes are randomly
distributed to the daughter cells, producing two cells with
x and y chromosomes, respectively; for conservation,
xþ y ¼ 2n. This process is shown schematically in Fig. 1.
The replication rate of a diploid cell with one or two master
chromosomes is sb1, the fitness of diploid cells without a
master chromosome as well as cells with 1, 3, 4, 5, and 6
chromosomes is 1, and the fitness of cells with 0 or more
than 6 chromosomes is 0.
For each system and for a given set of s; � and l, the

system is run until equilibrated, and the error threshold is
defined as the mutation rate at which the equilibrium
population included at most one master genome. A
genome length of L ¼ 10 is sufficient to nearly converge
to the infinite sequence results, and N ¼ 10 000 is large
enough to obtain excellent convergence for reasonable
values of s (obviously, as s approaches N, finite size effects
become prominent). Larger systems and longer genomes
were run to confirm that the qualitative trends are robust.

4. Results and discussion

Fig. 2a shows the analytical solution for the value of the
error threshold in a quasispecies model that replicates
conservatively, semiconservatively, and semiconservatively
without post-methylation DNA-repair as a function of
the master sequence fitness. While the threshold in the
semiconservative system plateaus at a low value of s, the
conservative threshold, mimicked exactly by the repair-free
semiconservative system, increases indefinitely with in-
creasing s. This has a number of important implications,
most pertinently the hypothesis that degradation of post-
methylation DNA repair is fundamental to the survival of
a MIN tumor (Brumer and Shakhnovich, 2004). The
analytical solution leading to this hypothesis requires a
number of approximations, including neglecting mutations
to the master sequence, and infinite population size and
genome length. Fig. 2b presents numerical results for these
systems, free of the above approximations. Finite popula-
tions and genomes, as well as the inclusion of back
mutation, have essentially no effect on the results. Further,
these results validate the use of small genome lengths to
approximate the very large genomes found in nature.
Fig. 3a shows the results of numerical simulation of the

CIN system with the biologically motivated PC ¼ 0:01, and
Fig. 3b shows the results for PC ¼ 0:1 to demonstrate the
robustness of the results. Both figures include the results of
an analytical calculation (appendix) obtained by making a
few simple approximations. Note the excellent agreement
between theory and simulation. The CIN model retains one
fundamental trend found for MIN tumors: the error
threshold in the semiconservative system plateaus rapidly,
and when post-methylation DNA repair is removed, this
threshold is significantly increased (for PC ¼ 0:1, this
increase is about a factor of 2, while the more biological
PC ¼ 0:01 shows an increase greater than four-fold). Fig. 4
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Fig. 3. (a) The error threshold vs. master sequence fitness for the

chromosomal instability model. Parameter values are PC ¼ 0:01, L ¼ 10,

and N ¼ 10 000. As before, the ‘x’s represent semiconservative runs

without DNA repair and the ‘o’s represent perfect DNA repair. (b) Same

as (a), but for PC ¼ 0:1. The ‘*’s are the same as the ‘x’s, but with

population size N ¼ 50 000.
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Fig. 4. The error threshold vs. the probability of repair for master

sequence fitness s ¼ 100. Parameter values are PC ¼ 0:1; L ¼ 10; and
N ¼ 10 000.
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demonstrates that the error threshold increases smoothly
from the semiconservative to the conservative threshold as
repair is removed (i.e. as the probability of repair goes from
1 to 0). Similar behavior was postulated to be fundamental
for MIN tumorigenesis, as slight damage to the repair
mechanism increases the error threshold slightly, allowing
for higher mutation rates, which makes further damage to
repair more likely (Brumer and Shakhnovich, 2004). For a
given point mutation rate, the removal of lesion repair
allows a higher level of CIN. Hence, while failure of post-
methylation DNA repair is postulated to be a pre-requisite
for MIN tumor progression, it is shown here to greatly
facilitate CIN tumor progression, but without the restric-
tion that tumor progression cannot possibly occur without
repair failure. This additional requirement may partially
explain why MIN tumors are so much rarer than CIN in
nature.
A fundamental difference between MIN and CIN

tumors sheds light on an important biological problem.
The main difference between the CIN and MIN tumors lies
in the existence of a plateau in the maximum viable error
catastrophe for CIN tumors for all values of l. As discussed
above, this plateau is caused by the possible loss of master
sequences in replication. In MIN tumors, the plateau
disappears as l! 0. The agreement between the analytical
results as well as two different system sizes (shown in
Fig. 2b) confirm that this plateau is not a numerical artifact
or finite size effect. The behavior is also qualitatively
explicable, as the source of the plateau in the semiconser-
vative system is the fact that replication can lead to
destruction of any initially perfect strand, a trait that is
absent in conservative replication and is lost when lesion
repair becomes inactive. However, the introduction of CIN
reinstates this property, independent of the existence of
lesion repair, as a chromosomal error can destroy perfect
strands upon replication.
These results can be used to provide a plausible

explanation for the mutual exclusivity of MIN and CIN
tumors in nature. While removal of lesion repair allows for
arbitrarily high levels of point mutations without crossing
the error threshold in a MIN tumor, the plateau present in
CIN tumors makes these high point mutation rates
incompatible with cell viability. Thus, a MIN cell can
survive with extremely high rates of point mutations (up to
1000 times that of normal cells), as long as the cell
replicates fast enough, i.e. as long as the master sequence
fitness is sufficiently high. However, any quantitative
estimate of the error threshold would state that these
MIN point mutation rates are far above the error threshold
for CIN tumors, no matter how fast the cell replicates. For
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example, when PC ¼ 0:01, the results in the Appendix
suggest a maximum viable mutation rate of 4.595 errors/
genome/replication. MIN cells can display error rates two
or three orders of magnitude greater than this. Thus, our
results suggest that, while CIN and MIN tumors are
independently stable, cells with both CIN and MIN
instability are inviable. This is in agreement with experi-
mental evidence, which suggests that CIN and MIN are
generally mutually exclusive in vivo (Lengauer et al., 1998).

Lastly, we suggest that these theoretical results can be
tested directly by experiment. Recently, it was shown that
CIN and MIN can be introduced in cancerous cell lines
through specific mutagenesis (Bardelli et al., 2001). While
an in-depth study of dynamics above the error threshold
along with careful consideration of the enzymatic interac-
tions, both subjects of future research, would be necessary
to rigorously quantify this statement, preliminary results
would suggest that the introduction of CIN into MIN cell
lines would select, for a given level of CIN, for the MIN
cells with the lowest levels of point mutations and post-
methylation DNA repair. This is one example of a
quantifiable and testable hypothesis that can be used to
experimentally test our theoretical work.

5. Conclusion

In this paper, we use the semiconservative quasispecies
model to analyse tumors with chromosomal instability
(CIN) and microsatellite instability (MIN). We demon-
strate that MIN and CIN tumors both display increased
error thresholds upon removal of post-methylation DNA
repair. However, the CIN tumors show a plateau in the
maximum viable mutation rates for all values of repair
efficiency. MIN tumors, in contrast, show a disappearing
plateau as the repair efficiency goes to zero. This is a
fundamental difference, as the lack of a plateau allows
MIN tumors to retain viability with enormously high point
mutation rates, as is found in nature. Any CIN tumor with
such a high mutation rate, however, will immediately cross
the error threshold and become inviable. We conclude that,
while CIN and MIN tumors are individually viable, a cell
cannot contain both CIN and MIN and survive. This
finding agrees well with experimental work in the area, and
provides a plausible explanation for a fundamental
phenomenon.

Acknowledgements

The authors would like to thank Martin Nowak for
helpful discussions and for looking over the manuscript.
This research was supported by an NIH postdoctoral
fellowship to Y.B.

Appendix. Quasispecies model with chromosomal instability

The original quasispecies model employs a set of
differential equations to model the dynamic concentrations
of all possible genomes in a population. Each genome f is
explicitly described by a string of letters f ¼ s1s2 � � � sL,
where each letter is chosen from an alphabet of size S. We
choose S to be four to mimic the nucleotides (with the
arbitrary definitions A � 1;G � 2;T � 3;C � 4). Each
possible string of letters is assigned a replication rate
(fitness) and the population size is held constant, yielding
the following set of differential equations (Eigen et al.,
1989)

dxf

dt
¼
X
f0

Aðf0ÞW ðf;f0Þxf0 � f ðtÞxf, (A.1)

where xf denotes the population fraction of genome f,
AðfÞ represents the fitness of sequence f, and W ðf;f0Þ is
the likelihood of creating sequence f from f0 by mutations.
The average fitness of the population is given by
f ðtÞ ¼

P
fAðfÞxf. This term holds the population size

constant, thereby introducing competition. In the semi-
conservative form, we deal with double-stranded genomes
ff;f0g and their corresponding equations (Tannenbaum
et al., 2004). Although a full analytical treatment of the
chromosomal instability quasispecies model, with recom-
bination, aneuploidy and a cellular fitness landscape is
beyond the scope of this work, we present a simple set of
approximations that can be used to yield an approximate
solution that is in excellent agreement with the numerical
results of Section 4. We track the concentration of perfect
chromosomes (rather than cells), defined as x0. Further, we
assume that the error catastrophe occurs when x0, rather
than the number of viable cells, goes to zero (this
approximation becomes exact as the probability that a
perfect chromosome is found in an aneuploid cell goes to
zero). We also assume that any CIN error leads to inviable
chromosomes, and neglect all point mutations and CIN
errors that lead from an inviable to viable cell (which
becomes exact in the limit of an infinite genome length,
and is an excellent approximation for reasonable lengths).
Although this may seem like a significant number of
approximations, the end result is a tractable set of
equations that are rigorously exact in certain limits,
and very nearly exact for reasonable parameters. This
yields the set of differential equations, when lesion repair is
absent,

dx0

dt
¼ sqLð1� PCÞx0 � f ðtÞx0 � PCx0, (A.2)

dx1

dt
¼ sð1� qLÞx0 þ sqLPCx0 þ x1 � f ðtÞx0, (A.3)

f ðtÞ ¼ sx0 þ 1� x0, (A.4)

where x1 ¼ 1� x0 and q ¼ 1� �. This yields two equili-
brium solutions, x0 ¼ 0 or

x0 ¼
1þ PCs� sqLð1� PCÞ

s� 1
. (A.5)
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The error catastrophe occurs when these solutions meet,
when

� ¼ �
1þ PCs
sð1� PCÞ

� �1=L

þ 1. (A.6)

This solution is plotted in Fig. 3. The plateau behavior can
be seen by taking the limit s!1, which yields

qL � ð1� �ÞL ¼
PC

1� PC

. (A.7)

Thus, a plateau exists for all values of PC . As well, when
PC40:5, the system is inviable for all values of the
mutation rate, as replication makes the loss of information
more likely than the gain thereof. When lesion repair
remains intact, we obtain the equations

dx0

dt
¼ 2 1�

�

2

� �L

sð1� PCÞx0 � sx0 � f ðtÞx0, (A.8)

x1 ¼ 1� x0, (A.9)

f ðtÞ ¼ sx0 þ 1� x0 (A.10)

which yields the solutions x0 ¼ 0 and

x0 ¼
1þ s� 2ð1� �=2ÞLsð1� PCÞ

1� s
(A.11)

which meet when

� ¼ �2
1þ s

2sð1� PCÞ

� �1=L

� 1

 !
(A.12)

yielding, in the limit s!1,

� ¼ �2
1

2ð1� PCÞ

� �1=L

� 1

 !
. (A.13)
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