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Introduction: Erlotinib (Tarceva) is an epidermal growth factor 
receptor (EGFR) tyrosine kinase inhibitor, which effectively tar-
gets EGFR-mutant driven non–small-cell lung cancer. However, the 
evolution of acquired resistance because of a second-site mutation 
(T790M) within EGFR remains an obstacle to successful treatment.
Methods: We used mathematical modeling and available clinical 
trial data to predict how different pharmacokinetic parameters (fast 
versus slow metabolism) and dosing schedules (low dose versus high 
dose; missed doses with and without make-up doses) might affect 
the evolution of T790M-mediated resistance in mixed populations 
of tumor cells.
Results: We found that high-dose pulses with low-dose continu-
ous therapy impede the development of resistance to the maximum 
extent, both pre- and post-emergence of resistance. The probability 
of resistance is greater in fast versus slow drug metabolizers, sug-
gesting a potential mechanism, unappreciated to date, influencing 
acquired resistance in patients. In case of required dose modifications 
because of toxicity, little difference is observed in terms of efficacy 
and resistance dynamics between the standard daily dose (150 mg/d) 
and 150 mg/d alternating with 100 mg/d. Missed doses are expected 
to lead to resistance faster, even if make-up doses are attempted.
Conclusions: For existing and new kinase inhibitors, this novel 
framework can be used to rationally and rapidly design optimal dos-
ing strategies to minimize the development of acquired resistance.

Key Words: EGFR-mutant lung cancer, Erlotinib, Evolutionary 
cancer modeling, Pharmacokinetic modeling, Acquired resistance, 
EGFR T790M mutation.
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Erlotinib (Tarceva; OSI Pharmaceuticals, Farmingdale, 
NY) is an orally active selective inhibitor of the epidermal 

growth factor receptor (EGFR) tyrosine kinase.1 More than 
70% of patients with non–small-cell lung cancer (NSCLC) 
harboring specific mutations in the EGFR kinase domain 
exhibit a radiographic response to erlotinib as defined by 
Response Evaluation Criteria In Solid Tumors (RECIST) 
standards on tumor reduction.2–5 However, the evolution of 
acquired resistance remains a significant obstacle to success-
ful treatment, with most patients usually progressing within 10 
to 16 months.6–9 In more than 50% of these patients, acquired 
resistance to erlotinib or the related drug, gefitinib, is medi-
ated by a second-site mutation (T790M) within EGFR.6,7,9

A major assumption for achieving clinical successes 
using small-molecule tyrosine kinase inhibitors (TKIs) in 
cancer therapy is that prolonged target inhibition is essential. 
Thus, TKIs usually have long half-lives and are administered 
on a clinically tolerable schedule that results in continuous 
target suppression. For example, the oral kinase inhibitor ima-
tinib, used in frontline therapy for chronic myeloid leukemia 
(CML), causes prolonged inhibition of the breakpoint clus-
ter region-Abelson tyrosine kinase 1 (BCR-ABL) kinase 24 
hours after a single dose; the drug has a half-life of 18 hours 
and a long-acting metabolite with a half-life of 40 hours.10,11 
Other approved TKIs have similarly long half-lives in patients, 
including erlotinib (36 hours), gefitinib (48 hours), lapatinib 
(24 hours), sunitinib (40–60 hours), and sorafenib (25–48 
hours). However, investigators recently demonstrated that 
intermittent target inhibition by another ABL TKI, dasatinib, 
was sufficient for activity in CML,12 suggesting that TKIs can 
be dosed alternatively and remain clinically effective. These 
findings have prompted us to investigate optimal dosing strat-
egies for EGFR TKIs in EGFR-mutant lung cancer.

In our previous work, we developed isogenic TKI-sensitive 
and TKI-resistant pairs of cell lines that mimic the behavior of 
human EGFR-mutant tumors.13 We determined that the drug-
sensitive and drug-resistant EGFR-mutant cells exhibited 
differential growth kinetics, with the drug-resistant cells showing 
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slower growth. We then used evolutionary cancer modeling to 
elucidate novel dosing strategies that prevent or delay progression 
of EGFR-mutant lung cancer caused by acquired resistance.

Here, we studied how patient-specific pharmacokinetic 
processes and therapeutic dosing strategies might alter the 
dynamics of resistance in heterogeneous cell populations. 
Using our previous cell-line measurements13 and additional 
clinical data,14 we modeled the pharmacokinetic processes 
under various dosing schedules to obtain an accurate descrip-
tion of the temporal plasma concentration of erlotinib over 
time. We then constructed a hybrid approach combining mod-
els of these pharmacokinetic processes with evolutionary 
models of the dynamics of resistance in the cell population, 
enabling us to study detailed time-dependent features of phar-
macokinetic processes such as the speed of drug elimination 
and its impact on the emergence of resistance. We also deter-
mined how patient noncompliance (e.g., missed doses) and 
treatment withdrawal upon progression of disease affect the 
risk of developing resistance. This mathematical framework 
allowed us to generate novel predictive theoretical models of 
EGFR-mutant lung cancer, which could be used to improve 
treatment of patients with the disease.

MATERIALS AND METHODS

Evolutionary Modeling of EGFR-Mutant  
Cancer Cells

The population of EGFR-mutant cells was modeled as 
a multitype, inhomogeneous, continuous-time birth–death 
process. The numbers of sensitive and resistant cells at any 
particular time t are given by X(t) and Y(t), respectively. We 
considered a population that initially consists of M(1-s) sensi-
tive and Ms resistant cells, where s varies between 0 and 1; 
thus the case when s = 0 corresponds to a fully sensitive initial 
population of size M. Sensitive cells proliferate and die with 
rates λ

X
(t) and μ

X
(t), whereas resistant cells proliferate and die 

with rates λ
Y
(t) and μ

Y
(t). These time-dependent rates reflect the 

effect of treatment on the population and thus depend on how 
the drug concentration in the body varies over time. Note that 
in our model, the parameters describing cell death, denoted by 
the rates μ

X
(t) and μ

Y
(t), take into account both apoptosis and  

any other potential forms of cell death that cells might undergo.
During each replication of a sensitive cell, the EGFR 

T790M mutation may arise with probability μ, giving rise 
to a new resistant cell. The joint process X(t) = (X(t), Y(t)) 
represents the combined state of the sensitive and resistant 
populations at time t. We obtained analytical formulae for 
the probability of resistance and estimates of the mean and 
variance of sensitive and resistant cells under general time-
dependent dosing schedules. The derivation of the analytical 
approximations is outlined elsewhere.15,16

Pharmacokinetics refers to the processes by which a 
drug is absorbed, distributed, metabolized, and eliminated by 
the body.17 Because these processes directly impact the con-
centration of drugs in different organs over time, any mathe-
matical model describing the effects of treatment schedules on 
the evolution of resistance should incorporate pharmacokinetic 
considerations.18,19 We thus used clinical data in conjunction 

with a pharmacokinetic model to describe the drug concentra-
tion as a function of time for a given treatment schedule.

To study the dynamics of resistance emerging during a 
particular dosing schedule, we coupled the pharmacokinetic 
model with our stochastic evolutionary model of the cancer 
cell population. This combined mathematical framework 
was then used to investigate the effects of pharmacokinetic 
processes on the risk of resistance. In particular, for a given 
treatment schedule defined by a dose intensity over time, the 
pharmacokinetic model was used to obtain the drug concentra-
tion, C(t), in the body as a function of time. We subsequently 
used experimentally determined relationships between the 
drug concentration and the birth and death rates of sensitive 
and resistant individuals to obtain the parameters of the sto-
chastic model, λ

X
(t) and μ

X
(t) as well as λ

Y
(t) and μ

Y
(t). The 

stochastic model was then used to investigate the dynamics 
of resistance emerging during pharmacological interven-
tions directed at cancer cells. This hybrid methodology can 
be extended to include arbitrarily complex pharmacokinetic 
models with multiple compartments describing many differ-
ent pharmacokinetic processes.20,21 However, here we used a 
simple exponential drug-elimination model as dictated by the 
clinical pharmokinetic data on erlotinib.

Determining Growth- and Death-Rate  
Parameters

Sensitive and resistant cells may have distinct growth 
and death rates, which vary depending on the drug concen-
tration. These evolutionary model parameters were experi-
mentally determined as previously described,13 using a pair 
of isogenic PC-9 human EGFR-mutant cell lines with and 
without the T790M point mutation. Measurements were per-
formed at erlotinib concentrations of 0, 1, 3, 10, and 20 μM.

Note that we considered pharmacokinetic data and mod-
els of dosing schedules in human patients. However, when 
comparing the dynamics of resistance among these sched-
ules, we used the available in vitro growth kinetic data from 
our model system. This limitation prevented us from making 
predictions about the actual temporal dynamics of resistance 
evolution in human patients because in vitro growth kinetics 
occur on a different time scale than the in vivo kinetics do. 
However, even though in vivo growth kinetic data are unavail-
able, we were able to gain valuable insights from this model 
system about the relative comparison of various dosing sched-
ules because the relative differences in growth kinetics in vitro 
are likely preserved in patients.

Estimating Pharmacokinetic Parameters 
for Erlotinib

Detailed measurements of erlotinib plasma concentra-
tions have been recorded over time for current smokers and 
nonsmokers.14 Healthy subjects were given single doses of 
150 mg and 300 mg of erlotinib, and the erlotinib concentration 
of plasma was sampled 11 times over the course of 72 hours. 
This approach showed that the metabolic clearance of erlotinib 
occurs faster in smokers at both concentrations. We used data 
collected in this study to estimate the pharmacokinetic rate of 
erlotinib elimination from the body. We considered a function 
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governing the erlotinib plasma concentration over time after 
each dose d of the form C(t) = A e–kt. The parameter k represents 
the elimination rate of the drug and the parameter A approxi-
mates the maximum concentration usually known as the C

max
; 

both parameters depend on the initial dose and may vary 
between patients, such as between groups of smokers and non-
smokers. Note that we used data on smokers and nonsmokers 
to obtain an understanding of the diversity of pharmacokinetic 
rates within a patient population. Even though the majority of 
lung cancer patients with EGFR-mutant tumors have a history 
of not smoking, these rates serve as the extreme ends of the 
distribution of rates within a heterogeneous patient population.

Figure 1A and B displays the erlotinib plasma concen-
tration14 over time after a single dose of 150 mg (Fig. 1A) and 
300 mg (Fig. 1B). For each dose and test group, we performed 
least squares regression to infer the two parameters, A and k, 
which are displayed in the panels. Our choice of the functional 
form implies that C

max
 is achieved immediately after each dose; 

as shown by the panels, this functional form approximates the 
exponential decay indicated in the data very well. Although the 
data points show that the erlotinib concentration peaks approx-
imately 2 to 3 hours after administration, the exponential form 
used is appropriate because we considered dosing strategies 
changing on the time scale of days, not hours; this modeling 
choice has the advantage of a smaller number of parameters to 
fit. This assumption was made for all dose levels.

The fitted curves of concentration versus time with erlo-
tinib shown in micromolar units (μM) are provided in Figure 
1C and D. These units are used in the remainder of the article. 
The molecular weight of erlotinib, used in this conversion, is 
429.9 g/mol.

We then extrapolated this data to understand the phar-
macokinetic processes at a spectrum of doses between 0 and 
1600 mg erlotinib. Because our studies focused on patients 
whose tumors harbored EGFR mutations, and because this 
patient population was enriched for nonsmokers, we used 
pharmacokinetic data from the nonsmoker cohort of Hamilton 
et al.14 We observe a linear relationship between the C

max
 and 

the oral dose (Fig. 1E). We therefore used this fitted rela-
tionship as an estimate for A (in μM units) in our model:  
A (d) = 1.0182 + 0.0114 d, where d is the oral dose.

We then investigated the rate k and its dependence on the 
administered dose. We obtained values of k at doses 150 mg 
and 300 mg for nonsmokers and smokers.14 However, data for 
other doses were not available. Because the rate of elimination 
at 300 mg was slightly lower than at 150 mg for both smokers 
and nonsmokers, we set k as the mean of the observed k at 150 
and 300 mg (k[d] = 0.0465 hours–1 for nonsmokers). A noncon-
stant relationship between d and k may exist, but in the absence 
of additional data points, we used the simplest assumption.

RESULTS

Dosing Schedules Affect the Dynamics of  
Resistance

Erlotinib was approved for the treatment of unselected 
NSCLC at 150 mg/d. However, doses of erlotinib 25 mg/d 
still lead to characteristic response rates and progression-free 

survival in EGFR-mutant lung cancer.22 To date, no prospec-
tive randomized trials have been performed in patients with 
EGFR-mutant lung cancer to determine which dosing strat-
egy leads to superior clinical outcomes. Here, we explored 
the effects of altering the dosing schedule on the dynamics of 
resistance. In addition to the Food and Drug Administration-
approved schedule of 150 mg/d, we investigated doses of 
25 mg/day and 50 mg/day as well as schedules involving a 
high-dose pulse of 1600 mg/week with and without additional 
daily low doses throughout the remainder of the week (Fig. 2). 
Variation in the number of sensitive cells when changing from 
one schedule to the next is minimal. To determine the prob-
ability of resistance over time for a variety of dosing sched-
ules (Fig. 3A), we assumed that initially, the tumor contains 1 
million cells and has a mutation rate generating resistant cells 
of 10–8 per cell division. Although a modification of these esti-
mates would alter the outcomes slightly, it would not affect the 
relative comparison between dosing schedules.

We first performed modeling under the assumption that 
cell populations contain no preexisting resistance. A schedule 
including a once-weekly pulse of 1600 mg/week with a break 
for the remainder of the week resulted in the highest prob-
ability of developing resistance. This outcome occurs because 
during treatment breaks cells resume proliferation; note that 
the rates of apoptosis are not significantly changed by the con-
centration of the drug. By contrast, schedules combining a 
once-weekly pulse with low doses during the remainder of the 
week were comparable with the 150 mg/d schedule. In both 
cases, sensitive cell division is inhibited continuously.

We next evaluated these treatment schedules for the sce-
nario that preexisting resistant cells are present at a small fre-
quency in the cancer cell population at diagnosis. For instance, 
consider that 100 out of the initially present 1 million cells 
harbor the T790M point mutation conferring resistance to 
erlotinib. In all cases, pulsed schedules were favorable to daily 
schedules, because the use of high doses decelerates the overall 
growth of the resistant population (Fig. 3B). In this scenario, 
the 1600 mg/week schedule outperformed the 150 mg/d sched-
ule, and continuing low doses during the remainder of the week 
further enhanced this benefit. Collectively, these data show that 
the use of high-dose pulses with low-dose continuing therapy 
impedes the development of resistance to the maximum extent. 
This combination would also be optimal for situations in which 
the presence of preexisting resistance is unknown.

Pharmacokinetic Effects Alter the 
Dynamics of Resistance

We next sought to understand the effects of interpa-
tient pharmacokinetic variability on the dynamics of resis-
tance. Specifically, we aimed to determine how variability 
in the rate of drug elimination (fast metabolism versus slow 
metabolism) affects the probability of developing resistance 
and the size of the resistant cell population among patients. 
To study plausible human ranges of variability in the rate of 
drug elimination, we used detailed pharmacokinetic stud-
ies with 150 mg/d and 300 mg/d demonstrating that smok-
ers have a faster rate of drug elimination compared with 
nonsmokers.14 For these investigations, we did not consider 
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FIGURE 1.  Pharmacokinetics of NSCLC cells. Plasma concentration over time for smokers and nonsmokers after (A) a 150 mg 
dose and (B) a 300 mg dose, both shown on a log-linear plot. Fitted plasma concentration over time for smokers and nonsmok-
ers after (C) a 150 mg dose and (D) a 300 mg dose, both on a linear plot. E, The mean Cmax of erlotinib as a function of the oral 
dose administered, with error bars reflecting the minimum and maximum values observed. The average time of  
Cmax varied between 2 and 9 hours. Data were obtained from the Tarceva Investigators Brochure and Hamilton et al.14
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the effects of the metabolites OSI-413 and OSI-420 against 
EGFR; generally, these metabolites arise at 5% to 10% of 
the levels of erlotinib in the plasma and have similar activity 
against EGFR as erlotinib does.

In the case of no preexisting resistant cells, the prob-
ability of developing resistance in fast metabolizers was 

approximately two orders of magnitude higher than that for 
slow metabolizers, for both a standard dose of 150 mg/d or a 
double dose of 300 mg/d (Figs. 3C and D). Note that the plasma 
concentration for 300 mg/d in the fast metabolizers closely 
matches that of the slow metabolizers receiving 150 mg/d 
(Fig. 3C). When the dose was doubled for fast metabolizers, 
the probability of resistance decreased but remained an order 
of magnitude larger than that for slow metabolizers on the 
150 mg/d schedule. The differences between the two cohorts 
were preserved for other dosing schedules such as the 1600/
week plus 75 mg/d schedule (Fig. 3D).

If resistant cells existed prior to treatment (Fig. 3E), 
fast metabolizers had a higher expected resistant clone size 
for any therapy schedule, because of faster elimination of the 
drug. In particular, fast metabolizers receiving a high-dose 
pulse plus continuing low doses still had a higher expected 
resistant cell population size than nonsmokers receiving the 
standard 150 mg/d dose. By taking a double dose of 300 mg/d, 
fast metabolizers could effectively reduce the growth of the 
resistant population; however, the benefit conferred was not 
sufficient to overcome the faster rate of drug metabolism.

Missed Doses, Make-Up Doses, and Alternating 
Doses

Despite a recommended daily dosing schedule, patients 
will miss, not infrequently, one or several doses of drug. We 
used our predictive models to evaluate the effects of such 
noncompliance (i.e., missed doses) on the dynamics of sensi-
tive and resistant cancer cells. Specifically, we considered the 
effects of missing 1, 2, and 3 days in succession, as compared 
with the standard 150 mg/d dose, on the overall probability of 
developing resistance in the case of no preexisting resistance 
(Fig. 4A and B). The probability of resistance was affected by 
missing several days of treatment by several orders of mag-
nitude (10-fold–100-fold). Interestingly, noncompliance had 
little effect on the sensitive-cell population (i.e., the bulk of 
the tumor). However, the effects of noncompliance on the 
dynamics of resistance were significant.

We next investigated the effects of make-up doses after 
missed drug on the dynamics of resistance (Fig. 4C and D). 
For a nonsmoker with no preexisting resistant cells, we com-
pared the probability of resistance on a compliant schedule, a 
schedule with missed but no make-up doses, and a schedule 
with missed drug on 2 consecutive days followed by doubled 
doses on 2 subsequent days. Interestingly, make-up doses did 
not reverse the effects of missed doses.

We also modeled the effects of a schedule in which 
alternating doses of 150 mg and 100 mg were administered 
on successive days. This schedule is sometimes prescribed 
for patients who have dose-limiting toxicity at the 150 mg/d 
dose. There was little difference between these two schedules 
in terms of efficacy and resistance dynamics (Fig. 4E and F).

Treatment Withdrawal and Treatment  
beyond Progression

Finally, we used our methodology to study treatment strat-
egies after the development of T790M-mediated progression 
of the disease on a standard 150 mg/d schedule. We assumed 

FIGURE 2.  The choice of treatment schedule influences the 
plasma concentrations of erlotinib. Erlotinib plasma concen-
tration as a function of time during several dosing schedules 
(50 mg/d, 25 mg/d, 150 mg/d, and 1600 mg/week, and 
1600 mg/week with 50 mg on remaining days.
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FIGURE 3.  The choice of treatment schedule influences the probability of resistance and expected number of resistant cells. 
Probability of resistance as a function of time under various dosing schedules with no preexisting resistance. A, Initial popula-
tion size: M = 106 cells with no preexisting resistance. Expected size of resistant population as a function of time during various 
dosing schedules. B, Initial population size: M = 106 cells containing 100 resistant cells. C, Plasma concentration over time in 
smokers and nonsmokers for the standard 150 mg/d dose, and for smokers on the 300 mg/d schedule. D, Probability of resis-
tance as a function of time for smokers and nonsmokers with no preexisting resistance. Expected size of resistant population as 
a function of time, under various dosing schedules for smokers and nonsmokers with preexisting resistance. E, Initial population 
size: M = 106 cells with 100 resistant cells. For all panels, the mutation rate is μ = 10–8 per cell division.
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FIGURE 4.  The effect of patient noncompliance on the risk of resistance. A, Effect of missing doses on the probability of 
resistance as a function of time, for nonsmoking patients with no preexisting resistance. B, Dynamics of the number of sensitive 
cells for compliant and noncompliant dosing schedules (missing 1, 2, and 3 days starting with day 7). C, Drug concentration 
in plasma over time (in μM) for compliant schedule of 150 mg/d, a noncompliant schedule missing days 7/8 and taking twice 
the dose on days 8/9, and a noncompliant schedule missing days 7/8 with no make-up doses. D, Probability of resistance for 
each of these schedules. E, Drug concentration in plasma over time (in μM) for schedule taking 150 mg and 100 mg on alter-
nate days, and the standard schedule of 150 mg/d. F, Expected size of the resistant clone as a function of time for the schedules 
shown in (E), assuming 100 preexisting resistant cells. For all panels, the mutation rate is μ =10–8 per cell division and the initial 
population size is M = 106 cells with no preexisting resistance.
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that initially, the population contains 100 resistant and 106 
sensitive cells. On day 12 of treatment in vitro, the resistant 
population size grows sufficiently large so that the total pop-
ulation size begins to increase again after the initial decline. 
This time point marks the time of progression on therapy 
(Fig. 5A). Three scenarios were then examined (Fig. 5B 
and C ): (1) treatment withdrawal, (2) continuing therapy 
with 150 mg/d, and (3) change of the treatment strategy to 
a high-dose pulse (1600 mg for 1 day) followed by 6 days 
on low dose (75 mg/d). For each of these schedules, Figure 
5B shows the total population size and the number of sen-
sitive cancer cells whereas Figure 5C displays the plasma 
concentration of erlotinib over time. Treatment withdrawal 
(strategy 1) led to a rapid rebound of the numbers of sensi-
tive cells, therefore, the total population size increased rap-
idly. Continuation of 150 mg/d (strategy 2) led to a less-rapid 
rebound and the sensitive cells were kept in check. Weekly 
high-dose pulses followed by low daily doses (strategy 3) 
provided a further modest benefit. Thus, our mathematical 
modeling predicted that treatment beyond progression was 
superior to drug withdrawal, and a schedule with high-dose 
pulses and low-dose maintenance seemed modestly better 
than the use of 150 mg/d.

DISCUSSION
In this article, we outlined the use of a combined evo-

lutionary and pharmacokinetic modeling approach to study 
the emergence and dynamics of T790M-mediated resistance 
to erlotinib in patients with EGFR-mutant lung cancers. We 
used a pharmacokinetic modeling perspective informed by 
human subject data to model the concentration of erlotinib 
over time in patient plasma for diverse dosing schedules. To 
study the evolution of drug-sensitive and drug-resistant popu-
lations during these schedules, we used growth kinetic data 
from an isogenic pair of NSCLC cell lines with and without 
the T790M mutation.13 Combining these types of data through 
a novel hybrid modeling approach, we were able to investigate 
the relative benefits of various treatment strategies and phar-
macokinetic parameters.

We considered the evolution of resistance during admin-
istration of daily oral doses of 25, 50, and 150 mg as well as 
pulsed doses of 1600 mg weekly, with and without additional 
low-dose continuations of 50 mg to 100 mg on the remain-
ing 6 days. We found that when preexisting resistant cells are 
present, all schedules containing pulsed doses are superior in 
delaying the time to progression of disease (POD) by impeding 
the growth of resistant cells. However, when preexisting resis-
tance is not present, a schedule with a once-weekly 1600 mg 
pulse is an unfavorable choice as the probability of develop-
ing resistance increases because of treatment breaks; during 
treatment breaks, sensitive cells resume proliferation, poten-
tially leading to the development of resistance. In contrast, the 
schedule of 1600 mg weekly pulses plus continuation doses 
on the remaining 6 days achieves a probability of resistance 
similar to that of the 150 mg/d standard dose. Therefore, we 
conclude that independent of whether preexisting resistance is 
present, patients administered high-dose pulsed therapy once a 
week plus low doses during the remaining 6 days would derive 

FIGURE 5.  Effect of various treatment strategies in in vitro 
models of acquired resistance. Erlotinib discontinuation after 
progression of disease is detrimental to patient survival. 
A,Dynamics of the total population size (black), the number 
of sensitive cells (blue), and the number of resistant cells (red) 
after the total tumor size begins to increase. B, The effects of 
various strategies on the total population size and sensitive 
population size in response to (1) treatment withdrawal, (2) 
continuing therapy with 150 mg/d, and (3) treatment altera-
tion to a high-dose pulse (1600 mg) followed by 6 days on 
low dose (75 mg/d). C, Drug concentration in plasma over 
time (in μM) during various strategies, (1–3).
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the most benefit in terms of preventing or delaying progression 
of disease because of resistance. We recommend that this regi-
men be tested in clinical trials for its safety, tolerability, and 
efficacy.

Anecdotally, some patients are unable to tolerate the 
150 mg/d regime and are administered 150 mg on alternate 
days with 100 mg, or a lower daily dose. We demonstrated that 
this type of change has little effect on the dynamics of resis-
tance because the resistant cell clones are not substantially 
inhibited by erlotinib at levels below 150 mg. As long as the 
administered dose is sufficiently high to largely inhibit sensi-
tive-cell reproduction, the probability of developing resistance 
and the expected size of the resistant cell clones are not sig-
nificantly affected.

We further investigated the impact of variation in 
pharmacokinetic processes on the emergence of resistance. 
Previously, investigators showed that smokers eliminate erlo-
tinib significantly faster than nonsmokers.14 We predicted that 
when administered the same daily dose of 150 mg/d, smok-
ers would have an approximately 100-times higher chance of 
developing resistance than nonsmokers, when no preexist-
ing resistance is assumed. We then considered the effects on 
smokers who were administered a double dose of 300 mg/d 
instead of 150 mg. This modification achieved a steady-state 
plasma concentration similar to that of nonsmokers receiv-
ing 150 mg/d, but did not reduce the probability of resistance 
to levels comparable with that of never smokers. These pre-
dictions were also mirrored when considering the expected 
number of resistant cells as a function of time in the case 
of preexisting resistance; smokers on 150 mg/d and 300 mg/d 
were predicted to have larger pools of resistant clones than 
nonsmokers on a 150 mg/d dose. Collectively, our model-
ing approach predicts that pharmacokinetic effects may play 
a crucial but previously unappreciated role in the dynamics 
of acquired resistance to erlotinib. In addition to smoking, a 
variety of reasons such as diet, lifestyle, other medications,23 
inherited differences, etc. could give rise to variability in 
pharmacokinetic rates. We envisage that personalized phar-
macokinetic profiling of erlotinib metabolism could further 
help to minimize the chances of developing resistance in indi-
vidual patients.

We also considered the effects of missed doses during 
the 150 mg/d standard schedule, given that if no preexisting 
resistance is present, missed doses significantly increase the 
probability of developing resistance even though the overall 
debulking of the tumor is not significantly affected. Taking 
make-up doses on subsequent days after missing doses does 
not significantly alter the probability of resistance, and there-
fore, patient compliance is an important factor in preventing 
resistance.

We also investigated the effects of treatment withdrawal 
and modifications after POD because of drug resistance on the 
standard 150 mg/d schedule. We considered the options of (1) 
drug withdrawal, (2) continuation on the 150 mg/d schedule, 
and (3) switch to 1600 mg/week plus 75 mg on days 2 to 7.3 
We found that treatment withdrawal would result in the fast-
est rebound kinetics of the overall tumor population. In con-
trast, both continuation of standard therapy and switching to 

a high-dose pulsed with continuation schedule would impede 
the growth rate of the tumor population size.

Finally, a phase I dose-escalation study demonstrated 
that for a twice-weekly treatment schedule, the dose-limiting 
toxicity was 1200 mg, whereas the maximum tolerated dose 
was 1000 mg.24 To model the effect of the highest twice-
weekly pulsed regimen, we performed comparisons of the 
schedule of 1600 mg/week plus 50 mg on days 2 to 7 with 
a 1200 mg twice-weekly schedule (doses on days 1 and 4). 
Figure 6A shows the corresponding drug concentration tem-
poral profile for each of these schedules. Figure 6B displays 
the expected number of resistant cells in the scenario in which 
100 out of 106 cells are drug resistant at the start of therapy. 
These two schedules produced very similar outcomes. Figure 
6C shows the probability of resistance as a function of time 
for the scenario in which initially all tumor cells are sensitive. 
We observed that the 1600 mg/week plus 50 mg/d schedule 
is superior to the 1200 mg twice-weekly schedule. Because 
the 1200 mg twice-weekly schedule has a significantly higher 
overall drug intake but does not produce a better outcome 
in either scenario, we conclude that the high-dose pulse of 
1600 mg followed by low doses on subsequent days is a supe-
rior choice. Correspondingly, doses less than 1200 mg twice a 
week would be even less effective.

A limitation of our approach is the use of in vitro 
growth kinetics for the sensitive and resistant cell popu-
lations, because of the difficulty of obtaining similar 
measurements in vivo. We are therefore unable to make 
absolute quantitative predictions about realistic time scales 
for the emergence of resistance because growth kinetics in 
the in vitro setting occur on a time scale orders of mag-
nitude more rapid than in in vivo settings. However, our 
approach allows a complete set of detailed measurements of 
in vitro cell populations for a wide panel of drug concentra-
tions; this in turn enables the model to predict the resistance 
dynamics under a wide variety of treatment schedules. The 
relative benefits and comparisons among the various treat-
ment schedules can then be assessed; these predictions are 
valid in the in vivo setting as long as the relative differences 
in growth rates are constant between in vivo and in vitro 
situations.

In summary, our study demonstrates the power of 
mathematical modeling in predicting improved treatment 
schedules with existing drugs. Such modeling may prove to 
be a useful tool for screening potential drug compounds and 
designing clinical trials. Of note, our data could help inform 
prospective clinical trials of erlotinib or other agents, but 
should not be used to make treatment decisions. An impor-
tant aspect of such studies is the characterization of toxicity 
limits in human patients. If detailed toxicity constraints are 
known, then mathematical modeling can be used to exhaus-
tively and rapidly search the space of tolerated schedules to 
optimize for biological endpoints such as the maximal delay-
ing of POD, maximal tumor reduction, etc. Because toxic-
ity constraints for each patient may be intrinsically tied to 
their pharmacokinetic processes, this further underscores the 
importance of incorporating pharmacokinetic modeling into 
evolutionary models of resistance. This approach could be 
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applied to any cancer for which acquired resistance to tar-
geted therapies exists, for example, imatinib, dasatinib, or 
nilotinib in BCR-ABL-driven CML, crizotinib in anaplastic 
lymphoma kinase fusion-driven NSCLC, and vemurafenib 
in mutant BRAF-driven melanoma. Incorporation of model-
ing in parallel with drug development could potentially lead 
to faster optimization of therapeutic outcomes.
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