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Abstract

Cancer emerges when a single cell receives multiple mutations. For example, the inactivation of both alleles of a tumor suppressor
gene (TSG) can imply a net reproductive advantage of the cell and might lead to clonal expansion. In this paper, we calculate the
probability as a function of time that a population of cells has generated at least one cell with two inactivated alleles of a TSG.
Different kinetic laws hold for small and large populations. The inactivation of the first allele can either be neutral or lead to a
selective advantage or disadvantage. The inactivation of the first and of the second allele can occur at equal or different rates. Our
calculations provide insights into basic aspects of population genetics determining cancer initiation and progression.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Cancers result from an accumulation of mutations in
gatekeepers, caretakers, and landscapers (Vogelstein and
Kinzler, 2001). Gatekeepers such as oncogenes and
tumor suppressor genes (TSGs) directly regulate cellular
growth and differentiation pathways (Bishop, 1983;
Weinberg, 1991). Oncogenes are activated by gain-of-
function mutations that confer increased or novel
function; TSGs, in contrast, are affected by loss-of-
function mutations. Gatekeeper defects lead to abnormal
cellular proliferation, differentiation, and apoptosis.
Caretakers function in maintaining the genomic integrity
of the cell and regulate DNA repair mechanisms,
chromosome segregation, and cell cycle checkpoints
(Rajagopalan et al., 2003). Caretaker defects lead to
genetic instabilities that contribute to the accumulation
of mutations in other genes that directly affect cell
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proliferation and survival (Lengauer et al., 1998). Land-
scaper defects do not directly affect cellular growth, but
generate an abnormal stromal environment that con-
tributes to the neoplastic transformation of cells.

The concept of a TSG emerged from a statistical
analysis of retinoblastoma in children (Knudson, 1971).
This study showed that familial cases of retinoblastoma
have an earlier age of onset than sporadic cases and
individuals are more likely to develop bilateral or
multifocal disease. Based on these observations, Knud-
son developed a model hypothesizing that two hits or
mutagenic events are necessary for retinoblastoma
development in all cases. In individuals with the
inherited form of retinoblastoma, one hit is already
present in the germ line. However, inactivation of one
allele of the susceptibility gene is insufficient for tumor
formation, and the inactivation of the second allele
emerges during somatic cell divisions. In the sporadic
form of retinoblastoma, both hits emerge during
somatic cell divisions. These observations and subse-
quent work led to the concept of a TSG (Moolgavkar
and Knudson, 1981; Friend et al., 1986; Vogelstein and
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Kinzler, 2001). In the meanwhile, a large number of
TSGs have been discovered that are involved in human
cancers (Kinzler et al., 1991; Weinberg, 1991; Knudson,
1993; Levine, 1993) (Table 1).

A normal cell has two wild-type alleles of a TSG. The
first hit can be neutral, disadvantageous, or advanta-
geous. A cell with one inactivated allele correspondingly
has a normal, decreased, or increased net reproductive
rate. The first hit is neutral if the TSG is strictly
recessive: the remaining wild-type allele has sufficient
tumor suppressing function. The first hit is disadvanta-
geous if the TSG is checked by apoptotic defense
mechanisms: as soon as surveillance mechanisms dis-
cover an imbalance in the TSG product, apoptosis is
triggered. The first hit is advantageous if the TSG is
haploinsufficient: the remaining wild-type allele has
insufficient tumor suppressing function. The second hit
is typically advantageous, and a cell with two inacti-
vated alleles has an increased net reproductive rate. In
some cases, TSG inactivation might lead to a growth
advantage only after yet another gene has been altered.

The first hit can be constituted by a point mutation,
small insertion, deletion, structural change of the
chromosome or chromosomal loss. The second hit can
be constituted by all of these events plus mitotic

Table 1
Tumor suppressor genes are involved in various human diseases

recombination. Usually large deletions or chromosome
loss do not account both for the first and second hit in
one cell, because large homozygous deletions are often
lethal.

Mathematical models have been developed to inves-
tigate many different aspects of cancers. Studies of the
age-dependent incidence curves of human cancers
(Nordling, 1953; Armitage and Doll, 1954, 1957; Fisher,
1958) led to the idea that multiple probabilistic events
are required for the somatic evolution of cancer
(Nunney, 1999; Tomlinson et al., 2002). Knudson’s
statistical analysis of the incidence of retinoblastoma in
children (Knudson, 1971) was later extended to a two-
stage stochastic model for the process of cancer
initiation and progression (Moolgavkar and Knudson,
1981) and inspired much subsequent work (Grist et al.,
1992; Luebeck and Moolgavkar, 2002; Gatenby and
Vincent, 2003). Later on, specific theories were devel-
oped to explain drug resistance (Goldie and Coldman,
1979, 1983), angiogenesis (Anderson and Chaplain,
1998; Wodarz and Krakauer, 2001), immune responses
against tumors (Owen and Sherratt, 1999), the age-
specific acceleration of cancer (Frank, 2004), and genetic
instabilities (Taddei et al., 1997; Strauss, 1998; Chang
et al., 2001, 2003; Maser and DePinho, 2002; Nowak

TSG Location Size (kb) Function Disorder
APC 5921-q22 138.340 Metabolic function unknown Periampullary Adenoma, Adenomatous
Polyposis Coli, Colorectal Cancer,
Desmoid Disease, Gardner Syndrome,
Gastric Cancer, Turcot Syndrome
BRCAI 17q21 81.09 Transcriptional regulator, Breast Cancer, Ovarian Cancer,
growth inhibitor Proliferative Breast Disease, Papillary
Serous Carcinoma of Peritoneum
BRCA2 13q12.3 84.188 Metabolic function unknown Breast Cancer
CDHI1 = E-cadherin 16¢q22.1 98.25 Cell—cell adhesion glyco- Gastric Cancer, Breast Cancer, Colorectal
protein, tumor progression, Cancer, Thyroid Cancer, Ovarian Cancer
invasion, metastasis
CDKNI1=p21 6p21.1 10.794 Negative regulator of ras signal ~ Neurofibromatosis, Juvenile
transduction Myelomonocytic Leukemia, Melanoma
CDKN2=pl6 9p21 30.585 Cell cycle G1 control, inhibitor =~ Melanoma, Nervous System Tumours,
of CDK4 kinase, stabilizer of Pancreatic Cancer, Orolaryngeal Cancer,
p53 Cutaneous Malignant Melanoma,
Bladder Cancer
NF1 17ql11.2 279.538 Negative regulator of ras signal ~ Neurofibromatosis, Juvenile
transduction Myelomonocytic Leukemia, Melanoma
pS3 17p13.1 19.178 Activation of expression of Colorectal Cancer, Li-fraumeni
genes that inhibit growth and/ Syndrome, Hepato-Cellular Carcinoma,
or invasion Osteosarcoma, Histiocytoma, Thyr-oid
Carcinoma, Nasopharyngeal Carcinoma,
Pancreatic Cancer, Adrenal Cortical
Carcinoma, Breast Cancer
Rb 13q14.2 178.234 Inhibits progression from G1to  Bladder Cancer, Osteosarcoma,

S phase

Pinealoma with Bilateral Retinoblastoma,
Retinoblastoma

The table shows the name, the genomic location, the size in kilobases (kb), the cellular function and the associated diseases of different tumor

suppressor genes.
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et al., 2002; Michor et al., 2003; Otsuka et al., 2003;
Michor et al., 2004a, b; Komarova and Wodarz, 2003,
2004). All of these aspects of cancer include rare
mutations, their spread, and the fixation in a random
process. They are basically population genetics pro-
blems (Nowak et al., 2004).

In the present paper, we calculate the probability as a
function of time that a population of cells has generated
at least one cell with two inactivated alleles of a TSG.
We study the dependence of this probability on the
population size, the fitness values of cells with one or
two inactivated alleles, and the rates of inactivation of
the first and the second allele.

2. The mathematical model

Consider a population of N cells following the Moran
model (Moran, 1962). Initially, the population consists
of cells that are wild-type with respect to a specific TSG.
A wild-type cell is denoted by a type 0 cell and has a
relative fitness value of 1. At each time step, a cell is
chosen for reproduction at random, but proportional to
fitness. The chosen cell produces a daughter cell that
replaces another randomly chosen cell that dies. The
total number of cells remains strictly constant. The time
unit is chosen such that the mean time of a cellular
generation is 1. A type 0 cell is mutated with probability
uy per cell division to give rise to a type 1 cell. A type 1
cell has one inactivated TSG allele and has a relative
fitness value of r. The fitness value r can be less than,
equal to or greater than 1. A type 1 cell is mutated with
probability u, per cell division to give rise to a type 2
cell. A type 2 cell has two inactivated TSG alleles and
has a large fitness advantage. Once a type 2 cell has been
produced, it proliferates quickly and spreads within
the population. We are interested in the proba-
bility distribution of the time of emergence of the first
type 2 cell.

Let v(¢) be the probability that the first type 2 cell has
emerged before time ¢, given that the population consists
only of type 0 cells at time r=0. Let f{¢) be the
probability that the first type 2 cell has emerged before
time ¢ in a lineage that started with a single type 1 cell at
time ¢t = 0. To relate v(¢) with f{¢), consider 1 — v(z +
At) =1 —v()][1 — NujAt - f(¢)]. Here terms smaller
than Ar are neglected. This is the probability that no
type 2 cell arises in a time interval of length 1+ Az. In a
time interval of length A¢, a type 1 cell is produced with
probability Nu;At and leads with probability f{¢) to the
appearance of a type 2 cell. In the limit Ar— 0, the above
formula becomes dv/dt = Nu f(¢)[1 — v(¢)]. With v(0) =
0, we have

v(f)=1—exp [—Nul /Otf(s) ds} (1

Now, consider the events occurring in a time interval
of length Az. We have

f+At)y = At -0+ rAt[(1 —w)(1 = [1 = f(OF) + ur - 1]
+[1 = (1 + A (D)

as the probability that a type 2 cell arises in the time
interval of length 7+ Az within a lineage that started
from a single type 1 cell. The probability is decomposed
to three terms describing the events that occur within At.
The first term on the right-hand side accounts for the
extinction of the type 1 cell, the second term accounts
for cell division, and the third for the absence of these
events. Each cell division has the probability that a type
2 cell is produced; this probability is u,. Each cell
division has the probability that a second type 1 cell is
produced; this probability is 1—u,. If a second type 1 cell
emerges, then the probability that a type 2 cell arises can
be expressed in terms of the probability that there is only
one type 1 cell. Here, we use the assumption of the
branching process theory, i.e. the assumption of the
independence of two lineages starting from two different
cells. This is a good approximation if the total
population size is large. With Az = 0, we have
% =rur — (1 = r + 2run)f — r(1 — un)f . ®)
By setting df /dt = 0, we have a quadratic equation
with the solutions /' = ¢ and —b, where

. 1
21— w)

1 - 1 - :
—(Tr+2uz) + \/(Tr+2uz) +4us |, (3a)

1 1—r 1—r 2
bz—z(l—uz) —r +2u2+\/<—r +2u2> +4u, | .

(3b)

a

With £(0) = 0, integration of Eq. (2) gives
exp[r(1 —up)(a+ b)t] — 1
(1/a)explr(l —w)(a+b)l+1/b°

Eqgs. (1) and (4) give the probability that a type 2 cell
emerges before time ¢ as

f(n=

(4)

o(f) = 1 —exp [—Nul {#m% - sz, 5)

where ¢ = r(1 — uy)(a + b).

2.1. Approximations

We can derive simple approximations for v(¢)
that have a clearer parameter dependence than Eq. (5).
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The function f{#) increases smoothly from 0 to a
positive constant (Eq. (4)), and we approximate it in
two limits:

f(t) = rupt for small ¢, (6a)

f(t)=a forlarget. (6b)

The limit f(co) = a is the maximum probability that a
type 2 cell emerges from a lineage that started from a
single type 1 cell at = 0. The two limits correspond to
two approximations,

v(f)=1—exp [—%Nruluzlz} (7a)
and
v(t) = 1 — exp[—Nu,at]. (7b)

Note that both approximations overestimate the exact
probability v(¢) as given in Eq. (5), because Eqs. (6a) and
(6b) exceed the exact probability f{(¢) as given in Eq. (4).

2.1.1. Half-time

The half time, T, is defined as the time when the
probability that a type 2 cell emerged is %; i.e. the time
satisfying v(7'/,) = 1/2. From Egs. (7a) and (7b), we
derive

21In2
Tip= :
12 Nruris (8a)
and
In2
Tip= Nura' (8b)

2.1.2. Fitness
The limit f(co) = a strongly depends on the fitness of
type 1 cells. From Eq. (3a), we have

a=,/u; when 1 —  /uy<r<1+ ,/u;(neutral), (9a)

ruyp

a= = when r<1 — /u, (disadvantageous), (9b)
1

a=1—— when r>1+ /u, (advantageous). (9¢)
r

2.1.2.1. Neutrality:. 1f type 1 cells are neutral, 1 —
Jur <r<1+ /uy, we have f(o0) = a ~ ,/u; (Eq. (9a)).
Two approximations of the half-time hold for different
limits:

2In2 . .
T)= NuI:uz if N is very large, (10a)
In 2 . .. .
T~ 1 if N is intermediate. (10b)
Nuy . Juy

Eq. (10a) shows that the half-time, T, is inversely
proportional to the square root of the population
size, N. On a logN-logT, plane, the half-time
appears as a straight line with slope —%. Eq. (10b)
shows that the half-time, 7, is inversely proportional
to the population size, N. On a log N-log T, plane,
the half-time appears as a straight line with slope -1.
These two lines cross at the critical population size
N.=1n2/2u;.

In Fig. 1, the solid curve labeled B shows the half-time
calculated from probability v(z) given by Eq. (5), for
r = 1. Broken curves labeled L and I are its approxima-
tions for large and intermediate N, as given by Egs.
(10a) and (10b), respectively. The solid circles represent
the exact computer simulation of the stochastic process
as discussed in Section 2.1.3.

The solid curve representing Eq. (5) is very accurate
except for small population sizes (N <10). We derive a
formula for small N in Section 2.1.4, and a formula valid
both for small N and for intermediate N in Section 2.1.5.
Eq. (5) is closely approximated by the two straight
lines representing Eqs. (10a) and (10b). Eq. (10a) is
accurate for very large population sizes (N > 10°), and
Eq. (10b) is accurate for intermediate population sizes
(10> <N <10%).

10t 10

Fig. 1. Half-time of a TSG. The half-time is defined as the time when
the probability of having inactivated both alleles of a TSG is % A cell
with one inactivated allele is neutral, » = 1. The population size, N, is
shown on the horizontal axis. The circles depict the data points of the
exact computer simulation. The solid curve labeled B is the branching
process formula Eq. (5), and the one labeled V is from Eq. (14). Three
broken curves are simplified formulas: those labeled L, I, and S are
curves for large N (Eq. (10a)), intermediate N (Eq. (10b)), and small N
(Eq. (13)), respectively.
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2.1.2.2. Fitness disadvantage:. 1f type 1 cells are
disadvantageous, r<1—,/u;, we have f(co)=a=
ru /(1 — r) (Eq. (9b)). Two approximations of the half-
time hold for different limits:

21In2
T),= n if N is very large, (11a)
Nrujuy
1—r)ln2 . .. .
T, = ﬂ if NV is intermediate. (11b)
Nujurr

The two approximations cross at the critical popula-
tion size No = (1 — )’ In 2/2rujur. Eq. (11a) is valid for
N> N, whereas Eq. (11b) is valid for N<N,.. The
critical population size for disadvantageous type 1 cells
is much larger than the critical size for neutral type 1
cells (N. = In 2/2u;), because u, < 1.

In Fig. 2, the solid curve labeled B shows the half-time
calculated from probability v(z) given by Eq. (5), for
r=20.9. Broken curves labeled L and I are its
approximations for large and intermediate N, as given
by Egs. (11a) and (11b), respectively. The solid circles
represent the exact computer simulation of the stochas-
tic process as discussed in Section 2.1.3. Egs. (11a) and
(11b) are parallel to but located above Egs. (10a) and
(10b), respectively. While Eq. (11b) is shifted consider-
ably from Eq. (10b), Eq. (11a) is very close to (10a).

Fig. 2. Half-time of a TSG. A cell with one inactivated allele is
deleterious, » = 0.9. The population size, N, is shown on the horizontal
axis. The circles depict the data points of the exact computer
simulation. The solid curve labeled B is the branching process formula
Eq. (5), and the curve labeled V represents Eq. (14). Three broken
curves are simplified formulas: those labeled L, I, and S are curves for
large N (Eq. (11a)), intermediate N (Eq. (11b)), and small N (Eq. (13)),
respectively.

2.1.2.3. Fitness advantage:. 1f type 1 cells are advanta-
geous, r>1+ /uz, we have f(oo)=a~1—-1/r (Eq.
(9¢)). Two approximations of the half-time hold for
different limits:

21n2
Nrujuy

T,= if N is very large, (12a)

T — riln?2
V2= Nuj(r— 1)

The two approximations cross at the critical popula-
tions size N. = upr® In 2/2ui(r — 1)*. Eq. (12a) is valid
for N> N, whereas Eq. (12b) is valid for N<N,. The
critical population size for an advantageous type 1 cell is
quite small.

In Fig. 3, the solid curve labeled B shows the half-time
calculated from probability v(z) given by Eq. (5), for
r=1.1. Broken curves labeled L and 1 are its
approximations for large and intermediate N, as given
by Egs. (12a) and (12b), respectively. The solid circles
represent the exact computer simulation of the stochas-
tic process as discussed in the following.

if NV is intermediate. (12b)

2.1.3. Exact computer simulations

In Figs. 1-3, we compare our analytical results with
direct computer simulations of the Moran process. At
each elementary step of the Moran process, one cell is
chosen for reproduction at random, but proportional to
fitness. If there are i mutated cells with fitness r in a
population of N cells, then the probability that a

.

Fig. 3. Half-time of a TSG. A cell with one inactivated allele is
advantageous, r = 1.1. The circles depict the data points of the exact
computer simulation. The solid curve labeled B is the branching
process formula Eq. (5), and the one labeled V is given by Eq. (14),
which overlaps with the curve for small N (Eq. (13)). Two broken
curves labeled L and I are for large N (Eq. (12a)) and intermediate N
(Eq. (12b)), respectively.
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mutated cell is chosen for reproduction is
ri/(ri+ N —i). The chosen cell produces a daughter
cell, possibly with mutation, that replaces another
randomly chosen cell that dies. The total number of
cells remains strictly constant. For each parameter
choice, we compute many independent runs of the
stochastic process. Then we calculate the half-time, 7',
until the probability of emergence of at least one type 2
cell is % The results of the exact computer simulations
are depicted by solid circles in Figs. 1-3.

In Figs. 1-3, the solid curves labeled B indicates the
half-time, T, calculated from the exact probability
that at least one type 2 cell emerges (Eq. (5)), which is
based on the branching process calculation. Broken
curves labeled with L and I are approximations of curve
B for very large population sizes (Eq. (10a) for neutral
type 1 cells, Eq. (11a) for disadvantageous type 1 cells,
and Eq. (12a) for advantageous type 1 cells), and for
intermediate population sizes (Eq. (10b) for neutral type
1 cells, Eq. (11b) for disadvantageous type 1 cells, and
Eq. (12b) for advantageous type 1 cells).

For large and intermediate N, the simulation results
indicated by solid circles are very well predicted by the
branching process formula (curve B). Simplified for-
mulas are also very accurate within the respective range
of N.

2.1.4. Fixation of type 1 cells

Figs. 1-3 show that neither of the approximations nor
the exact probability (Eq. (5)) is accurate for small N.
Eq. (5) is based on the assumption of the branching
process theory that lineages starting from different cells
behave independently. In small populations, however,
type 1 cells are frequently fixed before the first type 2 cell
emerges. When a lineage descending from a single type 1
cell is fixed in the population, all lineages starting from
other type 1 cells that exist at the same time die out.
Hence, if the fixation of type 1 cells occurs quickly, the
assumption of independent lineages does not hold.

If the fixation of type 1 cells always precedes the
emergence of the first type 2 cell, then we can calculate
the waiting time as follows. The time until the fixation of
type 1 cells is a stochastic variable with an exponential
distribution and mean 1/Nu;p(r). The fixation prob-
ability of a single cell with fitness r is p(r) =
(1—1/r)/(1 = 1/r") in the Moran process (Komarova
et al., 2003). The expression 1/Nu;p(r) is accurate if the
waiting time for the appearance of the first successful
type 1 cell is much longer than the time required for its
lineage to be fixed, i.e. for small population sizes. In this
case, the waiting time for the appearance of the first type
2 cell follows an exponential distribution with mean 1/
Nu,. The probability v(f) is a convolution of two
exponential distributions. The fixation of type 1 cells
takes much longer than the appearance of a type 2 cell,
because the fixation probability of a neutral cell is

p(1) = 1/N and the fixation probability of a disadvan-
tageous cell is p(r)<1/N. We have 1/Nu;p(r)> 1/Nuy,
and therefore v(f) = 1 — exp[—Nujp(r)t]. The half-time
is given by

_ In2
~ Nuyp(r)

In Figs. 1-3, the half-time calculated by Eq. (13) is
indicated by broken curves labeled S. If type 1 cells are
neutral, then p(1) = 1/N and the half-time is indepen-
dent of N and appears as a horizontal line in Fig. 1. If
type 1 cells are disadvantageous, the half-time increases
with N for small N, reaches a maximum at the boundary
of small and intermediate N, and decreases with N for
intermediate N (Fig. 2). If type 1 cells are advantageous,
then the half-time decreases with N for all N (Fig. 3).
The formula of Eq. (13) is smoothly connected to
Eq. (12b) for intermediate M.

12 if N is small. (13)

2.1.5. Between small and intermediate population sizes

When type 1 is either neutral or deleterious, at the
boundary between small and intermediate NV, neither Eq.
(11b), Eq. (12b), nor Eq. (13) is accurate. Note that a
type 2 cell can emerge before or after the fixation of type
1 cells. The appearance of a type 2 cell after the fixation
of type 1 cells can be described as a two-step process (see
Section 3.). This process is slow if type 1 cells are
disadvantageous and the population size is large.
Alternatively, the first type 2 cell can emerge before
the fixation of type 1 cells. This process is called
‘stochastic tunneling’ (Iwasa et al., 2004). The total rate
of the appearance of a type 2 cell is given by the sum of
the two possibilities. The half-time is given by

In 2
Nui[l = V1]
The quantity V; is calculated from an iterative
procedure. The boundary conditions Vy=1 and
Vy =0 and the initial condition V;=1—i/N for
i=0,...,N—1 specify V; as

Ty = (14)

v Vg +Via
boru(ir+ (N —0)/(N =) +r+1

i=1,23,..., N-1.

(15)

The converging value of the iteration, V7, is used in
Eq. (14) (for derivation, see Iwasa et al., 2004). The solid
curves labeled V in Figs. 1-3 represent Eq. (14). Eq. (14)
is very accurate for small and intermediate N.

Broken lines labeled I in Figs. 1-3, and formulas Eqgs.
(8b), (10b), and (11b) are all for the tunneling rate. In
contrast, the broken line labeled S (representing Eq.
(13)) accounts for the situation in which type 1 cells
become fixed before a type 2 cell emerges. Both of these
are covered by Eq. (14) (see solid curves labeled V).

However, Eq. (14) does not hold for large N, nor
any of its approximations. The mathematical analysis
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leading to Egs. (14) and (15) assumes that the time until
the appearance of the first successful type 1 cell (i.e., the
lineage which eventually generates the first type 2 cell) is
much longer than the time between the appearance of
the first successful type 1 cell and the generation of the
first type 2 cell within its lineage (Iwasa et al., 2004).
This assumption holds if mutations from type 0 to type 1
occur infrequently, Nu; < 1. If this inequality does not
hold, the time for the descendents of the first successful
type 1 cells to spread in the population becomes a major
part of the half-time. This causes a deviation from Eq.
(14) (curve V in Figs. 1-3) for very large N, in which the
formula based on branching process (Eq. (5)) works
very well (see curve B in the figures).

3. Step number

The threshold population size separating intermediate
and large populations is N. = In 2/2u; if type 1 cells are
neutral, and N, = (1 —r)In 2/2ruu;, if type 1 cells are
disadvantageous. The second expression is much larger
than the first because u; <1. The formula for inter-
mediate populations holds for much larger populations
if type 1 cells are disadvantageous than if type 1 cells are
neutral. For populations sizes 1/uj <N <1/uju,, the
formula for large populations holds if type 1 cells are
neutral, but the formula for intermediate populations
holds if type 1 cells are disadvantageous.

The difference between disadvantageous and neutral
type 1 cells is also observed in the increase of the
probability v(¢z) with time. The probability of having the
first type 2 cell before time ¢ can be written as v(f) =
1 — exp[—R(?)], where R(?) = Nu féf(l’) d?. The func-
tion R(¢) is proportional to ¢ if Eq. (7b) holds and to ¢* if
Eq. (7a) holds. Hence a single-step transition describes
the process in intermediate populations, but a two-step
transition in large populations. Since f{¢) converges to
an asymptote f(co) = a, R(¢) has a linear dependence on
t for a very large t:

a+b, e +alb

The time delay is 6 = ((a + b)/ac) In(1 + a/b). If type
1 cells are disadvantageous, r<1 — ,/u;, we have a ~
ruy /(1 —r), b~ (1 —r)/r, and ¢ = 1 — r. Then the time
delay becomes 6 = 1/(1 — r), which is of the order of 1.
If type 1 cells are neutral, 1 — . /o <r<14 ,/us, we
have a ~ /u>, b ~ \/uy, and ¢ ~ 2,/u,. Then the time
delay becomes 6 =1In2/,/u;. This is of the order of
1 / /2, which is fairly long because u, <1. Hence, the
function R(?) increases linearly with time with a very
short delay if type 1 cells are disadvantageous, but
nonlinearly (quadratically) with time for a much longer
time if type 1 cells are neutral.

- bt} ~ Nuja(t — 9).

Even if multiple mutations are needed for a pheno-
typic effect, the incidence curve may not clearly reflect a
multi-step process if intermediate mutants are disadvan-
tageous. There are two situations in which a clear two-
step incidence curve is observed: first, if type 1 cells are
neutral, and second, if type 1 cells reach fixation. Type 1
cells reach fixation because the population is small or
because type 1 cells are advantageous. Traditional
models of cancer genetics assume a multi-state branch-
ing process neglecting fixation. The model is fitted to the
observed age-dependent incidence curves of cancer. The
neglected possibility of fixation, however, is misleading
because it incorrectly suggests the neutrality of inter-
mediate mutants. A recent model of multi-step progres-
sion of cancer (Luebeck and Moolgavkar, 2002)
assumes an initial population size of 1—the stem
cell—that undergoes clonal expansion when mutated.
The expansion is described by a branching process.
Including the possibility of fixation in models that are
fitted to age-dependent incidence data is crucial for
understanding the population genetics of cancer.

4. Discussion

In this paper, we study the following question: what is
the probability that a single cell with two inactivated
TSG alleles has arisen by time ¢ in a population of N
cells? Interestingly, the answer depends on the popula-
tion size, N, as compared with the mutation rates that
constitute the first and second hit, u; and u,. There are
three different cases. We illustrate this concept by
considering the case in which cells with one inactivated
TSG allele are neutral.

First, in small populations, N <1 / /2, a cell with one
inactivated allele reaches fixation in the population
before a cell with two inactivated alleles arises. The
probability that at least one cell with two hits emerges
before time ¢ is

Nuy exp(—uyt) — u; exp(—Nuyt)

Pir)=1-
() Nuz—ul

For very short times, 1< 1/Nu;, we can approximate
P(t) ~ Nuyupi* /2. Therefore, this probability accumu-
lates as second order of time: it takes two rate
limiting hits to inactivate a TSG in a small population
of cells.

Second, in populations of intermediate size,
1 / Ju2 <N <1/uj, a cell with two inactivated alleles
emerges before a cell clone with one inactivated allele
has taken over the population. The population ‘tunnels’
from wild type directly to the second hit without ever
having fixed the first hit. The probability that at least
one cell with two hits has arisen before time ¢ is

P(1) = 1 — exp(—Nuj /uzt).
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This probability accumulates as a first order of time: it
takes only one rate limiting hit to inactivate a TSG in a
population of intermediate size.

Third, in very large populations, N > 1/u;, cells with
one inactivated allele arise immediately and the waiting
time for a cell with two inactivated alleles dominates the
dynamics. The probability that at least one cell with two
hits has arisen before time ¢ is

P(t) = 1 — exp(—Nuyup1* /2).

This probability again accumulates as a second order
of time. Eliminating a TSG in a large population of cells
is, however, not rate limiting for the overall process of
tumorigenesis. Due to the large population size, mutated
cells are constantly being produced, and the inactivation
of a TSG is not rate limiting.

4.1. Half-time

In the present paper, we have examined the half-time,
defined as the time when the probability of having
inactivated both TSG alleles in a population of N cells is
%. Three different approximations describe the half-time
for small, intermediate, and large populations and
appear as distinct curves in Figs. 1-3.

In small populations, type 1 cells reach fixation before
a type 2 cell emerges. The waiting time for the first type 2
cell is expressed as a convolution integral of two random
variables: the time for emergence and fixation of type 1
cells, with mean 1/Nu,p(r), and the waiting time for the
emergence of the first type 2 cell, with mean 1/Nu,. The
latter event occurs at a much faster rate than the former
unless type 1 cells are advantageous. Consequently, the
overall waiting time can be approximated by a single-
step transition with rate Nu;p(r) (broken lines labeled S
in the figures).

In intermediate and large populations, a type 2 cell
emerges before type 1 cells reach fixation. This
phenomenon is called ‘stochastic tunneling’ and occurs
as a single step transition (Nowak et al.,, 2002;
Komarova et al., 2003; Iwasa et al., 2004). Type 1 cells
are continuously produced until one cell succeeds to give
rise to a type 2 cell. The formulas are very accurate (see
broken lines labeled I).

For small and intermediate populations, the waiting
time for the first successful type 1 mutant cell to arise is
much longer than the time between the appearance of
the first successful type 1 cell and that of the first type 2
cell within the lineage starting from it. However, this
assumption does not hold if the population size is very
large. If the population size is very large, the time of the
spreading of type 1 cells is similar or even longer than
the waiting time for the first type 1 cell whose lineage
will eventually gives rise to a type 2 mutant. If the
spreading time is much longer, the formulas for large

population sizes are valid (broken lines labeled L in the
figures).

The branching process formula (Eq. (5)) gives an
accurate prediction for both intermediate and large
populations (see solid curves labeled B). For small
populations, however, this formula is inaccurate because
the branching process calculation neglects the fixation of
type 1 cells. We have an alternative formula Eq. (14)
based on recursion, derived by Iwasa et al. (2004), which
is valid for small and intermediate populations, (see
solid curves labeled V).

Thus, the kinetic laws of cancer initiation and
progression strongly depend on the population size,
the fitness values of mutant cells, and mutation rates.
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