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H I G H L I G H T S

� Acquired drug resistance is a major limitation for the successful treatment of cancer.
� Evolutionary theory has contributed to understanding the dynamics of drug resistance in cancer.
� We review recent advances in evolutionary models of resistance in cancer.
� We outline how evolutionary thinking can contribute to outstanding questions in the field.
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a b s t r a c t

Acquired drug resistance is a major limitation for the successful treatment of cancer. Resistance can
emerge due to a variety of reasons including host environmental factors as well as genetic or epigenetic
alterations in the cancer cells. Evolutionary theory has contributed to the understanding of the dynamics
of resistance mutations in a cancer cell population, the risk of resistance pre-existing before the initiation of
therapy, the composition of drug cocktails necessary to prevent the emergence of resistance, and optimum
drug administration schedules for patient populations at risk of evolving acquired resistance. Here we review
recent advances towards elucidating the evolutionary dynamics of acquired drug resistance and outline how
evolutionary thinking can contribute to outstanding questions in the field.
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1. Introduction

The era of modern cancer therapy began with the discovery
that nitrogen mustard, a chemical warfare agent, could be used in
the treatment of human lymphomas (Goodman et al., 1946).
Researchers working with the United States Department of
Defense had observed that victims of mustard gas displayed
myeloid and lymphoid suppression when autopsied, and began
to investigate the effects of nitrogen mustards in a mouse model of
lymphoma. When the first patients with non-Hodgkin's lym-
phoma were treated soon after obtaining positive results from
the mouse model, scientists realized that human cancers may be
successfully treated with pharmacological agents (Gilman, 1963).
One of the first examples of rational drug design (rather than
accidental discovery) followed soon afterwards, when Sidney
Farber and colleagues at Harvard Medical School investigated the
effects of folic acid on leukemia patients. They discovered that
anti-folates could suppress the proliferation of malignant cells and
re-establish normal bone marrow function (Farber et al., 1948).
Anti-folates were later tested on germ cell tumors by researchers
at the National Cancer Institute, leading to the identification of the
first solid malignancy that responded to cancer chemotherapy
(Li and Bergenstal, 1958). Research into pharmacological effectors
of cancer cell proliferation soon took off and produced, among
others, taxanes, platinum-based agents, and nitrosoureas. Most
recently, the emerging molecular understanding of the processes
driving tumorigenesis has led to the design of targeted anti-cancer
agents – drugs that specifically act on well-defined protein targets
or biological pathways that, when inhibited by those agents,
impair the abnormal proliferation of cancer cells (Sawyers,
2004). Tyrosine kinase inhibitors such as Gleevec (imatinib) and
Tarceva (erlotinib), and monoclonal antibodies like Herceptin
(trastuzumab) serve as prime examples for this modern type of
medicine.

Resistance against chemotherapy and targeted drugs is as old
and as widespread as the use of these agents. The evolution of
resistance represents a significant obstacle to the successful
control of tumors since it abrogates the response to therapy.
Resistance of cancer cells emerges due to two general mechanisms
(Gottesman, 2002). Factors of the host organism such as poor
absorption and rapid metabolism can reduce the total concentra-
tion of the drug in the gastrointestinal tract, blood stream, or the
tumor itself; this mechanism is often referred to as intrinsic
resistance. In addition, mechanical or biochemical factors may
present challenges to the delivery of drugs into tumors. Alterna-
tively, cancer cells may evolve specific genetic and/or epigenetic
alterations that allow them to escape from treatment. Some of
these alterations, such as loss of a cell surface receptor or
transporter and overexpression or alteration in the drug target,
lead to resistance against only a small number of related pharma-
cological agents. For example, overexpression of EGFR has been
associated with resistance to the EGFR-inhibitor cetuximab
(Schulte et al., 2013). Other factors result in simultaneous resis-
tance to many structurally and functionally unrelated drugs – a
phenomenon known as multi-drug resistance (MDR) (Gottesman,
2002; Gottesman et al., 2002; Clynes, 2000). MDR may stem from
changes that limit the accumulation of drugs within cells by
decreasing uptake, enhancing efflux, or affecting membrane lipids

(Liu et al., 2001), block apoptosis (Lowe et al., 1993), induce
mechanisms that detoxify drugs and repair DNA damage (Synold
et al., 2001), and modulate the cell cycle (Shah and Schwartz,
2001) and checkpoints (Henning and Sturzbecher, 2003).

Mathematical models of these classes of resistance mechan-
isms have helped contribute to a better understanding of how
drug resistance arises, the impact of current therapeutic protocols,
as well as strategies for improving or optimizing treatment out-
comes. For example, mathematical models of the tumor physiol-
ogy have been developed to study the factors influencing drug
delivery to tumors, predict spatiotemporal variation in drug
distribution throughout tumors, and to design strategies for over-
coming barriers to drug penetration (e.g. see Kim et al., 2013 and
references therein). Here, we aim to provide a review of the
mathematical modeling literature on another major class of
resistance mechanisms in cancer: drug resistance due to the
evolution of genetic or epigenetic alterations.

For many treatment and cancer types, the search is still on to
elucidate genetic mechanisms of resistance; for other cases,
important players of cellular drug resistance have already been
identified (Clynes, 2000). Examples of the latter include amplifica-
tion or overexpression of the p-glycoprotein family of membrane
transporters (e.g. MDR1, MRP, LRP) which decrease intracellular
drug accumulation; changes in cellular proteins involved in
detoxification (e.g. glutathione S-transferase pi, metallothioneins,
human MutT homolog, bleomycin hydrolase, dihydrofolate reduc-
tase) or activation of the chemotherapeutic drugs (DT-diaphorase,
NADP:cytochrome P-450 reductase); changes in molecules
involved in DNA repair (e.g. O6-methylguanine-DNA methyltrans-
ferase, DNA topoisomerase II, hMLH1, p21WAF1/CIP1); and activa-
tion of oncogenes such as HER-2/NEU, BCL-2, BCL-XL, c-MYC, RAS,
c-JUN, c-FOS, and MDM2 as well as inactivation of tumor sup-
pressor genes like p53 (El-Deiry, 1997). Treatment of chronic
myeloid leukemia (CML) with the targeted agent Gleevec (imati-
nib) fails due to the emergence of point mutations in the BCR-ABL
kinase domain (Gorre et al., 2001). To date, ninety different point
mutations have been identified, each of which is sufficient to
confer resistance to imatinib (Burgess and Sawyers, 2006).
The second-generation BCR-ABL inhibitors dasatinib and nilotinib
can circumvent most mutations that confer resistance to imatinib;
the T315I mutation, however, causes resistance to all three of these
BCR-ABL kinase inhibitors (Soverini et al., 2007). Recently, a new
targeted agent, ponatinib, has been approved for use in patients
with CML; ponatinib has been shown to be effective in overcoming
the T315I mutation (Goldman, 2012). The T790M point mutation
in the epidermal growth factor receptor (EGFR) and focal ampli-
fication of the MET proto-oncogene both confer resistance to the
EGFR tyrosine kinase inhibitors Tarceva and Iressa (Pao et al.,
2005; Engelman et al., 2007), which are used in the treatment of
non-small cell lung cancer. Resistance to Herceptin, an agent
targeting HER-2 that is widely used in breast cancer, has been
associated with increased PI3K/Akt signaling as well as PTEN loss
(Nahta and Esteva, 2006). Drugs that inhibit the activity of BRAF
(a protein in the MAPK pathway) have been demonstrated to be
highly effective at tumor reduction in BRAF-mutant melanomas;
however, resistance usually emerges within six months. Recent
investigations have suggested that activation of MEK may play a
role in resistance by re-activating the MAPK pathway, and
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combination therapies utilizing both a BRAF and MEK inhibitor
seemed promising in preliminary studies (Villanueva et al., 2010).
Specific genetic mechanisms of cellular drug resistance have also
been identified for conventional cytotoxic therapies; for example,
dihydrofolate reductase (DHFR) gene amplification causes resis-
tance to methotrexate (Goker et al., 1995), while resistance against
Taxol (paclitaxel) has been associated with specific tubulin point
mutations which alter microtubulin dynamics and stability (Orr,
2003). Epigenetic mechanisms of drug resistance have also been
observed; for example, dynamic chromatin modifications may act
as an independent route to drug resistance of cancer cells and can
be reversed with drugs that alter the epigenetic state of cells
(Sharma et al., 2010).

2. Previous work

Evolutionary modeling of acquired resistance has contributed
substantially to an understanding of this obstacle to the successful
treatment of cancer patients. Evolutionary modeling, in combina-
tion with experimental approaches, can contribute to elucidating
important clinical parameters such as the risk of pre-existing
resistance, the probability that resistance arises during treatment,
the effects of the choice of dosing strategies on the dynamics of
resistant cells, and the optimal strategy to prevent or delay the
onset of drug resistance. In this section, we review some key
results in evolutionary modeling of drug resistance in cancer that
have driven our progress in prognostic and preventative methods
(Figs. 1 and 2). There has been a vast amount of work on this topic
and thus we do not intend for this review to be comprehensive;
instead we aim to provide the reader with a general overview of
the major questions and historical developments in the field. For
clarity, we have divided this section into three main areas: pre-
existing resistance (which emerges prior to diagnosis and treat-
ment), resistance emerging during the course of treatment, and
lastly the design of optimal treatment schedules to maximally
delay or prevent resistance.

2.1. Resistance emerging before diagnosis and treatment

The evolution of resistance mutations before a tumor is diag-
nosed and treatment is initiated has been of considerable interest
both to the cancer research community and to evolutionary
biologists. The presence of pre-existing resistance often determines
the success of therapies and influences treatment choices; in
leukemias, for example, pre-existing resistance increases the like-
lihood that allogeneic bone marrow transplants will be chosen over
chemotherapeutic interventions (Kaeda et al., 2006).

Fig. 1. Evolutionary modeling has contributed to elucidating the risk of pre-existing resistance, the probability that resistance arises during treatment, the effects of the
choice of dosing strategies on the dynamics of resistant cells, and the optimal strategy to prevent or delay the onset of drug resistance. For details on the references, please
see the list of citations.

Fig. 2. Progress towards an understanding of the evolutionary dynamics of
acquired resistance requires close collaboration between researchers performing
mathematical modeling studies as well as cell line and mouse model experiments
and clinical investigations.
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2.1.1. Luria–Delbrück models of bacterial resistance
The investigation of the dynamics of resistance mutations

emerging during exponential expansion of a cell population was
initiated by Luria and Delbrück in 1943 (Luria and Delbrück, 1943).
Their work was aimed at settling a fundamental issue in bacter-
iology: the question whether phage-resistant bacteria arise by
spontaneous random mutation or from adaptation – i.e. directed
mutation (Zheng, 1999). They performed a series of experiments
that suggested a constant rate of random mutations in each
generation of bacteria. Based on this principle, the authors
formulated a mathematical model to determine the rate at which
such mutations emerge during bacterial growth. They considered a
deterministic exponential growth model for both normal and
mutant bacteria, assuming that both types grow at the same rate,
in conjunction with a probabilistic mutation model. Their analy-
tical results describing the distribution of the number of resistant
bacteria in an exponentially growing population became known as
the Luria–Delbrück distribution. Many subsequent contributions
and extensions to the Luria–Delbrück theory have since been
made, e.g. Lea and Coulson, 1949; Armitage, 1952; Kendall, 1952;
Mandelbrot, 1974; Bartlett, 1966; Crump and Hoel, 1974; Koch,
1982; Stewart et al., 1990; Sarkar et al., 1992; Goldie, 1995;
Angerer, 2001; Frank, 2003; Dewanji et al., 2005; Zheng, 2008,
1999). Many of these contributions are discussed in reviews by
Zheng (1999) and Skipper (1983).

2.1.2. Applications of Luria–Delbrück models to understanding drug
resistance in cancer

During the last half-century, models based on the theory
suggested by Luria and Delbrück have also attracted the interest
of cancer researchers. Several investigators studied this model
with the aim of generalizing the results or applying them to
specific situations arising in tumorigenesis, e.g. Frank (2003),
Dewanji et al. (2005), Angerer (2001), Iwasa et al. (2006), Haeno
et al. (2007), Komarova and Wodarz (2005) and Komarova and
Mironov (2005). Some of these models are based on pure birth
processes and do not include the possibility of cell death (Zheng,
1999). However, in most situations of cancer growth, cell death
cannot be neglected; thus, several authors introduced extensions
of the Luria–Delbrück process that explicitly incorporate cell
death. Using stochastic processes with a differentiation hierarchy
to represent the sensitive and resistant cells, Coldman and Goldie
were the first to observe that a higher rate of cell death results in a
larger number of resistant cells for a given total population size
(Coldman and Goldie, 1986). Angerer (2001) later investigated the
influence of cell death on the Luria–Delbrück distribution and
derived limit laws for this distribution as the population size tends
to infinity.

In 2006, Iwasa et al. designed a two-type branching process
model representing sensitive and resistant cancer cells to calculate
the risk of pre-existing resistance at the time of tumor diagnosis.
The authors determined the expected number of resistant cells as
a function of the tumor detection size, the fitness values of
sensitive and resistance cells, and the mutation rate. In this model,
the growth of the sensitive cancer cell population was represented
by a linear birth and death process, and during each sensitive cell
division a resistant cell could arise with a probability given by the
mutation rate. The resistant population was also modeled as
a linear birth and death process, where the growth and death
rates could differ from those of sensitive cells depending on the
fitness effect of resistance mutations in the absence of therapy.
The authors found that the probability of resistance increases with
the detection size and the mutation rate, and that a tumor with
larger apoptosis rates has a higher incidence of resistance. Using a
similar two-type birth and death process model, Komarova et al.

(2007) studied the dynamics of resistance at the time of detection
for the special case of neutral mutations – resistance mutations
that do not alter the fitness parameters of cells. They also
presented an efficient computational method to estimate the
expected number of resistant cells at the time at which the total
population reaches a fixed size. This computational method was
based on a boundary layer treatment of a continuous PDE
approximation to the recursive Kolmogorov equation for the
moments. These works have contributed to a theoretical under-
standing of the dynamics of drug resistance arising from a single
point mutation in an exponentially growing tumor population
(up to and including the time of tumor detection).

2.1.3. Non-exponential tumor growth
While the assumption of exponentially growing tumor popula-

tions is reasonable in early phases of tumor growth, its validity can
become compromised as resource limitation effects set in at
higher population levels. Several studies have been undertaken
to explore the impact of non-exponential growth dynamics on the
evolution of mutation-induced resistance (Dewanji et al., 2005;
Tomasetti, 2012). For example, Dewanji et al. (2005) developed an
extension of the Luria–Delbrück model that considered non-
exponential growth dynamics, following the development of the
tumorigenesis model by Luebeck and Moolgavkar (1991). They
assumed arbitrary but deterministic growth of normal cells, while
resistant cells were considered to grow according to a linear
(constant-rate) birth and death process with either mean expo-
nential or Gompertzian growth. They showed that the inclusion of
the possibility of cell death, as well as the assumption of Gom-
pertzian growth of mutant cells, led to larger variations in the
number of cells harboring resistance mutations as compared to
earlier growth models. More recently, Tomasetti (2012) compared
the impact of various growth laws on the dynamics of resistance.
He showed that the probability that a given random mutation will
be present by the time a tumor reaches a certain size is indepen-
dent of the type of curve assumed for the average growth of the
tumor, for a general class of growth curves.

However, note that in these models of resource-limitation, the
growth law is externally imposed, in contrast to models where
growth is naturally limited ‘from within’, i.e. when the cell birth
and death rates are dependent on the current population size
and/or resource levels, so that the resulting growth law is a
consequence of this dependence. The latter situation is more
difficult to analyze due to the loss of independence between
different cell lineages in the branching process, but might repre-
sent a more realistic model of resource-limited growth. In a step
towards an understanding of such models, Sorace and Komarova
(2012) recently analyzed the accumulation of neutral mutations in
state-dependent, controlled-growth branching process models.
The dynamics of non-neutral mutations (such as mutations con-
ferring drug resistance) in this setting of resource limitation,
however, remains an important open question.

2.1.4. Considerations of multiple genetic alterations necessary
for resistance

The models outlined above in the exponential growth setting
have been extended to investigate situations in which several
genetic alterations must be accumulated in a single cell for
resistance to emerge (Frank, 2003; Haeno et al., 2007; Komarova
and Mironov, 2005; Harnevo and Agur, 1992; Komarova and
Wodarz, 2005, 2007a,b; Durrett and Moseley, 2010). Such scenar-
ios arise when multiple mutations are required to confer resis-
tance to a single drug, or when multiple drugs are used that
necessitate an independent resistance mutation for each drug. In
the 1990s, Harnevo and Agur studied drug resistance emerging
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due to oncogene amplification using a stochastic branching
process model (Harnevo and Agur, 1992; Harnevo, 1991). In this
model, cells were able to accumulate multiple copies of an
oncogene, and each subsequent amplification event was consid-
ered as a probabilistic event. The authors studied the conditions
for the emergence of drug-resistant mutants both prior to and
during treatment with one or two drugs. In 2003, Frank designed a
three-type branching process model to describe cells with zero,
one, or two mutations (Frank, 2003), and found that the distribu-
tion of cells with two mutations informs about the effective time
of occurrence of the first mutation; the latter – depending on its
frequency in different tissues in the body – could even have arisen
during embryonal development. Komarova and Wodarz later
considered the emergence of cells resistant to multiple drugs
(Komarova and Wodarz, 2005; Komarova, 2006). The authors
assumed that cells must accumulate m mutations to become
resistant to m drugs, and also allowed for the generation of
intermediate resistance phenotypes. They calculated the probabil-
ity of resistance arising before the initiation of therapy for the
limiting assumption that all resistance mutations are neutral, and
concluded that resistance predominantly arises prior to treatment;
this situation was in contrast to resistance generated during
continuous therapy with one or multiple drugs, in which case
resistance could also arise after the initiation of treatment. The
authors also applied their mathematical framework to study
imatinib resistance arising in chronic myeloid leukemia (CML)
patients (Komarova and Wodarz, 2005; Wodarz and Komarova,
2005) and to address the effects of cellular quiescence on the
likelihood of pre-existing resistance (Komarova and Wodarz,
2007a,b).

The stochastic model presented by Iwasa et al. (2006) was later
extended to incorporate resistance due to the accumulation of two
mutations (Haeno et al., 2007). The authors derived the probability
that a population of sensitive cancer cells has evolved a cell with
both mutations before the entire population reaches detection size
as well as the expected number of cells carrying both mutations at
that time. Durrett and Moseley (2010) considered the first time a
resistant cell with m mutations arises in an exponentially expand-
ing population of sensitive cancer cells. The authors considered a
multi-type linear birth and death process wherein cells with k
mutations give rise to cells with k þ1 mutations at a given rate.
They estimated the arrival times of clones with a certain number
of mutations by approximating the sensitive cell population
growth with its asymptotic limit. The authors furthermore derived
a limiting distribution for the ratio between the number of cells
harboring one resistant mutation and the sensitive cells at the
time when the latter reaches detection size.

2.1.5. Recent clinical applications
In recent years, these types of models have been utilized to

quantify the risk of pre-existing resistance in various cancer types.
For example, Diaz et al. (2012) and Leder et al. (2011) studied the
relative benefits of first-line combination therapy with multiple
BCR-ABL kinase inhibitors to treat CML, using a model in which a
spectrum of resistant mutants can arise due to various point
mutations in the kinase domain of BCR-ABL. Diaz et al. (2012)
also utilized a branching process model of mutation accumulation
prior to treatment to analyze the probability of rare KRAS-mutant
cells existing in colorectal tumors prior to treatment with EGFR
blockade. The authors fit the model with clinical observations of
the timing of detected resistance and concluded that the muta-
tions were present prior to the start of therapy. These studies are
part of a more widespread effort to apply such models to clinically
useful situations.

2.2. Resistance emerging during treatment

In a seminal paper published in 1977, Norton and Simon
proposed a model of kinetic (not mutation-driven) resistance to
cell-cycle specific therapy in which tumor growth followed a
Gompertzian law. The authors used a differential equation model
in which the rate of cell kill was proportional to the rate of growth
for an unperturbed tumor of a given size. Their model predicted
that the rate of tumor regression would decrease during treat-
ment. They suggested that one way of combating this slowing rate
was to increase the intensity of treatment as the tumor became
smaller, thereby also increasing the chance of curing the disease.
Predictions of an extension of this model were later validated with
a clinical trial comparing the effects of a dose-dense strategy and a
conventional regimen for chemotherapy (Citron et al., 2003). Their
model and its predictions have become known as the Norton–
Simon hypothesis and have generated substantial interest in
mathematical modeling of chemotherapy and kinetic resistance
(D’Onforio et al., 2012; Rodriguez-Brenes et al., 2013; Agur, 2012).

2.2.1. Stochastic models of anti-cancer therapy
Evolutionary theorists started thinking about the emergence of

resistance during cancer treatment after Goldie and Coldman
published their seminal results in the 1980s (Coldman and
Goldie, 1986; Goldie and Coldman, 1983, 1984). First, the authors
designed a mathematical model of cancer treatment to investigate
the risk of resistance emerging during the course of therapy with
one or two drugs (Goldie and Coldman, 1983). Sensitive cancer
cells were assumed to grow according to a pure birth process,
while resistance mutations arose with a given probability
per sensitive cell division and then grew according to a stochastic
birth process. The administration of a drug was considered to
cause an instantaneous reduction in the number of sensitive cells.
The authors derived the probability of resistance emerging during
the sequential administration of two drugs, concluding that the
probability of resistance at any given time depends on the total
number of cancer cells and the mutation rate(Foo et al., 2012;
Norton and Simon, 1977). The authors proposed two strategies to
maximize the probability of successful therapy: (i) treatment
should be started as soon as possible since the probability of cure
decreases with increasing size of the tumor and since larger
tumors present a higher level of heterogeneity, which is anti-
correlated with the chance of curing the disease (Goldie and
Coldman, 1984) and (ii) multiple drugs should be used in combi-
nation whenever possible, or in an alternated manner otherwise.
This strategy allows the drugs to exert the maximum effect against
heterogeneous cell populations. The idea that early initiation of
therapy and combination therapy with multiple drugs could
reduce the risk of resistance became known as the Goldie–Cold-
man hypothesis.

In 1984, the authors extended their earlier work by incorporat-
ing a differentiation hierarchy into the branching process model of
tumor growth to study the emergence of resistance to one or two
equivalent chemotherapeutic drugs (Coldman and Goldie, 1986).
In this paper, the birth and death rates of cells were modeled
as time-independent constants; cells were assumed to divide with
a fixed and common interdivision time and each sensitive cell
division gave rise to a resistant cell with a certain probability.
Treatment was considered to occur at a series of fixed time
points, at which either of the drugs was administered at a constant
dose. The effect of treatment was modeled as an additional
probabilistic cell kill law on the existing population. A general-
ization of this approach was later studied by Day (1986), who
relaxed the assumption of equivalence or “symmetry” between
the two drugs. This approach provided the basis of OncoTCap, a
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software developed by Day and colleagues (http://www.oncotcap.
pitt.edu/2000/) that performs simulations of the treatment out-
come of a single patient. Later on, Goldie and Coldman (2009)
published a book summarizing these results as well as the
fundamental principles of mathematical modeling of drug resis-
tance in cancer.

In the past decade, there has been renewed interest in evolu-
tionary modeling approaches to cancer therapy, e.g. Komarova and
Wodarz (2005), Komarova (2006), Iwasa et al. (2003) and
Komarova et al. (2009). Iwasa et al. used a multi-type branching
process model to study the probability of resistance emerging
during treatment of a heterogeneous cell population (Iwasa et al.,
2003). They considered resistance emerging due to one or several
genetic alterations and calculated the probability of success or
failure of treatments consisting of one or more drugs exerting
diverse effects on the population of cancer cells. They also
determined the risk of pre-existing resistance. Consistent with
earlier findings of Goldie and Coldman, they determined that the
chance of cure is largest when many drugs are administered
simultaneously since in this situation, tumor cells must evolve
many mutations to escape from eradication.

Later on, Komarova and Wodarz developed a stochastic math-
ematical model to investigate multi-drug resistance to anti-cancer
therapies (Komarova and Wodarz, 2005). They considered situa-
tions in which k mutations are required to confer resistance
against k drugs, and modeled the effect of therapy by increasing
the ratio of cell death to cell birth in cancer cells. They found that
the chance of resistance increases with enhanced turnover rates
independently of the number of drugs administered, and deter-
mined that the treatment phase is unimportant for the production
of resistant cells since the majority of resistance mutations arises
before the tumor is diagnosed. The model was also used to find
the optimum number of drugs such that both toxicity and the
evolution of resistance are minimized. When the model was
applied to chronic myeloid leukemia (CML) to investigate the
optimum number of drugs for this disease, they found that
administration of three chemotherapeutics minimizes the risk of
resistance. Later on, these authors studied the importance of stem
cell quiescence in the evolution of resistance against anti-cancer
treatment (Komarova and Wodarz, 2007a,b). They designed a
stochastic process model to investigate the dynamics of a popula-
tion of cancer stem cells which cycle between an active, prolif-
erative state and an inactive, quiescent state. The authors
determined that the risk of resistance is independent of the
presence and extent of quiescence if therapy involves only a single
drug. Once two or more drugs are used, the risk of resistance
increases with the fraction of quiescent stem cells. The risk of
resistance emerging during therapy was again found to be negli-
gible as compared to resistance arising before the start of treat-
ment. These findings have important implications for the design of
treatment strategies since they show that the use of drugs
reducing the extent of quiescence among cancer stem cells cannot
effectively decrease the chance of resistance. Komarova et al. used
their earlier mathematical model (Komarova, 2006) to computa-
tionally investigate the probability of treatment success when
combining one to three drugs, with and without cross-resistance
(Komarova et al., 2009). The authors assumed that many muta-
tions can confer resistance to one drug, but only one mutation
confers resistance to multiple drugs; this assumption mirrors the
scenario of known resistance mechanisms to the BCR-ABL kinase
inhibitors imatinib, dasatinib, and nilotinib used in the treatment
of CML. When the authors applied their framework to CML, they
concluded that a combination of two, but not three, drugs
improves the therapeutic outcome for this disease.

One common feature of these models of genetic resistance is
that the treatment effect was formulated as an additional

probabilistic cell death rate of sensitive cells, separate from the
underlying birth and death process model with constant rates of
cell growth and death. When using such assumptions, a drug
cannot alter the proliferation rate of either sensitive or resistance
cancer cells. A main effect of targeted therapies (e.g., imatinib,
erlotininb, gefitinib), however, is the inhibition of cancer cell
proliferation. Reduced growth rates of cancer cells in turn lead to
a diminished probability of resistance since there is less chance
that resistant cells arise during sensitive cell divisions. To relax this
assumption, we utilized a non-homogenous multi-type birth-
death process model wherein the birth and death rates of both
sensitive and resistant cells are dependent on a temporally vary-
ing drug concentration profile, and studied resistance dynamics
under general time-varying treatment schedules (Foo and Michor,
2009, 2010). Later on this stochastic framework was coupled with
pharmacokinetic models incorporating drug absorption and elim-
ination processes within the body (Foo and Michor, in preparation).
This approach allows for a consideration of the effects of metabolic
processes and patient-level variability in pharmacokinetics on the
evolution of drug resistance.

2.2.2. Deterministic models of anti-cancer therapy
So far, we have discussed models in which the process of

acquiring resistance mutations is stochastic and, in many cases,
the growth of sensitive and resistant cell populations is also
governed by a stochastic process. However, several deterministic
mathematical models of resistance have also been proposed in the
literature (Swan, 1981; Birkhead and Gregory, 1984; Panetta, 1996;
Jackson and Byrne, 2000; Gatenby and Vincent, 2003; Michor
et al., 2005). In 1981, Swan introduced a model of radiotherapeutic
resistance using first order linear kinetics to describe the sensitive
and resistant cell populations. In 1984, Birkhead and Gregory
introduced a model consisting of a system of difference equations
to investigate the dynamics of resistance to a single cytotoxic
agent as well as to multiple drugs. These authors later proposed a
multi-compartment model describing both cycling and active
sensitive and resistant cell populations (Birkhead et al., 1987).
In both models, the authors assumed that chemotherapy reduces
the sensitive cell population by a constant fraction, and provided
a means of evaluating the effectiveness of treatment strategies
by predicting tumor response and the evolution of resistance. In
1996, Panetta introduced a competition model that incorporated
the effect of tumor-normal cell interactions during periodically
pulsed chemotherapy. This author also extended his model to
describe a resistant tumor subpopulation and discussed strategies
to prevent disease recurrence when resistant cells are not cross-
resistant to multiple drugs. In particular, he considered the
question of when to switch therapies if there are two non-cross-
resistant drugs available. The author concluded that treatment
regimens should be switched sooner if the rate of induction of
resistance to the second drug is large or if the second drug is very
effective.

Later on, Jackson and Byrne (2000) studied the effect of the
vasculature on the response of tumor cells to therapy. The authors
considered a deterministic PDE model describing the intra-
tumoral drug concentration and density of cancer cells, and
treated the tumor as a continuum of two cell types (sensitive
and resistant), which may differ in both their proliferation rate and
their response to therapy. In this study, the authors investigated
the tumor response to continuous infusion and bolus injection of
chemotherapeutic drugs in the presence and absence of drug-
resistant subpopulations. Interestingly, they found that when the
tumor contains a drug-resistant population, continuous infusion
significantly increases the time to cure, thus rendering bolus
injection the preferred strategy. This work fits into a large body
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of literature on PDE models of tumor growth (not necessarily
focused on the problem of drug resistance), e.g. Adam (1987),
Byrne and Chaplain (1995) and Greenspan (1972).

In 2003, Gatenby and Vincent designed a Lotka–Volterra model
of tumor and healthy cells to study the effects of treatment with
cytotoxic drugs. The authors found that in general, cytotoxic drugs
alone are insufficient to eradicate the tumor, since there are two
main barriers to achieving a complete remission of the tumor:
evolving populations tend to produce resistant clones which are
able to drive the system back to an equilibrium abundance, and
drug-induced alterations of the tumor microenvironment change
the selection pressure and select for tumor cells with larger
evolvability. In 2009, Monro and Gaffney modeled the dynamics
of chemotherapy resistance in a model of palliative treatment,
when tumor eradication is not feasible. In such cases, the goal of
treatment is to prolong survival and improve the quality of life.
Using a simple ODE-based model of tumor growth with Gompert-
zian dynamics, the authors predicted that reduced chemotherapy
treatment can prolong survival times due to the effects of
competition between the sensitive and resistant cells.

2.2.3. Alternative approaches to therapy
Most of the evolutionary mathematical models discussed so far

have focused on cytotoxic or targeted drugs whose objective is to
kill cancer cells or inhibit their proliferation. However, there have
also been some efforts to model alternative approaches to treat-
ment, such as the use of viruses as anti-tumor agents, modification
of the tumor microenvironment, and altering the behaviors of
stromal or immune cells (e.g. Wodarz, 2001; Maley et al., 2004;
Silva and Gatenby, 2010). For example, Maley and colleagues
studied an alternative evolutionary approach; they proposed to
use “boosters” of benign cells to increase their fitness (Maley et al.,
2004). They designed a computational model to investigate the
dynamics of mutations emerging in cells that proliferate on a two-
dimensional lattice and harbor a small number of oncogenes,
tumor suppressor genes, genes preventing mutator phenotypes,
and genes conferring sensitivity to drugs. To investigate the
dynamics of competition, they assumed a constant population
size, and showed that therapies that increase the fitness of benign
cells are effective in all stages of the disease when combined with
traditional chemotherapy. In another study, Silva and Gatenby
(2010) introduced a two-dimensional cellular automaton model to
study the effects of a combined treatment strategy of glucose
restriction and chemotherapy aimed at stabilizing tumor size and
minimizing chemoresistance. The authors assumed that phenoty-
pic chemoresistance and proliferative capacity are inversely
related – resistance to cytotoxic drugs requires expenditure of
resources and energy which reduces cell proliferation rates – and
that increased robustness to chemotherapy generated by the
hypoxic core of a tumor confers fragility to glucose restriction
due to the Warburg Effect. The authors found that sequential
administration of glucose competitors and chemotherapeutics
provide the best outcome when the goal is to stabilize tumor size
and minimize resistance. In general, mathematical modeling of
non-cytotoxic, alternative approaches to therapy remains an area
for greater development, as discussed below.

2.3. Optimal dosing strategies

The design of optimal drug administration schedules to mini-
mize the risk of resistance represents an important issue in clinical
cancer research. If drugs are administered at sufficiently low doses,
no drug holidays are necessary to limit the side effects and reduce
patient toxicity; if drugs are administered at more concentrated
doses, however, then rest periods are needed to limit toxicity. Such

drug holidays can lead to an exponential rebound of the tumor cell
population and hence pose a significant risk for the emergence of
resistance. Several clinical studies have been performed to identify
optimum dosing frequencies, concluding in some cases that a low-
dose continuous strategy for chemotherapy is more effective
(Hryniuk, 2001). Other studies have found that more concentrated
dosages are beneficial (Lake and Hudis, 2004). The advantage of a
low-dose continuous approach is often attributed to its ability to
prevent angiogenesis rather than leading to low rates of resistance
(Hahnfeldt et al., 2003) Such strategies are often implemented as
combination therapy, sometimes including a second drug admi-
nistered at a higher dose in a pulsed fashion.

A significant amount of research effort has been devoted to
developing mathematical models to identify the most effective
chemotherapeutic administration regimens using optimization
and control techniques (see Martin and Teo, 1993 and references
therein). While many models are aimed at rapidly minimizing the
total tumor burden, long-term treatment success may require a
more nuanced approach. Long-term patient survival hinges upon
the control of both drug-resistant subpopulations within the
tumor as well as the total tumor burden. The simultaneous control
of these two aspects of tumor growth is difficult, as they are often
accomplished by exerting opposing evolutionary selection pres-
sures. In addition, these goals must be achieved under the
constraints of avoiding long-term toxicity and dose-limiting side
effects. Such constraints vary between patients as well as between
drug and tumor types, and are often difficult to ascertain from
limited clinical data available. Thus, the mathematical problem of
therapeutic optimization is complicated by two issues: the for-
mulation of an objective function in terms of model variables that
realistically represents patient survival, and dealing with often
incomplete or uncertain constraints on the optimization space.

Thus, we first focus specifically on previous attempts to identify
schedules that minimize the size of drug-resistant subpopulations,
e.g. Costa et al. (1992, 1994). In 1992, Martin et al. used optimal
control techniques to maximize host survival time – the time
during which the total tumor size can be constrained below a
specified level. The authors used a deterministic differential
equation model representing sensitive and fully resistant cell
populations following Gompertzian, logistic or exponential growth
laws. The total tumor cell population was modeled as a control
variable, and the optimal tumor burden was identified as a
function of the initial number of resistant cells. The authors found
that, assuming Gompertzian growth, a large tumor burden can
significantly increase survival time. Similarly, Costa et al. (1992)
used a deterministic differential equation model to describe the
evolution and treatment of a tumor containing drug-resistant cells.
The authors used the concentration of the drug at the tumor site as
the control variable, and defined the optimal schedule as the one
minimizing the total tumor size at a given time. They assumed that
the cell kill rate is linearly proportional to the drug concentration,
and showed that the optimal strategy was the administration of
the maximally allowed drug concentration. In a subsequent study,
the authors extended this model to include pharmacokinetic
effects to study the interplay between drug decay and drug
resistance (Costa et al., 1994). In this paper, they used the
concentration of the drug injection instead of the concentration
at the tumor site as the control variable, and concluded that the
strategy corresponding to the maximum rate of drug injection is
optimal under the exponential model of cell growth, but sub-
optimal for other models of cell growth.

In 2003, Kimmel and Swierniak described an optimal control
approach to identify administration schedules for cell cycle-
specific chemotherapeutic agents (Kimmel and Swierniak, 2005).
The authors aimed to minimize the total number of cancer cells at
the end of treatment while incorporating a toxicity constraint on
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normal tissues. They formulated an optimal administration pro-
blem in the context of drug-resistance due to gene amplification,
using an infinite system of differential equations based on a
branching random walk model of the gene amplification
dynamics. Another optimal control problem addressing drug
resistance due to gene amplification in a non-cell-cycle specific
model was investigated by Ledzewicz et al. in 2006 (Ledzewicz
and Schattler, 2009).

In contrast to the above approaches to optimal chemotherapy,
Coldman and Murray (2000) used a model in which tumor growth
was governed by a multi-type stochastic pure birth process. The
authors considered situations in which two drugs were adminis-
tered to a heterogeneous cell population consisting of cells
sensitive to one or both of these drugs. They incorporated toxic
effects of chemotherapy on normal tissues and formulated an
optimal control problem to maximize the probability of tumor
cure times the probability of no toxicity. The authors concluded
that early intensification of therapy is beneficial in situations in
which resistance is likely. The authors additionally applied the
model to clinical trial data for adjuvant treatment of breast cancer
and described the optimal treatment regimen for this situation.
The authors later extended their framework to investigate the
effect of heterogeneity in model parameters across a population of
patients on the optimal strategy (Murray and Coldman, 2003).
Later on, we designed a stochastic process approach to identify
optimum dose administration strategies where the birth and
death rates of both sensitive and resistant cells are dependent
on a temporally varying drug concentration profile (Foo and
Michor, 2009, 2010). Katouli and Komarova (2010) developed a
methodology for identifying the optimal scheduling for cyclic
treatment strategies – alternating administration of two drugs.
The authors utilized their framework published earlier (Komarova
and Wodarz, 2005) and incorporated the phenomenon of cross-
resistance, in which one mutation confers simultaneous resistance
to two drugs. Using a deterministic simplification of this frame-
work, the authors designed a systematic method for identifying
the optimal timing and administration order of two drugs with
given characteristics.

Recently, we applied the methodology developed in Goldie and
Coldman (1983, 1984) to identify optimal dosing strategies to
prevent or delay development of drug resistance in EGFR-mutant
lung cancer under various treatment regimens of erlotinib (Foo
et al., 2012; Chmielecki et al., 2011). Using combined toxicity data
from various Phases I and II clinical trials of erlotinib to inform
constraints, we found that high-dose pulses with low-dose con-
tinuous therapy impede the development of resistance to the
maximum extent, both pre- and post-emergence of resistance. An
optimized strategy was tested in vitro and was found to delay the
emergence of resistance significantly as compared to current
standard dosing procedures. This strategy is currently being
implemented as a clinical trial at the Memorial Sloan-Kettering
Cancer Center. In addition, using our model, we found that the
probability of resistance is greater in fast versus slow drug
metabolizers, suggesting a potential mechanism, unappreciated
to date, influencing acquired resistance in patients. We have also
recently extended this model to evaluate the impact of combina-
tions of EGFR-targeted therapeutics (e.g., erlotinib) and cytotoxic
therapeutics (e.g., paclitaxel) and identify strategies that impede
the outgrowth of primary T790M-mediated resistance in NSCLC
populations (Mumenthaler et al., 2011). In this approach, we
systematically explored the space of combination treatment stra-
tegies and demonstrated that optimally timed sequential strate-
gies yielded large improvements in survival outcome relative to
monotherapies at the same concentrations. Our investigations
revealed regions of the treatment space in which very low-dose
sequential combination strategies, after preclinical validation, may

lead to a tumor reduction and improved survival outcome for
patients with T790M-mediated resistance with minimal toxicity.
These strategies will also be tested in the clinic in the future.

3. Short-term open questions

Despite the significant research effort devoted to the elucida-
tion of the evolutionary dynamics of resistance to anti-cancer
therapy, many open questions remain. In this section, we provide
our perspective on the short-term open questions in the field. In
particular, we first discuss the limitations of the existing models
and several areas in which refinement to these models is needed
to more accurately reflect the biological processes.

Several studies have already been undertaken to apply models
of pre-existing resistance to clinical data and predictions (Diaz
et al., 2012; Chmielecki et al., 2011; Mumenthaler et al., 2011). One
theme emerging from these studies is the need for a stronger
linkage between models of pharmacokinetic processes (e.g. drug
absorption and metabolism kinetics) and evolutionary models of
drug resistance. To date, we have utilized only basic pharmacoki-
netic models to describe the connection between administration
schedules and the amount of drug available to cancer cell popula-
tions at any given time (Foo et al., 2012).This study has demon-
strated the impact of pharmacokinetic processes (and inter-patient
variation in them) on clinical resistance outcomes. However, these
processes are highly complex in nature – for example, it is known
that metabolites (intermediate products of drug metabolism) are
associated with some targeted cancer therapies, and that these
metabolites are also likely play a role in changing evolutionary
pressures on tumors (e.g. Togashi et al., 2010). Therefore, the
incorporation of more detailed and accurate descriptions of
pharmacokinetic processes is crucial for evolutionary modeling
of resistance dynamics during treatment. The development of
these models of course intricately depends on the availability of
accurate data upon which the models can be based; such data
needs to become more freely available for the development of the
field. This issue is discussed in more detail below.

There is also a need for more models aimed at understanding
the role of the tumor microenvironment on the evolution of
resistance. Tumors frequently display a substantial amount of
spatial heterogeneity – both in terms of cell type population
composition as well as microenvironmental factors such as drug,
oxygen and glucose concentration (Hsu and Sabatini, 2008).
Recent studies have suggested that in many cancers, the emer-
gence of drug resistance is driven by the tumor microenvironment.
For example, heterogeneity in drug concentration can create
niches within tumors that enable novel modes of adaptation,
and cellular response to therapies may be inhibited or enhanced
based on the local nutrient density (Anderson et al., 2006; Tredan
et al., 2007; Wu et al., 2013). Spatial population heterogeneity can
also be expected to modulate the nutrient microenvironment.
Drug-resistant cells may uptake and metabolize drug and nutri-
ents at differing rates (or even using different processes) than their
drug-sensitive counterparts, thus, contributing further to the
establishment of environmental heterogeneity. Therefore, more
explicit spatial models of the tumor microenvironment and the
feedback between heterogeneous cell populations and their envir-
onment must be developed to fully understand the spatial
dynamics of resistance in tumors. Again, the generation of this
literature depends on the as-of-yet limited availability of accurate
clinical and preclinical data.

Depending on the context of the specific drug and cancer
type being addressed, various other model refinements may be
necessary to gain a full understanding of resistance dynamics.
For example, many anti-cancer therapies are specific in their mode
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of action to a particular stage of the cell cycle; such situations will
require more detailed models of the population dynamics to
reflect the stage-specificity in reproduction, mutation and death
events. Alternatively, to accurately capture the dynamics of certain
cancers, such as leukemias, a refined model of the population
structure (i.e. cell differentiation hierarchy) is necessary, especially
since current therapies may be specific to certain levels of the
differentiation hierarchy. For certain drugs, a wide variety of
resistance mechanisms have been reported; for considering these
as well as combination therapies it is important to also incorporate
multiple cell types and mechanisms of resistance. In addition,
recent single cell profiling studies have revealed an extraordinary
extent of heterogeneity in phenotype even in genetically identical
cell populations (Elowitz et al., 2002; Becskei and Mattaj, 2005;
Kaern et al., 2005; Feinerman et al., 2008). In the future, it may be
necessary to consider this widespread heterogeneity and include
fitness distributions and stochasticity in growth and death rates.
As above, the availability of appropriate data will be crucial for
developing these models.

4. Long-term open questions

We have so far discussed a large and growing body of work
aimed at developing an understanding of the evolutionary pro-
gression that leads to resistance in tumors. These approaches have
led to a more complete picture of how various factors (e.g. patient
pharmacokinetics, cancer and drug type, resistance mechanism
and tumor microenvironment) impact the dynamics of drug
resistance. Even more importantly, they have led to a greater
appreciation of the culpable role of various treatment strategies in
selecting for drug resistance. A long-term goal of these efforts is
the following: can we utilize these models and the insights they
provide to delay or prevent the evolution of resistance? To put it
another way, can we design effective strategies to harness or direct
the inevitable evolution of cancer cell populations into phenotypic
states in which either eradication or chronic control of tumors is
possible?

A first approach towards that goal is to utilize evolutionary
models for optimal selection of drug scheduling and combination
strategies. Several studies along these lines have already been
published, but much more work is required to be able to provide
general guidelines for the design of treatment schedules and
combination strategies. Many questions still remain: for example,
is patient outcome generally better if targeted therapies are
administered in combination with generic cytotoxic drugs or
other targeted therapies? If second-line targeted therapies that
overcome resistant strains to first-line therapies are available,
should they be administered at the start of treatment, or only
after failure of the first therapy? What is the best administration
schedule for these types of combinations, and what are the
toxicity constraints? Should we administer long course che-
motherapy and keep patients on the drug beyond progression
of their disease? Recent studies have shown that drug antagon-
ism between antibiotics may slow the evolution of bacterial
resistance (Yeh et al., 2009). Along similar lines, it may be
possible to utilize suppressive drug combinations to prolong
the time until cancer progression.

Although evolutionary models can greatly aid in the identifica-
tion of optimal drug scheduling and combination schedules to
delay disease progression due to resistance, this approach may
often result in only temporary prolonged patient survival. Most
tumors at diagnosis are heterogeneous and often harbor drug-
resistant subpopulations. Under conventional therapies aimed at
killing drug-sensitive cells, basic evolutionary theory predicts that
these resistant subpopulations will be selected for and their

outgrowth will become inevitable. Radically targeting any cell
type (via maximal kill) can promote the rate of evolution of
resistance; thus, a constant search for nth-generation therapies
against the (n�1)th-generation resistant mutants does not yield
permanent solutions either.

An alternative, perhaps longer-term approach is to identify
treatment strategies that do not rely upon cytotoxic action against
a specific cell type or utilize current therapies at sufficiently low
doses so as not to impose any stronger selection than is necessary
within the tumor. Under this framework, modifications to desired
clinical outcomes should be considered. In particular, chronic
tumor control and minimization of the resistant fraction of tumors
may be better endpoints than rapid tumor debulking or maximal
cell kill. In recent work, Pepper has argued that targeting “public
goods” within a tumor may provide a good alternative strategy
(Gioeli, 2011). Public goods refer to external products secreted into
the microenvironment by cancer cells, which benefit both them-
selves and other nearby cells. Drugs that target these public goods
may be less vulnerable to resistance since they do not impose
strong selective pressures on any specific cell type. A similar
approach would be to target limited resources within the micro-
environment with the goal of simply preventing unbounded
growth or metastasis of the tumor, rather than tumor reduction.
The microenvironment has become an attractive target in cancer
therapy with the design of drugs that modify the current state of
the tumor microenvironment, such as angiogenesis inhibitors,
hypoxia-activated pro-drugs, and immunotherapy agents; here,
evolutionary theory can serve as a tool to help understand and
improve the design and use of such therapies.

The final long-term question we focus on is biomarkers.
In particular, can we use evolutionary theory and modeling to
develop useful biomarkers to help guide treatment and prog-
nosis prediction? For example, sensitive cell turnover and death
rates play an important role in determining the probability of
developing resistance. This observation leads to interesting
clinical questions – can the frequency of apoptosis in a tumor,
along with tumor size, be used as a prognostic biomarker of
resistance? Alternatively, can we utilize tumor shape or its
microenvironmental profile as predictors of tumor aggressive-
ness or resistance development? Once resistance has been
detected clinically, are there aspects of the tumor (e.g. size at
recurrence or growth rate) that can be utilized to predict the
diversity or aggressiveness of the recurrent tumor? If so, these
markers could be used to guide treatment decisions post-tumor
recurrence. An investigation of these types of questions is only
just beginning and we believe that evolutionary modeling may
provide many insights into the design of useful biomarkers to
help guide treatment in the clinic.
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