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SUMMARY
BET bromodomain inhibitors (BBDIs) are candidate therapeutic agents for triple-negative breast cancer
(TNBC) and other cancer types, but inherent and acquired resistance to BBDIs limits their potential clinical
use. Using CRISPR and small-molecule inhibitor screens combined with comprehensive molecular profiling
of BBDI response and resistance, we identified synthetic lethal interactions with BBDIs and genes that, when
deleted, confer resistance. We observed synergy with regulators of cell cycle progression, YAP, AXL, and
SRC signaling, and chemotherapeutic agents. We also uncovered functional similarities and differences
among BRD2, BRD4, and BRD7. Although deletion of BRD2 enhances sensitivity to BBDIs, BRD7 loss leads
to gain of TEAD-YAP chromatin binding and luminal features associated with BBDI resistance. Single-cell
RNA-seq, ATAC-seq, and cellular barcoding analysis of BBDI responses in sensitive and resistant cell lines
highlight significant heterogeneity among samples and demonstrate that BBDI resistance can be pre-exist-
ing or acquired.
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INTRODUCTION

Triple-negative breast cancer (TNBC) is characterized by the

absence of estrogen receptor (ER), progesterone receptor (PR)

expression, and human epidermal growth factor receptor 2

(HER2). Only about 30%–40% of TNBC patients respond well

to chemotherapy, and even though a subset of TNBC express

PD-L1 and benefit from immunotherapy (Garrido-Castro et al.,

2019), novel therapeutic options are needed for the majority of

patients with advanced disease. TNBC genome sequencing

studies have failed to identify recurrently mutated therapeutic

targets and revealed extensive inter- and intratumor heterogene-

ity (Garrido-Castro et al., 2019). This heterogeneity suggests that

multiple new therapeutic approaches involving combinations of

agents are required for effective treatment of TNBC patients.

Bromo- and extra-terminal domain (BBD) proteins (e.g.,

BRD2–BRD4) are emerging therapeutic targets in TNBC. Directly

acting BBD inhibitors (BBDIs), including JQ1 (Filippakopoulos

et al., 2010), utilize acetyl-lysine-competitive binding to displace

BBD proteins from chromatin, resulting in selective transcrip-

tional responses and anti-proliferative efficacy (Delmore et al.,

2011; Filippakopoulos et al., 2010; Puissant et al., 2013). The

selectivity of BBD inhibition arises from localization of BBDs to

super-enhancers (SEs) that regulate cell-specifying and onco-

genic transcriptional programs (Chapuy et al., 2013; Hnisz

et al., 2013; Lovén et al., 2013; Whyte et al., 2013), producing

anti-tumor effects in preclinical models and in clinical trials

(O’Dwyer et al., 2016; Shapiro et al., 2015; Shu and Polyak,

2016). We previously identified BBDIs as potential therapeutic

agents in TNBC (Shu et al., 2016) but also found that acquired

resistance emerges early, necessitating development of rational

combinations. Thus, to identify synthetic lethal and resistance in-

teractions with BBDIs and to decipher the underlying mecha-

nisms, we performed unbiased comprehensive functional

screens combined with multi-omics profiling using matched

pairs of BBDI-sensitive and acquired-resistant TNBC cell lines.

RESULTS

CRISPR Screens to Uncover Synthetic Lethal and
Resistance Interactions with JQ1
To identify synthetic lethal targets andmechanisms of resistance

to BBDIs, we performed a genome-wide CRISPR-Cas9

knockout screen in the TNBC cell lines SUM159 and SUM149,

treated with JQ1 or DMSO, and in their BBDI-resistant deriva-

tives SUM159R and SUM149R, which we generated previously

(Shu et al., 2016). Cells with knockout of known essential genes,

including ribosomal genes, were strongly depleted in both treat-

ments (Figure S1A), confirming the quality of the data. Across

both parental cell lines, single guide RNAs (sgRNAs) that

became specifically depleted after JQ1 treatment included those

targeting G1-S cell cycle progression (CDK4 and SKP2), onco-

genic transcriptional regulators (BRD2, EP300, CREBBP, and

NELFB), and DNA damage repair (PRKDC), indicating that these

pathways becamemore essential under bromodomain inhibition

and are synergistic with JQ1 (Figures 1A and 1B; Table S1).

Conversely, sgRNAs that targeted G1-S cell cycle inhibitors

(CDKN1A) and tumor-suppressive transcriptional regulators
(ARID1A and TCEB3) were enriched, indicating that they

contribute to JQ1 resistance. TCEB3 interacts with BRD3, and

JQ1 treatment increases its binding (Lambert et al., 2019), which

may explain why it was a hit in our screen. Other cell cycle reg-

ulators (MYC and CCND1) and transcriptional activators,

including Mediator complex components (MED23, MED24,

and MED30), were synergistic hits in SUM159 cells, whereas

cell cycle- and transcription-related tumor suppressors (RB1

and BRD7) were resistance hits. Many of our CRISPR hits

(e.g., CDK4 and EP300) are also dependencies in cell lines that

depend on BRD4 in the DependencyMap (DepMap) data (Tsher-

niak et al., 2017; Figures S1B and S1C).

In SUM149 cells, deletion of CSNK2B, a subunit of CK2 that

phosphorylates and stabilizes BRD4 (Wu et al., 2013), was syn-

ergistic with JQ1, whereas deletion of genes known to function in

ubiquitination of BRD4 (SPOP andCUL3) and promote proteaso-

mal degradation (Dai et al., 2017; Janouskova et al., 2017; Zhang

et al., 2017) made cells more resistant (Figure 1A). Proteasomal

subunits were also synergistic hits in SUM159 and SUM149

cells, and ubiquitin-proteasomal proteolysis was the top en-

riched process network in SUM149 cells (Figure S1D). These

data are consistent with our prior finding that CK2-mediated

phosphorylation and stabilization of BRD4 on chromatin is one

of the mechanisms of acquired BBDI resistance (Shu

et al., 2016).

In BBDI-resistant SUM159R and SUM149R cells, genes

involved in transcription by RNA polymerase II were enriched

among the top synergistic hits (Figure 1A). Moreover, RNA poly-

merase II complex regulation was themost significantly enriched

pathway among synergistic genes in both resistant cell lines,

implying that BBDI resistance still relies on BRD4/RNA polymer-

ase II complex function (Figures 1C and S1D). This observation is

consistent with our prior data demonstrating that BBDI-resistant

cells still depend on BRD4 (Shu et al., 2016). Notably, CDK4 and

BRD2 were top synergy hits in all four cell lines, suggesting that

their deletion not only sensitizes cells to BBDIs but also over-

comes acquired BBDI resistance (Figures 1A and 1B).

Integration of CRISPR Hits and Molecular Profiles
To explore mechanisms by which the CRISPR screen hits exert

their function, we analyzed genetic alterations, gene expression,

DNA methylation, histone and protein modifications, and the

BRD4 interactome of parental and BBDI-resistant cells before

and after JQ1 treatment. Although we identified several muta-

tions specific to BBDI-resistant SUM149R or SUM159R cells

(Figure S1E), none of the mutated genes overlapped with

CRISPR screen hits, suggesting that they may not play a role

in BBDI response and resistance. BBDI-resistant cell lines dis-

played a significant increase in global DNA methylation that

was not affected by JQ1 (Figure S1F). Although this increase in

DNA methylation did not globally correlate with changes in

gene expression, a number of genes (e.g., DBC1 and PTN)

showed significant changes in both DNA methylation and

expression (Figure S1G). Histone mass spectrometry revealed

increased H3K27me2, H3K27me3, H3K9me0, H3K9me1,

H3K9me2, and H3K9me3 levels in both BBDI-resistant cell lines

compared with parental cells, but JQ1 treatment did not influ-

ence these profiles (Figure S1H).
Molecular Cell 78, 1096–1113, June 18, 2020 1097
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Functional analysis of differentially expressed genes by Meta-

core (Nikolsky et al., 2005) revealed upregulation of G1-S growth

factor regulation, anti-apoptosis, and epithelial-to-mesenchymal

transition (EMT) pathways in resistant compared with parental

cells, whereas G2-M, mitosis, and ubiquitin-proteasomal prote-

olysis were downregulated (Figure S1I; Table S2). Cell cycle-

related pathwayswere downregulated by JQ1 in parental but up-

regulated in BBDI-resistant cells. Reverse-phase protein array

(RPPA) (Tibes et al., 2006) analysis revealed 12 clusters that

showed differences because of JQ1 treatment or BBDI resis-

tance (Figure S2A; Table S3), with altered proteins enriched in

several oncogenic pathways, including NOTCH, WNT, and

JAK-STAT signaling (Figure S2B). Specifically, c-MYC,

epidermal growth factor receptor (EGFR), and phospho-EGFR,

JAK2, and STAT3pT705 were elevated in SUM149R cells; YAP

had increased expression and phosphorylation (S127) in

SUM159R cells; and BCL2, cyclin D1, AXL, BRD4, HER2,

STAT5A, and c-MET had higher levels in both BBDI-resistant

lines (Figure S2C). Cluster 8, composed of cell cycle-related pro-

teins, was downregulated by JQ1 in parental but not in BBDI-

resistant cells (Figure 1D). The average expression of all cell cy-

cle proteins based on RPPA showed a similar trend (Figure S2D),

indicating that JQ1 has the most pronounced effects on the cell

cycle compared with other cellular programs. These gene

expression and protein changes are consistent with our CRISPR

screen data showing that deletion of positive regulators of G1-S

progression (e.g., CCND1 and CDK4) sensitizes cells to JQ1,

whereas deletion of negative regulators (e.g., RB1 andCDKN1A)

increases JQ1 resistance. The expression levels of several

CRISPR screen hits were also differentially regulated in parental

and resistant cells with or without JQ1 treatment, including

CDK4 and BRD2 (Figures S2A–S2F). Similarly, the YAP-TAZ

pathway, which is specifically upregulated in SUM159R cells,

based on RNA sequencing (RNA-seq) and RPPA data, was

essential only in SUM159R cells (Tables S1, S2, and S3). These

results suggest that JQ1 has the most pronounced effects on

signaling pathways and cell cycle proteins regulating G1-S

transition.

To characterize BRD4-associated chromatin complexes, we

performed rapid immunoprecipitation mass spectrometry of

endogenous proteins (RIME) and quantitative multiplexed

RIME (qPLEX-RIME) (Mohammed et al., 2013; Papachristou

et al., 2018) in parental and BBDI-resistant cells in the presence

and absence of JQ1. We found that JQ1 disrupted BRD4’s inter-

action with Mediator proteins and epigenetic regulators in both

parental cells, whereas there was less change in BBDI-resistant
Figure 1. CRISPR Screen Results and Molecular Profiles

(A) Top hit genes in the CRISPR screen revealed by comparing untreated with

Significant resistance and synthetic lethal hits (p < 0.001) are marked in red and

(B) Comparison of CRISPR screen hits between the indicted cell lines. Genes wi

(C) Top process networks enriched in CRISPR screen hits.

(D) Heatmap of cluster 8 in RPPA data representing proteins downregulated afte

(E) Heatmap of BRD4 RIME data in SUM149 and SUM149R cells with or without

(F) Heatmap of significant resistant (red) and synthetic lethal (blue) CRISPR scr

SUM149R cells in JQ1 compared with DMSO and in SUM149R compared with S

(G) Dose-response curves of JQ1 of scramble or gene-specific sgRNA-expressin

the statistical significance of differences compared with scramble sgRNA based

See also Figures S1–S3 and Tables S1, S2, and S3.
cells (Figures 1E and S2G; Table S3).Many of the BRD4-interact-

ing proteins we identified are also part of the BRD4 interactome

in other cell types, implying a general role in BRD4 function

(Lambert et al., 2019). CK2 and STAT3 showed increased bind-

ingwith BRD4 in SUM149R cells (Figure 1E), whichwe confirmed

for STAT3 by co-immunoprecipitation (Figure S2H). On the other

hand, enzymes involved in ubiquitination (CUL3 and SPOP)

showed the opposite trend (Figure 1E). Analysis of process net-

works enriched in differentially bound proteins identified the RNA

polymerase II (RNA Pol II) complex as most significantly

decreased by JQ1 in parental cells, whereas mRNA processing

was the most significantly increased pathway in resistant cells

after JQ1 (Figure S2I). The RNA Pol II pathway and chromatin

modification complex were the top upregulated process net-

works in SUM149R comparedwith SUM149 cells, whereas cyto-

skeleton rearrangement andmitosis were the top downregulated

ones (Figure S2I). Several BRD4-associated proteins were top

CRISPR screen hits, including the bromodomain proteins

BRD2, ZMYND8, EP300, as well as BRD4 modifiers such as

CSNK2B and CUL3 (Figures 1F and S2J).

In summary, our multi-omics profiling of differences between

BBDI-sensitive and -resistant cells before and after JQ1 provide

a strong mechanistic explanation for many of the hits we identi-

fied in our CRISPR screen.

Validation of CRISPR Screen Hits
In our CRISPR screen, positive and negative regulators of G1-S

progression were among the top synergistic and resistance hits,

respectively, and RNA-seq and RPPA analyses demonstrated

that JQ1 has the most pronounced effects on the cell cycle.

Because our ultimate goal is to test BBDI combination therapies

in the clinic, and CDK4/6 inhibitors are already approved for

treatment of ER+ breast cancer (Abraham et al., 2018), we

selected CDK4 for further validation. Similarly, we decided to

further characterize BRD2 and BRD7 because they were top

CRISPR synergy and resistance hits, respectively, and are impli-

cated in JQ1 response based on gene expression and prote-

omics changes. The read counts of multiple sgRNAs targeting

CDK4 and BRD2 displayed specific depletion after JQ1 in

SUM159R and SUM149R cells, whereas BRD7 sgRNAs showed

uniform positive selection in SUM159 cells (Figure S3A).

To further validate the relationships between JQ1 treatment

and CDK4, BRD2, and BRD7, we generated single-cell clones

of SUM159 and SUM159R cells expressing individual sgRNAs

targetingCDK4 andBRD2 as well as SUM159 clones expressing

BRD7 sgRNAs (Figure S3B). SUM159 and SUM159R single-cell
JQ1-treated cells. Genes are ranked by log10(p values) defined by MAGeCK.

blue, respectively.

th p < 0.001 defined by MAGeCK in both cell lines are shown.

r JQ1 treatment in parental but not in BBDI-resistant cells.

3-h JQ1 treatment at the indicated doses.

een hits and their BRD4 binding changes, revealed by RIME in SUM149 and

UM149 cells.

g single-cell clones derived from the indicated cell lines. The p values indicate

on unpaired t tests. Data are represented as mean ± SEM.
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clones with BRD2 or CDK4 deletion displayed increased sensi-

tivity to JQ1 compared with scrambled sgRNA-expressing

clones (Figures 1G and S3C). In contrast, SUM159-derived

BRD7 knockout clones were more resistant to JQ1 than clones

expressing scrambled controls (Figures 1G and S3C). Overex-

pression of doxycycline-inducible CDK4 rescued the decreased

viability ofCDK4 knockout clones after JQ1 treatment, validating

it as an on-target effect (Figures S3D and S3E).

Small-Molecule Inhibitor (SMI) Screen
To identify therapeutic compounds to overcome BBDI resis-

tance, we performed a cellular viability screen in parental and

resistant cells, using two SMI libraries targeting a range of path-

ways (Figure S3F; Table S4). We confirmed the resistance of

SUM159R and SUM149R cells to JQ1 and to other BBDIs (Fig-

ures 2A–2D and S3G). To identify potentially synergistic com-

pounds, we identified drugs to which the BBDI-resistant lines

were more sensitive than the parental lines (Figure S3H). In

SUM149R cells, top hits included DNA damage-inducing agents

(topoisomerase, DNA synthesis, and microtubule), cell cycle

(CDK4/6, PLK, and AURK), histone deacetylase (HDAC), and

HSP90 inhibitors (Figures 2A and 2B). Several cell cycle inhibi-

tors targeting CDK4/6, AURK, and PLK especially effectively in-

hibited growth of SUM149R compared with SUM149 cells (Fig-

ure 2A). For several selected hits, we confirmed synergy with

JQ1 in SUM149R cells (Figure S3I) and inhibition of their target

(Figure S3J). Signaling pathways were most frequent among

the top hits in SUM159R cells, including EGFR, MEK, and phos-

phatidylinositol 3-kinase (PI3K), as well as transforming growth

factor b (TGF-b) and endocrine inhibitors (Figures 2C and 2D),

which is consistent with our RPPA and RNA-seq data demon-

strating upregulation of these pathways in resistant cells (Figures

S1I and S2A–S2F). BCL2 inhibitors were hits in SUM149R and

SUM159R cells (Figures 2A and 2C), consistent with our previous

findings that upregulation of anti-apoptotic factors contributes to

JQ1 resistance (Shu et al., 2016). Topoisomerase inhibitors were

hits for SUM159R and SUM149R cells (Figures 2A and 2C),

which may reflect sensitivity to DNA damage and transcription,

which we also found in our CRISPR screen (Figures 1C and

S1D). Furthermore, both BBDI-resistant lines had increased

sensitivity to inhibitors of CDK9, a component of the P-TEFb

complex with BBD proteins, as well as the non-specific CDK in-

hibitor AT7519, and SUM149R cells were also more sensitive to

the CDK4/6-specific inhibitor palbociclib (Figures 2E and 2F).

These findings are in line with our CRISPR and molecular

profiling data indicating that G1-S cell cycle progression and

transcriptional activators becomemore essential in cells with ac-

quired BBDI resistance. The identification of the same genes and

pathways usingmultiple independent unbiasedmethods and the

integration of these findings with molecular profiles highlight the

robustness of the data and the advantage of using such a com-

bined approach.

Combination Treatments In Vitro and In Vivo

To further validate synthetic lethal targets identified in our

CRISPR knockout and SMI screens, we performed synergy

screens in SUM149, SUM149R, SUM159, and SUM159R cells.

We prioritized US Food andDrug Administration (FDA)-approved
1100 Molecular Cell 78, 1096–1113, June 18, 2020
drugs to facilitate clinical translatability of our results. We found

that, in general, most of these drugs were more synergistic in the

resistant compared with the parental lines, in which they were

additive or antagonistic. Several DNA-damaging agents (e.g.,

doxorubicin) andmicrotubule inhibitors (e.g., vincristine) showed

significant synergy with JQ1 in SUM149R cells, whereas the ki-

nase inhibitor dasatinib and the YAP-TAZ inhibitor verteporfin

were synergistic in SUM159R cells (Figure 3A; Table S4). Pacli-

taxel, a microtubule inhibitor, and TP0903, an AXL kinase inhib-

itor, were synergistic in both BBDI-resistant lines (Figure 3A).

Notably, palbociclib had the most significant synergy in all

parental and resistant cell lines as well as in several other

TNBC cell lines, and this was independent of RB1 mutation sta-

tus (Figures 3A and S4A).

To validate these in vitro synergy results in vivo, we tested the

sensitivity of SUM149R and SUM159R and a patient-derived

xenograft (PDX; IDC50) to selected combinations. JAK2

(INC424) and BCL2 and BCL-XL (ABT-263 and ABT-199) inhibi-

tors significantly decreased tumor weight even as single agents

in SUM159R xenografts, whereas combination of all of these

agents with JQ1 resulted in significantly smaller tumors in

SUM149R and SUM159R xenografts (Figure 3B). The partial

JQ1 responsiveness of JQ1-treated SUM159R xenograft re-

flects the heterogeneity of this cell line. Hematoxylin and eosin

(H&E)-stained slides and caspase-3 immunofluorescence

demonstrated an increase in apoptosis in combination treat-

ments (Figures 3C, S4B, and S4C). We also detected amore sig-

nificant decrease in phospho-STAT3 positivity with JQ1+INC424

treatment (Figure S4D). Similarly, palbociclib and JQ1 combina-

tion significantly decreased the growth and final tumor weight of

SUM159R and IDC50 xenografts with a concomitant decrease in

phospho-RB positive cells (Figures 3D and S4E–S4G). In the

IDC50 PDX, we even observed slight regression with the combi-

nation despite the short treatment because of the extremely fast

growth of this tumor.

To explore themechanismof synergy between palbociclib and

JQ1, we analyzed the protein levels and activity of key regulators

of G1-S progression as well as BRD2, BRD4, and BRD7 by im-

munoblots in SUM149R and SUM159R cells. JQ1 treatment

increased BRD2 and CCND1 and RB phosphorylation, whereas

palbociclib decreased BRD2, BRD4, E2F1, and RB phosphory-

lation in a dose- and time-dependent manner, more markedly

in SUM159R than in SUM159 and SUM149R cells (Figures 3E

and S4H). These findings suggest that palbociclib can enhance

sensitivity to JQ1 via multiple mechanisms, including CDK4

inhibition-mediated G1 arrest, as well as by enhancing

proteasomal degradation of BRD2 and BRD4, potentially

through CDK4-regulated ubiquitination in an RB-independent

manner (Jin et al., 2018).

Targeted BET Protein Degradation Overcomes BBDI
Resistance
Because BBDI-resistant cells are still dependent on BRD2 and

BRD4 (Shu et al., 2016) and modulating BBD protein levels is

one of the most effective ways to modulate JQ1 sensitivity,

based on our CRISPR screen and multi-omics data, we tested

whether targeted degradation of BBD proteins would overcome

BBDI resistance. We recently developed a highly potent and



Figure 2. Small-Molecule Screen in BBI-Resistant TNBC Cells

(A–D) Differences in drug sensitivities between SUM149R and SUM149 (A and B) and between SUM159R and SUM159 cells (C and D), grouped by pathways

targeted by drugs in the library (A and C) and ordered by percent differences in area under the curve (AUC) (B and D). Common targets of top hits are indicated (A

and C), and individual dose-response curves of top hits are shown (B and D). The p values indicate the statistical significance of differences. Data are represented

as mean ± SD.

(E and F) Differences in sensitivities of drugs targeting the cell cycle, grouped by target, in SUM149R/SUM149 (E) and SUM159R/SUM159 cells (F).

See also Figure S3 and Table S4.
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selective small-molecule degrader, dBET6, with improved

cellular permeability and improved efficacy (Winter et al., 2015,

2017). dBET6 is a bifunctional molecule consisting of JQ1 ap-

pended to phthalimide conjugates via a longer linker compared

with dBET1 (Figure S4I). We first tested the effect of these

BBD degraders on cellular viability in a panel of TNBC lines

and confirmed the highest efficacy of dBET6 (Figure 4A). Both

the SUM149R and SUM159R lines were significantly more sen-

sitive to dBET6 compared with JQ1 (Figure 4B). dBET6 potently

degraded BRD2, BRD3, and BRD4 in a dose-dependent manner

in parental and BBDI-resistant cells (Figures 4C and S4J).

Consistent with degradation of BRD4 protein, we observed

global loss of BRD4 from chromatin in SUM149R cells (Figures

4D and 4E), accompanied by a decrease in mRNA levels across

themajority of active genes (Figures 4F and S4K) and a decrease

in RNA Pol II phosphorylation (Figure S4J). Thus, dBET6 treat-

ment results in rapid degradation of BRD4-bound chromatin,

which, in turn, causes a global reduction in active gene transcrip-

tion mediated in part by loss of initiating and elongated RNA

Pol II.

To further investigate dBET6 efficacy in vivo, we treated

SUM149R and SUM159R xenografts with JQ1 or dBET6.

Although dBET6 more efficiently decreased tumor weight

compared with JQ1, with a concomitant decrease in BRD4 pro-

tein levels (Figures 4G, S4L, and S4M), we had to discontinue the

experiment after 10 days of treatment because significant

toxicity. A lower dose (7.5 mg/kg) of dBET6 still significantly

decreased tumor weight in SUM149R xenografts (Figure 4H).

These data show that BBD protein degradation overcomes

BBDI resistance in the SUM149R and SUM159R cell lines in

cell culture and in vivo.

The Effect of Functional Differences between
Bromodomain Proteins on BBDI Response and
Resistance
To investigate whether identification of BRD2 and BRD7 as top

synthetic lethal and resistance hits, respectively, in our CRISPR

screen is due to differences in chromatin binding and the sensi-

tivity of this to JQ1, we performed chromatin immunoprecipita-

tion sequencing (ChIP-seq) for BRD2, BRD4, BRD7, and

H3K27ac (histone H3 lysine 27 acetyl) as well as assay for trans-

posase-accessible chromatin using sequencing (ATAC-seq) in

the presence and absence of JQ1. We found that BRD4,

BRD2, and H3K27ac bind to the same promoters and enhancers

in SUM159 and SUM149 cells (Figures 5A and S5A). Although

BRD4 and BRD2 binding was decreased after JQ1 treatment
Figure 3. Validation of Synthetic Lethal Interactions with JQ1

(A) Synergy studies of JQ1 with various inhibitors in cell culture. Points represent

The diagonal line signifies drug additivity. Points above and below the line repre

(B) Plots show xenograft weights after treatment with JQ1 (50 mg/kg daily) and

significance of differences compared with vehicle based on unpaired t test. Data

(C) Immunofluorescence analysis of cleaved caspase-3 in SUM159R xenografts

(D) Plots show xenograft weights after treatment with JQ1 (30 mg/kg daily) an

significance of differences compared with vehicle based on unpaired t test. Data

(E) Immunoblot analysis of the indicated proteins in SUM149R and SUM159R ce

for 12 h.

See also Figure S4.
(Figures 5B and S5B), and this was highly correlated in promoter

and enhancer regions (Figures 5C and S5C), the decrease was

more significant for BRD4 than BRD2. This finding indicates

that BRD2 is less efficiently dissociated from chromatin by JQ1

than BRD4, potentially explaining why BRD2 was a top synergy

hit in our CRISPR screen whereas BRD4 was not. We observed

an increase of BRD4 and BRD2 binding in the same promoter

and enhancer regions in SUM159R cells compared with parental

cells (Figures 5B, 5C, S7B, and S7C). Recent reports described

that, in hematopoietic cells, BRD2, but not BRD4, colocalizes

with CTCF and enhances its insulator function (Cheung et al.,

2017; Hsu et al., 2017). However, in TNBC cells, we found that

CTCF binding was correlated with all proteins analyzed (BRD2,

BRD4, and BRD7) (Figure S5D). We then investigated the effects

of these binding changes on transcription and found that alter-

ations in BRD4 binding were associated with gene expression

changes, especially at SE loci (Figures 5D and S5E), including

SEs near BRD2 and CCND1 (Figures 5E and S5F).

BRD7 binding was detected at the same regions as BRD4 and

BRD2; however, BRD7 binding increased after JQ1 treatment at

the same loci where the BRD4 and BRD2 signal decreased in

SUM159 cells, whereas it decreased in SUM159R cells (Figures

5B and 5C). This anti-correlation between - BRD2, BRD4, and

BRD7 chromatin binding after JQ1 treatment explains our

CRISPR screen data, which identified BRD2 and BRD7 as syn-

thetic lethal and resistance hits, respectively, in SUM159 cells.

To investigate the effect of BRD7 deletion on the chromatin

landscape and gene expression patterns, we performed

ATAC-seq and RNA-seq, respectively, in BRD7 knockout (KO)

cells. Intriguingly, the transcriptomic profile of BRD7 KO cells

was highly similar to that of SUM159R cells at the gene and

pathway levels and under DMSO and JQ1 treatment conditions

(Figures 5F, 5G, S5G, and S5H; Table S5). Top enriched process

networks included NOTCH, ESR1, and Hh signaling. We also

calculated luminal-basal-mesenchymal signature scores of

wild-type (WT) and BRD7 KO cells because our prior data indi-

cated that BBDI resistance is associated with gain of luminal fea-

tures (Shu et al., 2016).BRD7KOcells had increased luminal and

decreased mesenchymal scores (Figure S7I), suggesting that

deleting BRD7 may shift the cells to a more luminal phenotype

associated with BBDI resistance.

ATAC-seq demonstrated gain and loss in promoter regions in

BRD7 KO cells compared with the WT (Figure 5H), and these al-

terations in open chromatin were correlated with gene expres-

sion changes (Figures 5I and S5J). Comparison of ATAC-seq

profiles of BRD7 KO and WT clones as well as parental
paired values of drug concentrations assessed for synergism (STAR Methods).

sent antagonistic and synergistic drug combinations, respectively.

other drugs alone and in combination. The p values indicate the statistical

are represented as mean ± SD.

after single and combination treatments. Scale bars represent 50 mm.

d palbociclib, alone and in combination. The p values indicate the statistical

are represented as mean ± SD.

lls treated with the indicated doses of JQ1, palbociclib, and their combination
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Figure 4. Targeted BET Degradation in TNBC

(A) Heatmap of sensitivities to JQ1 and dBET series by surrogate levels of ATP content. Results of 10-point dose response curves after 72 h of treatment are

represented by AUC.

(B) Dose-response curves (left) and growth curves (right) of JQ1 and dBET6 at the indicated concentrations in SUM149R and SUM159R cells. The p values

indicate the statistical significance of differences compared with DMSO. Data are represented as mean ± SD.

(C) Immunoblot analysis of BRD2, BRD3, and BRD4 levels after 4 h of treatment with JQ1 and dBET6 in SUM159, SUM159R, and SUM149R cells.

(D) ChIP-seq tracks of BRD4 levels on chromosome 20 in SUM149R cells. The top track (black) shows the basal resistance state in the presence of 10 mM JQ1,

and the bottom track (red) shows 2 h of treatment with 250 nM dBET6.

(E) Boxplot of the global levels of chromatin-bound BRD4 after treatment with 10 mM of JQ1 and 250 nM dBET6 for 2 h. RPM, reads per million.

(F) Expression levels of all active genes ranked by their expression after treatment with JQ1 for 2 h (left) and dBET6 for 6 h (right).

(G) Immunofluorescence analysis of BRD4 in SUM149R andSUM159R xenografts treatedwith JQ1 (50mg/kg daily) or dBET6 (7.5mg/kg once - qd or twice daily -

bid). Scale bars represent 50 mm.

(H) Tumor weights of SUM149R xenografts following 2 weeks of treatment with JQ1 or dBET6. The p value indicates the statistical significance of difference

compared with vehicle based on a unpaired t test. Data are represented as mean ± SD.

See also Figure S4.
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SUM159 and BBDI-resistant SUM159R cells demonstrated

higher relatedness of BRD7 KO clones to SUM159R cells,

whereas parental SUM159 cells clustered with scrambled con-

trols (Figure S5K). These results indicate that deletion of BRD7

changed the chromatin landscape of SUM159 cells, making

them more similar to BBDI-resistant SUM159R cells. Analysis

of ATAC-seq peaks gained in BRD7 KO cells and associated

with increased gene expression revealed significant overlap

with YAP1 peaks in the CISTROME database and enrichment

in the TEAD motif, suggesting upregulation of YAP1-TEAD tran-

scriptional activity (Figure S5L). Interestingly, our RNA-seq and

RPPA analyses as well as our CRISPR screen also identified

the YAP-TAZ pathway as upregulated and essential in

SUM159R cells, highlighting a role of this pathway in BBDI

resistance.

The Effect of BRD7 Loss on BRD4 Chromatin Binding
and Histone Modification Patterns
To further investigate the role of BRD7 in BRD4 chromatin bind-

ing and histone modification patterns, we performed ChIP-seq

for BRD4, H3K27ac, H3K4me3, and H3K27me3 in SUM159

BRD7 WT and KO cells. Combined analysis of the multi-omics

data revealed a positive correlation between changes in BRD4

binding and changes in ATAC-seq, RNA-seq, H3K4me3, and

H3K27ac following BRD7 deletion at SEs and, less pro-

nouncedly, at promoters (Figure S6A). Assessing changes in

BRD4 binding at genomic loci also bound by BRD7 in WT cells

showed that changes in BRD4 binding were associated with

changes in the same direction in H3K27ac, H3K4me3, ATAC-

seq signal, and mRNA levels (Figure S6B).

To gauge changes in the SE landscape in BRD7 KO cells

and the similarities of this to JQ1-resistant SUM159R cells,

we analyzed differences in H3K27ac signal in SEs between

BRD7 WT and KO and SUM159 and SUM159R cells. Interest-

ingly, many of the SEs gained in SUM159R cells were also

gained in BRD7 KO cells, including BCL2L1 (Figures 6A and

6B). We further analyzed the changes in H3K27ac signal in

BRD7 KO cells in relation to BRD4 genomic binding at SEs

and promoters. In both regions, the most significant

H3K27ac increase in BRD7 KO cells occurred at loci bound

by BRD4 in a JQ1-dependent manner in SUM159 and

SUM159R cells (Figures 6C and S6C). These changes in
Figure 5. BRD4, BRD2, and BRD7 Binding Changes and Their Effects o

(A) ChIP-seq binding enrichment of BRD4, BRD2, BRD7, and H3K27ac in promo

(B) BRD4, BRD2, and BRD7 ChIP-seq binding changes between JQ1-treated (+

(SUM159R) and parental cells. The outer violin indicates the entire distribution, th

the median and mean, respectively.

(C) Pairwise correlations of BRD4, BRD2, and BRD7 ChIP-seq binding changes

(D) Correlations of BRD4 binding changes in promoter, enhancer, and SE region

(E) Gene tracks depicting BRD4, BRD2, and BRD7 signals at the BRD2 locus.

(F) Gene set enrichment analysis (GSEA) depicting the relationship between expre

value was obtained from GSEA.

(G) Top process networks enriched in differentially expressed genes between JQ

between JQ1-treated SUM159R and SUM159 cells.

(H) Gene tracks depicting ATAC-seq signals at selected genomic loci in SUM159

(I) Association between ATAC-seq binding changes and gene expression changes

cells. Wilcoxon rank-sum test p value is shown.

See also Figure S5 and Table S5.

1106 Molecular Cell 78, 1096–1113, June 18, 2020
H3K27ac were also correlated with changes in ATAC-seq

signal and expression of the associated genes. Specifically,

the top 1,000 JQ1-sensitive BRD4 binding sites and the top

1,000 downregulated genes by JQ1 showed the most pro-

nounced changes in H3K27ac, H3K4me3, and ATAC-seq

signal in BRD7 KO compared with BRD7 WT cells (Figures

6D and 6E); we found that the former demonstrated signifi-

cantly larger changes in these markers compared with the

latter, suggesting that changes in chromatin modifications

are more pronounced than gene expression changes. These

data indicate that loss of BRD7 does not significantly affect

BRD4 chromatin binding but increases H3K27ac and

H3K4me3 signals in BRD4-dissociated regions by JQ1 and in-

creases the expression of genes downregulated by JQ1 in

SUM159 cells. Thus, these alterations in H3K27ac and gene

expression profiles make BRD7 KO cells resistant to JQ1.

Clinical Significance of BRD4 and BRD7 Expression
in TNBC
To investigate the clinical relevance of BRD4 and BRD7 interac-

tion in breast cancer, we analyzed their expression patterns in

the TCGA cohort (Cancer Genome Atlas Network, 2012). BRD4

and BRD7 have significantly higher expression in basal

compared with luminal breast tumors, which is in contrast to

ARID1A, a subunit of the BAF complex implicated in luminal dif-

ferentiation (Nagarajan et al., 2020; Xu et al., 2020; Figure S6D).

Even within TNBC, the highest BRD4 and BRD7 expression was

observedwithin basal subtype tumors (Figure S6E), implying that

BRD4 and BRD7 function may be particularly relevant in non-

luminal breast tumors. Further analysis demonstrated that

TNBC patients with lower expression of BRD4 or BRD7 had

shorter disease-free survival, and this was especially the case

when both genes had low expression levels (Figure S6F).

BRD7 expression levels were also associated with expression

of the JQ1 resistance gene signature derived from our cell line

data; low-BRD7-expressing tumors have a high JQ1 resistance

score (Figure S6G), validating the relevance of our data in human

breast tumor samples.

Single-Cell Profiling of BBDI-Resistant Cells
We recently described that higher cellular transcriptomic hetero-

geneity is associated with therapeutic resistance and that
n JQ1 Treatment

ter and enhancer regions in SUM159 cells.

JQ1) and untreated (�JQ1) SUM159 cells and between JQ1-treated resistant

e inner violin (white) indicates the interquartile range, and ‘‘.’’ and ‘‘+’’ indicate

in promoter and enhancer regions.

s and their gene expression changes.

ssion of genes in JQ1-treatedBRD7KO cells and JQ1-treated resistant cells. p-

1-treated BRD7 wild-type (WT) and BRD7 knockout (KO) SUM159 cells and

BRD7 WT and KO cells.

in two JQ1-treatedBRD7 KO clones compared with JQ1-treatedWT SUM159



Figure 6. The Effects of BRD7 Deletion on BRD4 Binding and Histone Modification Patterns

(A) Changes in SEs upon BRD7 KO and between JQ1-sensitive and -resistant SUM159 cells. Red indicates co-activated super-enhancers; blue represents co-

repressed super-enhancers. Purple indicates discrepant regulated super-enhancers.

(B) Example of a differential H3K27ac signal in a SE region. Normalized H3K27ac ChIP-seq signals (reads per million) are shown as tracks using Integrative

Genomics Viewer.

(C) Line plot showing smoothed signals of BRD4, H3K27ac, H3K27me3, and H3K4me3 ChIP-seq and ATAC-seq in BRD7 KO and scramble SUM159 cells at SEs

and comparison with BRD4 ChIP-seq signals in DMSO-treated, JQ1-treated, and JQ1-resistant SUM159 cells (bottom two tracks). SEs are ranked by the fold

change of BRD4 signal between ± JQ1 from high (left) to low (right).

(D) Changes in BRD4, H3K27ac, H3K27me3, H3K4me3, and ATAC-seq signals at the top 1,000 BRD4 binding sites sensitive to JQ1 in SUM159 cells (red) and at

the top 1,000 genes downregulated by JQ1 in SUM159 cells (blue). ChIP-seq signals on peak summit ± 10-kb region. Wilcoxon rank-sum test p values are shown.

(E) Changes in mRNA levels at BRD4 peaks differential between BRD7 KO andWT cells at the top 1,000 BRD4 binding sites sensitive to JQ1 in SUM159 cells (red)

and at the top 1,000 genes downregulated by JQ1 in SUM159 cells (blue). Wilcoxon rank-sum test p value is shown.

See also Figures S6.
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epigenetic regulators modulate this heterogeneity (Hinohara

et al., 2018). To assess whether cellular transcriptomic heteroge-

neity also plays a role in BBDI resistance and whether it is modu-

lated by JQ1, we performed single-cell RNA-seq (scRNA-seq)

profiling of parental and BBDI-resistant cells before and after

JQ1 treatment. Untreated and JQ1-treated cells formed distinct

clusters in all four lines tested, indicating that JQ1 significantly
alters cellular transcriptomes (Figures 7A and S7A). Similarly,

BBDI-resistant and parental cells separated very clearly, and

BBDI-resistant cell cluster-specific genes included several

CRISPR screen hits, such as CDK4, CCND1, and BCL2L1 (Fig-

ures 7A and S7A). Although both parental cell lines and

SUM149R cells formed a single cell cluster, SUM159R cells split

into two groups under untreated and JQ1-treated conditions
Molecular Cell 78, 1096–1113, June 18, 2020 1107
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(Figure 7B). These two subgroups did not appear to be prolifer-

ation-related, based on the expression of cell-cycle-related

genes (Figure S7B), but cluster-specific genes showed enrich-

ment in translation-related functional categories (Figure 7C).

Because our prior data indicated that luminal breast cancer cells

in general are less sensitive to BBDIs than basal and mesen-

chymal ones (Shu et al., 2016), we also quantified basal, luminal,

and mesenchymal signature scores for each single cell. We

observed that SUM159R cells had higher luminal scores

compared with SUM159 cells and that this pattern was further

increased by JQ1 (Figure S7C), confirming that gain of luminal

features is associated with BBDI resistance. The SUM159R sub-

clusters did not show significant differences in luminal-basal

signature scores besides the lower mesenchymal and higher

luminal scores observed after JQ1 treatment (Figure S7C). How-

ever, analysis of the chromosomal location of cluster-defining

genes demonstrated that �30% of genes specific for clusters

8 and 9 are localized to chromosome 11 (many on 11q), in

contrast to 10%–17% in clusters 2 and 5 (Table S6), suggesting

that cells in clusters 8 and 9 may have gain of this chromosomal

region. CCND1 and YAP1 are located on chromosome 11q, and

they are cluster 8 and 9 marker genes, highlighting their role in

BBDI resistance.

We also performed single-cell ATAC-seq (scATAC-seq) to

assess potential cellular epigenetic heterogeneity, which could

underlie clustering of the cells, based on scRNA-seq. Pooled

scATAC-seq correlated very well with ATAC-seq on bulk cell

populations, confirming the quality of the data (Figure S7D).

Interestingly, the cell lines clustered differently based on scA-

TAC-seq compared with scRNA-seq. Control and JQ1-treated

SUM159R cells formed one large cluster without clear separa-

tion of the two treatment conditions (Figure 7D). In contrast,

JQ1-treated SUM159 cells were clearly distinct from DMSO-

treated controls. These data demonstrate that SUM159R cells

are epigenetically distinct from SUM159 cells and that their

epigenetic state is less responsive to JQ1 treatment than that

of SUM159 cells.

To further investigate differences in BBDI resistance mecha-

nisms between the two cell lines and the heterogeneity of

SUM159R cells, we explored our scRNA-seq data to determine

whether we could detect rare cells with gene expression signa-

tures of BBDI-resistant cells prior to treatment and whether the

gene expression profiles of BBDI-resistant and BBDI-treated

cells are related. Thus, we selected genes differentially ex-

pressed between parental and BBDI-resistant or JQ1-treated

parental cells based on bulk RNA-seq data (Figure S1I; Table

S2) and investigated whether single cells could be classified
Figure 7. Single-Cell Profiling of Drug-Resistant Cells

(A and B) t-SNE plots depicting single cells by scRNA-seq in populations of JQ

SUM149R and SUM159R cells, colored by cell line and treatment group (A) and

(C) Top process networks enriched in differentially expressed genes between clus

(D) t-SNE plots depicting single cells by scATAC-seq in populations of JQ1-trea

(E) Hexagonal plots depicting bootstrap classification of single cells in populatio

cells. Each point represents a single cell and is positioned along axes according to

and red cells are classified as parental, JQ1-treated, and BBDI-resistant cells, re

(F) Bar graphs show percentages of total barcodes shared among all replicates

(G) Pie charts show percentages of shared barcodes overlapping between untre

See also Figure S7 and Table S6.
into one of these three transcriptionally distinct groups (i.e.,

parental, resistant, and JQ1-treated). Although most single cells

in SUM149R and SUM159R populations were classified as resis-

tant, very few such cells were present in parental and in JQ1-

treated populations (Figure 7E), suggesting that JQ1-resistant

clones were selected from a mixed population during treatment.

Almost all JQ1-treated parental cells had the JQ1 treatment

signature in both cell lines. In contrast, JQ1-treated BBDI-resis-

tant cells showed striking differences in the distribution of

cellular identities between SUM149R and SUM159R cells.

Although only 13% of cells changed their identity to the JQ1-

treated type in the SUM149R cell line, nearly 50% of

SUM159R cells were classified as the JQ1-treated type after

JQ1 treatment (Figure 7E). Although this shift was not directly

associated with the two distinct clusters identified in SUM159R

cells, these observations suggest that SUM159R cells are

more heterogeneous than the SUM149R line, and almost 50%

of the cells still demonstrate a transcriptional response to JQ1

even though the cells continue to proliferate in the presence of

the drug.

To further interrogate mechanisms of BBDI resistance in the

two cell lines, we carried out a cellular barcoding experiment us-

ing the ClonTracer barcode library (Bhang et al., 2015). We

cultured four replicates of barcoded SUM149 and SUM159 cells

with comparable starting barcode representations in the pres-

ence of JQ1 until resistance was achieved to distinguish pre-ex-

isting clones selected during treatment from acquired alter-

ations. We observed very different patterns of barcode

selection between SUM149 and SUM159 cells. JQ1 treatment

significantly reduced barcode complexity in SUM149 cells, and

more than 94% of barcodes were shared by all four replicates

(Figures 7F, 7G, and S7E). These findings strongly suggest that

the vast majority of JQ1-resistant clones were pre-existing in

the parental SUM149 cell population and highly selected for dur-

ing treatment. In contrast, in SUM159 cells, there was minimal

selection during JQ1 treatment because the barcode pool of

the JQ1-resistant population was not significantly different

from DMSO-treated parental cells at the same passage (Figures

7F, 7G, and S7E), suggesting that resistance to JQ1 in SUM159

cells is not likely due to selection for pre-existing resistant cells

but acquired during treatment. These results suggest distinct

patterns of JQ1 response and resistance mechanisms in TNBC.

DISCUSSION

Wepreviously described BBDIs as candidate therapeutic agents

in TNBC and also showed that acquired resistance develops
1-treated and untreated SUM149 and SUM159 parental and BBDI-resistant

by gene expression cluster (B).

ters 6 and 9 (DMSO) and between clusters 2 and 8 (JQ1) within SUM159R cells.

ted and untreated SUM159 parental and BBDI-resistant SUM159R cells.

ns of parental, JQ1-treated, BBDI-resistant, and JQ1-treated BBDI-resistant

its bootstrapping classification score for the indicated cell identity. Black, blue,

spectively, and gray cells are unclassified.

in JQ1-treated SUM149 and SUM159 cells.

ated and JQ1-treated SUM149 and SUM159 cells.

Molecular Cell 78, 1096–1113, June 18, 2020 1109



ll
Resource
quickly, necessitating combination therapies (Shu et al., 2016).

Here we describe a multi-omics profiling and functional

screening approach in TNBC for identification of synthetic lethal

and resistance interactionswith JQ1. The advantage of this com-

bined approach is the high confidence in the data when the same

genes and pathways are identified using multiple different unbi-

ased approaches. We identified several genes and pathways

that make TNBCs more responsive or resistant to JQ1, which

can be grouped into five general functional categories.

The first category encompasses chromatinmodifiers and tran-

scriptional regulators, including BBD proteins that are direct tar-

gets of JQ1 itself. Deletion of BRD2 sensitized parental and

BBDI-resistant cell lines to JQ1. Based on our data, BRD2 and

BRD4 play largely overlapping roles in TNBC, but they differ in

the JQ1 sensitivity of their chromatin binding. Because BRD2

is less efficiently removed from chromatin by JQ1 than BRD4,

and JQ1 induces BRD2 expression, deletion of BRD2 signifi-

cantly synergized with JQ1 treatment. Deletion of genes encod-

ing multiple different Mediator proteins (MED1, MED19, and

MED24) and EP300 also increased sensitivity to JQ1, likely

because of their direct effects on the assembly and recruitment

of transcriptional complexes to active promoters. In contrast,

loss of components of the BAF chromatin remodeling complex

(BRD7, ARID1A, and PBRM1) significantly increased resistance

to JQ1 of parental and BBDI-resistant cells, whereas deletion of

BRD9 increased the JQ1 sensitivity of all four cell lines. Somatic

mutations of ARID1A, CTCF, SMARCA4, and PBRM1 are de-

tected at low (1%–5%) frequencies in treatment-naive breast

cancers, whereas ARID1Amutations are more common in treat-

ment-resistant distant metastases (Zehir et al., 2017) and in

metaplastic breast cancer (Ng et al., 2017). These results

suggest that alterations of the BAF complex may, in general,

be associated with therapeutic resistance and perturbed

differentiation.

The second category comprises regulators of protein stability

and degradation, some of which may regulate the stability of

BRD4 and other BBD proteins. Deletion of ubiquitination-related

genes (e.g., SPOP,UBE2M,CUL3, andUSP14) resulted in resis-

tance to JQ1. SPOP is a regulator of ubiquitination-mediated

degradation of BRD4 and other BBD proteins, and SPOP muta-

tions in prostate cancer have been associated with BBDI resis-

tance (Dai et al., 2017; Janouskova et al., 2017; Zhang et al.,

2017). Our data are consistent with these observations and

further expand the role of these proteins as regulators of BBDI

sensitivity in TNBC.

The third category involves kinase signaling pathways. Dele-

tion of TGFBR1, TGFBR2, PIK3CA, EGFR, and TEAD1 increases

JQ1 responsiveness. Small-molecule inhibitors blocking AXL,

BCR-ABL, EGFR, JAK-STAT, IGFR-1, SRC, VEGFR, MEK,

PIK3-AKT-mTOR, and YAP-TAZ also sensitized cells to JQ1.

The effect of these signaling pathways was not always observed

in all cell lines. However, AXL and TEAD1 were CRISPR synergy

hits in all four cell lines, and they were also validated by SMIs.

Consistent with our findings, a recent study reported that

BRD4 is a mediator of transcriptional addiction to YAP-TAZ in

colorectal cancer and described synthetic lethal interactions be-

tween BRD4 and YAP (Zanconato et al., 2018). Similarly, BBDIs

have been shown to be able to overcome cetuximab resistance
1110 Molecular Cell 78, 1096–1113, June 18, 2020
in head and neck squamous cell carcinoma with activated AXL

(Leonard et al., 2018).

The fourth group of genes and the compounds targeting them

comprises regulators of apoptosis, including BCL2 and BCL2L1

(BCL-XL), which is consistent with our prior data (Shu et al.,

2016). Although we validated the synergy between JQ1 and

BCL2 and BCL-XL inhibitors in vitro and in vivo, the toxicity of

some of these compounds (especially dual BCL2 andBCL-XL in-

hibitors) limits their potential for clinical development.

The fifth and the largest category includes cell cycle regulators

and genes involved in DNA repair. Genetic deletion or pharmaco-

logic inhibition of promoters of G1-S transition, including CDK4,

CDK6, CCND1, SKP2, and CDK2, synergized with JQ1, whereas

inactivation of genes encoding the negative regulators CDKN1A,

CDKN1B, and RB1 had the opposite effect, leading to JQ1 resis-

tance. Multiple mechanisms could explain the synergy between

JQ1 andCDK4 andCDK6 inhibitors. ThemRNA and protein levels

of CDK4, CCND1, and SKP2 are increased after JQ1 treatment in

BBDI-resistant cells, leading to higherCDK4kinase activity. CDK4

also regulates BRD4 protein levels via phosphorylation of SPOP

and DUB3, which play a role in BRD4 ubiquitination and degrada-

tion (Dai et al., 2017; Janouskova et al., 2017; Jin et al., 2018;

Zhang et al., 2017). Our data showing decreased BRD4 after pal-

bociclib treatment imply this regulatory loop in TNBC and could

explain the JQ1 CDK4 inhibition synergy in RB1null cells.

Although the interaction of regulators of G1 phase progression

with JQ1 was largely expected because JQ1 causes G1 arrest

and most transcription occurs in G1, we also identified synthetic

lethal interactions between JQ1 and proteins involved in G2-M

phase. Deletion ofBUB3, inhibitors of PLK1 and AURKA kinases,

and chemotherapeutic agents targeting microtubules, such as

paclitaxel and vincristine, all demonstrated potent synergy with

JQ1 in parental and BBDI-resistant cell lines. Deletion of DNA

repair genes (e.g., BRCA1 and BRCA2) and topoisomerase in-

hibitors sensitize TNBC cells to JQ1. BBDIs suppress DNA

repair, and BET inhibition sensitizes homologous recombina-

tion-proficient tumors to PARP inhibitors (Karakashev et al.,

2017; Yang et al., 2017), suggesting that breast tumors with

BRCA1 or BRCA2 mutations may be particularly sensitive

to BBDIs.

In summary, our data highlight the heterogeneity of cellular re-

sponses and resistance to JQ1 in TNBC and identify several

promising combination therapies with BBDIs that could be

used for the more effective treatment of chemotherapy-resistant

TNBC.
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Institute)
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Target Selective Inhibitor Library Selleckchem L3500

Anti-cancer Compound Library Selleckchem L3000
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Experimental Models: Cell Lines

SUM159 cell line Steve Ethier (University of Michigan) N/A

SUM149 cell line Steve Ethier (University of Michigan) N/A

SUM159R cell line Shu et al., 2016 N/A

SUM149R cell line Shu et al., 2016 N/A

SUM159 cell line, BRD2 KO This paper N/A

SUM159 cell line, BRD7 KO This paper N/A

SUM159 cell line, CDK4 KO This paper N/A

CAL-51 cell line DSMZ ACC 302

CAL-120 cell line DSMZ ACC 459

HCC38 cell line ATCC CRL-2314

HCC3153 cell line Adi Gazdar/LBL Joe Gray N/A

PMC42 cell line R.Whitehead N/A

MDA-MB-436 cell line ATCC HTB-130

MDA-MB-231 cell line ATCC HTB-26
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Oligonucleotides - sgRNA targeting sequences

BRD2-1: CTTCTCATCGTAACTCATG This paper N/A

BRD2-2: CCACGCAAAGACTTGCCTG This paper N/A

BRD7-1: CGGGCAGCTCGGGGCACGA This paper N/A

BRD7-2: CCTACAATGGGATCCACAG This paper N/A

CDK4-1: CCAGAGGATGACTGGCCTC This paper N/A

CDK4-2: CCTCACGAACTGTGCTGAT This paper N/A

Recombinant DNA

CRISPR-V2 Sanjana et al., 2014 Addgene Cat# 52961

Plv(Exp)-Bsd-TRE-CDK4 This paper Vector builder

Deposited Data

All raw genomic data GEO GSE131102

All raw numeric data and image files Mendeley https://doi.org/10.17632/p4ypdxmsk5.1
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Kornelia

Polyak, Dana-Farber Cancer Institute, 450 Brookline Ave., SM1070B, Boston, MA 02215, USA. E-mail: kornelia_polyak@dfci.

harvard.edu; tel: 617-632-2106; fax: 617-582-8490.

Materials Availability
SUM159 cell line derivatives generated by CRISPR-Cas9 (BRD7 KO, CDK4 KO, and BRD2 KO) will be made available upon request

and following the execution of an MTA.

Data and Code Availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the STAR Methods. The accession number

for the genomic data reported in this paper is GEO: GSE131102. This study did not generate custom code. Original data have been

deposited to Mendeley Data: https://doi.org/10.17632/p4ypdxmsk5.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Breast cancer cell lines
Breast cancer cell lines were obtained from ATCC, DSMZ, or generously provided by Steve Ethier (SUM cell lines, University of

Michigan) and cultured following the provider’s recommendations except for SUM cell lines we used SUM medium (1:1 mix of
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DMEME/F12 10% FBS with complete HMEC medium). The identity of the cell lines was confirmed based on STR and exome-seq

analyses. Cells were regularly tested for mycoplasma.

Animal model
For xenograft assays female NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) and NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac) mice at

5-6 weeks of age were purchased from the Jackson Laboratory and Taconic, respectively. Animal experiments were performed

by S.Sh. and by research technicians in the Lurie Family Imaging Center. Animal studies were performed according to protocol

11-023 or by the Lurie Family Imaging Center according to protocol 04-111, approved by the Dana-Farber Cancer Institute Animal

Care and Use Committee. Mice were housed 5 to a cage with ad libitum access to food and water in 20�C ambient temperature,

40%–50% humidity, and 12-hour light/12-hour dark cycle.

CRISPR libraries
We used CRISPR Knock-out H1 and H2 libraries essentially as described (Jeselsohn et al., 2018).

Small molecule inhibitor libraries
The two drug libraries used for the SMI screen were the Target Selective Inhibitor Library (Catalog No.L3500) and the Anti-cancer

Compound Library (Catalog No.L3000). These drug libraries were purchased from Selleck Chemicals and were compiled as previ-

ously described (Harris et al., 2019).

Barcoding and selection for resistant cells
The high-complexity barcode library, ClonTracer, was a kind gift from Frank Stegmeier (Novartis). Barcoding experiments

were performed as previously described (Bhang et al., 2015). Briefly, cells were barcoded by lentiviral infection using

8 mg/ml polybrene. After a 24 h incubation with virus, infected cells were selected with 2 mg/ml puromycin. To ensure

that the majority of cells were labeled with a single bar- code per cell, for lentiviral infection we used a target m.o.i. of

approximately 0.1, corresponding to 10% infectivity after puromycin selection. Infected cell populations were expanded

in culture for the minimal time period to obtain a sufficient number of cells to set up replicate experiments. Barcoded

SUM149 and SUM159 cells were treated with increasing dose of JQ1(200nm, 500nm, 1um, 2um, 5um, and 10uM). The con-

trol groups were treated with 0.1% DMSO. Each group was cultured in quadruplicate. Cells were cultured in SUM medium.

To keep the baseline control population as close as possible to that of the treatment group, each treatment group was

cultured at the same passage as their corresponding control group, because random barcode loss during passaging

has been reported previously. Genomic DNA was extracted from the frozen cell populations with a QIAamp DNA Mini

Kit (QIAGEN). We used PCR to amplify the barcode sequence for NGS by introducing Illumina adaptors and 5-bp-long index

sequences. Uniquely indexed libraries were pooled in equimolar ratios and sequenced on an Illumina NextSeq500 with sin-

gle-end 75 bp reads by the Dana-Farber Cancer Institute Molecular Biology Core Facilities.

METHOD DETAILS

Xenograft assays
Animal experiments were performed by the Lurie Family Imaging Center or by our lab following protocols approved by the

Dana-Farber Cancer Institute Animal Care and Use Committee. For xenograft assays 5–6-weeks old female NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ and NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac) mice were purchased from Jackson Laboratory and Taconic,

respectively. Tumors were induced by bilateral orthotopic mammary fat pad injection of 2 3 106 cells suspended in 50 mL of

culture medium/Matrigel Growth Factor Reduced Basement Membrane Matrix, Phenol Red-Free (Corning) in a 1:1 ratio. After

14 days, mice were randomized to treatment groups based on tumor size. Mice were administered JQ1 (30 mg/kg, weekly),

INC424 (75 mg/kg, daily), ABT-263 (75mg/kg, every other day per dose), ABT-199 (75mg/kg, every other day per dose),

dBET6 (7.5mg/kg, daily or twice per day), palbociclib (75 mg/kg, daily), combination of JQ1 with IN424, ABT-263, ABT-199,

palbociclib, or vehicle only (control) for 14 days. Tumors implanted in mice were imaged using magnetic resonance imaging

(MRI) and by caliper measurement. Mice were euthanized and tumors collected, fixed overnight in 4% formalin, stored in

70% ethanol, followed by paraffin embedding, sectioning, and hematoxylin and eosin staining by the Pathology Core of the

Brigham and Women’s Hospital.

Immunofluorescence staining
After deparaffinization and rehydration, slides were subjected to antigen retrieval in citrate buffer pH 6 (Dako, cleaved caspase 3,

BRD4, and phospho-RB) and in EDTA pH 9 buffer (Dako, pSTAT3) for 20 min in a steamer. Blocking solution (100% goat serum)

was applied for 10-20 min. Incubation with primary antibody in PBS with 5% goat serum was held overnight at 4�C in a moist cham-

ber. Secondary antibody was applied for 1 h at room temperature. Samples were mounted with VectaShield HardSet Antifade

Mounting Medium with DAPI (Vector Laboratories).
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Antibodies and Inhibitors
Antibodies used for ChIP-seq were BRD4 (Bethyl, A301-985A), BRD2 (Cell signaling, 5848), BRD7 (Cell Signaling, 14910), histone

H3K27ac (Abcam, ab4729), histone H3K4me3 (Abcam, ab1012), and histone H3K27me3 (Cell Signaling, 9733). Antibodies used

for immunoblotting were RB (Cell Signaling, 9313), CCND1 (Cell Signaling, 2978), CDK4 (Cell Signaling, 12790), E2F1 (Cell Signaling,

3742), phospho-Rb-Ser780 (Cell Signaling, 3590), phospho-Rb-Ser807/811 (Cell Signaling, 9308). Antibodies used for Immunoflu-

orescence were BRD4 (Bethyl, A301-985A), cleaved Caspas-3 (9664), phospho-Rb-Ser807/811 (Cell Signaling, 8516), and pSTAT3

(Cell Signaling, 9131).

The JAK2 (INC424), Bcl-2 (ABT-199, S8048), and Bcl-xl/Bcl-2 (ABT263, S1001) inhibitors were from Selleckchem. The CDK4/6 in-

hibitor (palbociclib, HY-50767A) was from MedChemExpress. The dBET series (dBET1 - dBET10) was synthesized by Dr. Dennis

Buckley (Dana Farber Cancer Institute). JQ1 was synthesized by Dr. Jun Qi (Dana Farber Cancer Institute).

Small molecule inhibitor (SMI) screens
The two drug libraries used for the SMI screen were the Target Selective Inhibitor Library (Catalog No.L3500) and the Anti-cancer

Compound Library (Catalog No.L3000). These drug libraries were purchased from Selleck Chemicals and were compiled as previ-

ously described (Harris et al., 2019). Parental and BBDI-resistant (R) SUM149 and SUM159 cells were cultured DMEM/F-12 media

(Life Technologies #11330057) with mammary epithelial cell growth medium supplement, 5% FBS and 1% penicillin/streptomycin

until cells were seeded for screening, where RPMI 1640 media (Life Technologies #11875119) with 5% FBS and 1% penicillin/strep-

tomycin was used. Additionally, SUM149R and SUM159R cells were cultured in the presence of 10 mMand 20 mMJQ-1, respectively,

until the cells were seeded for screening, after which JQ-1 was not included in media. For the SMI screen, 500 cells per well for

SUM149/SUM149R cells and 250 cells per well for SUM159/SUM159R were seeded. A Z’ factor for each cell line was determined

using vincristine (1 mM) as a cytotoxic agent (Zhang et al., 1999). The Z’ factor for cell lines were as follows: SUM149 = 0.35;

SUM149R = 0.56; SUM159 = 0.60; SUM159R = 0.38. Cells were seeded in 30 ml and after one day, 100 nL of molecules from the

drug libraries were delivered by pin-transfer and 20 ml of fresh media was added. After 72 hours, plates were harvested and data

was collected as previously described (Harris et al., 2019). All dose-response curves were completed in duplicate. Statistical analysis

of dose-curves was completed in GraphPad Prism 8 (nonlinear regression, variable slope, four parameters, bottom constant equal to

0, top constant equal to 1). LogIC50 values were compared with an extra sum-of-squares F Test.

CRISPR Screen and data analyses
We used CRISPR Knock-out H1 and H2 libraries essentially as described (Jeselsohn et al., 2018). For the pooled genome-wide

CRISPR screen, 200 million SUM149 and SUM159 parental and BBDI-resistant cells were infected with the pooled lentiviral CRISPR

knock-out H1 and H2 library at a multiplicity of infection of 0.3 to ensure that most cells receive only one viral construct with high

probability. After 5 days of puromycin selection, the surviving cells were divided into day 0 control cells and cells cultured for five

passages treated with DMSO or JQ1 (500nM and 1uM for SUM159; 100nM, 200nM, 400nM, 800nM for SUM149; 20uM for

SUM159R; 10uM for SUM149R cells) before genomic DNA extraction and library preparation. The CRISPR screens were also

repeated in SUM159 cells with DMSO or JQ1 treatment (500nM, 1000nM). PCR was performed on genomic DNA to construct the

sequencing library. Each library was sequenced at 30�40million reads to achieve�3003 average coverage over theCRISPR library.

The day 0 sample library of each screen served as controls to identify positively or negatively selected genes or pathways.

Generation of Single CRISPR/Cas9 Knock-Out cells
Construction of lenti-CRISPR/Cas9 vectors targeting BRD2, BRD7, and CDK4was performed following the protocol associated with

the backbone vector lentiCRISPR V2 (Sanjana et al., 2014) (49535, Addgene). The sgRNA sequences used are listed in the Key re-

sources table. SUM159 and SUM159R cells were infected with lentivirus expressing sgRNAs targeting CDK4, BRD2, or BRD7. After

puromycin selection, single cell clones were picked and expanded, and knockout was verified by western blot analyses.

Generation of TET-inducible exogenous CDK4-expressing CDK4 knockout cells
SUM159 cells were infectedwith TET-inducible GFP-CDK4 resistant toCDK4 sgRNA-1 virus. After blasticidin selection, three days of

doxycycline treatment induces the GFP-CDK4 expression. GFP positive cells were sorted by FACS. The SUM159 inducible CDK4

positive cells were infected with CDK4 knockout sgRNA virus for endogenous CDK4 knockout. After puromycin selection, the cells

from single cell cloning were grown and treated with or without doxycycline. CDK4 expression was confirmed by western blot.

Immunoblotting and immunoprecipitation experiments
Cells were lysed in RIPA buffer. Proteins were resolved in SDS-polyacrylamide gels (4%–12%) and transferred to PVDF membranes

by using a Tris-glycine buffer system. Membranes were blocked with 5%milk powder in 0.1% Tween20 in PBS (PBS-T) for 1 hr at

room temperature followed by incubation with primary antibodies at 1:1000 dilution in 2.5% milk PBS-T. For immunoprecipitation,

nuclear extracts were prepared as follow: 10x 106cells were resuspended in 5ml Buffer A: 10mM Tris pH 7.9, 1.5mM MgCl2, 10mM

KCl, 0.05% NP-40, 1mM DTT, and protease and phosphatase inhibitors. Cells were incubated on ice for 15 min and gently vortexed

every 5 min. After centrifugation at 2,000 g for 5 min, pellets were suspended in 0.3 mL buffer B (20mM Tris pH 7.9, 25%

glycerol, 0.42 M NaCl, 1.5mM MgCl2, 1mM KCl, 0.5% NP40, 0.2mM EDTA, 1mM DTT, and protease and phosphatase inhibitors)
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and incubated for 5 min on ice. After centrifugation of the lysates at 14 g for 10 min at 4�C, supernatant was diluted with 0.6 mL buffer

A, and addedNP-40 to final 0.5%and treatedwith DNase I. The samples were then incubated at 4�Covernight with BRD4 antibody at

1:100 dilution and immunoprecipitates were collected on Dynabeads Protein G for 2 hr. Beads were washed with buffer B containing

150mM NaCl and 0.5% NP-40 three times and then resuspended in gel loading buffer.

ChIP-seq
For BRD2 and BRD4 ChIP-Seq, SUM149, SUM159, SUM149R, and SUM159R cells (1x107) were grown in SUMMedium. The media

were then removed and replaced with PBS containing 1% formaldehyde (EM grade; Tebu-bio) and crosslinked for 8 min at 37�C.
Crosslinking was quenched by adding glycine to a final concentration of 0.2 M. For BRD7 ChIP-Seq, SUM159 and SUM159R cells

(8x107) were grown in SUM medium. For BRD4, H3K27ac, H3K4me3, and H3K27me3 ChIP-Seq SUM159 WT and BRD7 KO cells

(1x107) were grown in SUM Medium. The medium was removed and replaced with PBS containing 2mM DSG (disuccinimidyl glu-

tarate, ThermoFisher) and incubated for 30 min at room temperature, then removed and replaced with PBS containing 1% formal-

dehyde (EM grade; Tebu-bio) and crosslinked for 8 minutes at 37�C. Crosslinking was quenched by adding glycine to a final concen-

tration of 0.2 M. The cells were washed with ice-cold PBS, harvested in PBS, and the cell pellet was washed with PBS. The nuclear

fraction was extracted by first resuspending the pellet in 10 mL of LB1 buffer (50mMHEPES-KOH [pH 7.5], 140mMNaCl, 1mMEDTA,

10%glycerol, 0.5%NP-40 or Igepal CA-630, and 0.25%Triton X-100) for 10min at 4�C. Cells were pelleted, resuspended in 10mL of

LB2 buffer (10 mM Tris-HCL [pH 8.0], 200 mM NaCl, 1 mM EDTA, and 0.5 mM EGTA), and mixed for 5 min. Cells were pelleted and

resuspended in 1ml LB3 buffer (10 mM Tris-HCl [pH 7.4], 1 mM EDTA, 0.1%SDS, 1%Triton X-100, 0.1% Na-deoxycholate, 1Mm

DTT, 0.25% N-lauroylsarcosine, protease inhibitors and phosphatase inhibitors) and sonicated in a Covaris sonicator for 10 min.

A total of 30 ml of 5M NaCl was added, and lysate was centrifuged for 10 min at 20,000 rcf. to purify the debris. The supernatant

was then incubated with 50 ml of magnetic beads (Life Technologies) prebound with 20 mg BRD4 antibody (Bethyl, A301-985A),

20 ml BRD2 antibody (Cell signaling, 5848), 40 ml BRD7 antibody (Cell Signaling, 14910) and immunoprecipitation (IP) was conducted

overnight in the cold room. The beads were washed ten times in 1 mL of RIPA buffer and twice in 100mM ammonium hydrogen car-

bonate (AMBIC) solution. DNA was eluted in elution buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, and 1% SDS). Cross-links were

reversed overnight at 65�C. RNA and protein were digested with 0.2 mg/mL RNase A for 2 hr followed by 0.2 mg/mL Proteinase

K for 1 hr. DNA was purified with phenol chloroform extraction and ethanol precipitation. Libraries for Illumina sequencing were pre-

pared following the Rubicon ThruPLEX-FD kit for 10-12 cycles.

RNA-seq
SUM149 and SUM149R were incubated in biological duplicates for 12 hr with 500 nM of JQ1 or DMSO treatment. Total RNA was

extracted using the standard QIAGEN RNeasy kit (74106). RNA concentrations were measured and quality controlled on a Bio-

analyzer, RNA-Seq libraries were made using Illumina True-Seq RNA kits using the Sciclone NGSx workstation.

qPLEX-RIME
Samples were digested and purified with the Ultra-Micro C18 Spin Columns (Harvard Apparatus) as previously described (Papach-

ristou et al., 2018). After purification, each sample was dried and reconstituted in 100ul 0.1M TEAB (triethylammonium bicarbonate)

and labeled with the TMT-10plex reagents (Thermo Fisher). The peptidemixture was fractionatedwith Reversed-Phase spin columns

at high pH (Pierce, #84868) and each fraction was analyzed on a Dionex Ultimate 3000 UHPLC system coupled with the LTQOrbitrap

Velosmass spectrometer (Thermo Scientific). Mobile phase Awas composed of 2% acetonitrile, 0.1% formic acid, 5%dimethyl sulf-

oxide (DMSO) and mobile phase B was composed of 80% acetonitrile, 0.1% formic acid, 5%DMSO. The precursor scans were per-

formed in theOrbitrap in the range of 380-1500m/z at 60K resolution. TheMS2 scanswere performed in the ion trapwith CID collision

energy 30% and in the Orbitrap with HCD collision energy 40% back-to-back for each precursor. The raw data were processed on

Proteome Discoverer 2.1 using the SequestHT search engine. The node for SequestHT included the following settings: Precursor

Mass Tolerance 20ppm, Fragment Mass Tolerance 0.5Da for the CID spectra and 0.05Da for the HCD spectra, Dynamic Modifica-

tions were Oxidation of M (+15.995Da), Deamidation of N/Q (+0.984Da) and Static Modifications were TMT6plex at any N terminus/K

(+229.163Da).

Mass spectrometry analysis of histone modifications
Histones were isolated from cell nuclei using acid extraction, biochemically prepared, and analyzed by mass spectrometry against a

reference of stable isotope-labeled synthetic peptide standards exactly as described (Creech et al., 2015).

DNA methylation
DNA methylation profiling was carried out on Infinium HumanMethylation450K BeadChip arrays (Illumina, discontinued) at the Har-

vard Medical School-Partners HealthCare Center for Genetics and Genomics.

Single cell RNA-Seq
Cells were collected by trypsinization and processed according to the 10xGenomics scRNA-seq sample preparation protocol (Chro-

mium Single Cell 30 v2 Reagent Kit, 10xGenomics). 2,000 cells were targeted for each sample.
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ATAC-Seq
50,000 cells were resuspended in 1mL of cold ATAC-seq resuspension buffer (RSB; 10 mM Tris-HCl pH 7.4, 10 mMNaCl, and 3mM

MgCl2 in water). Cells were centrifuged at max speed for 5 min in a pre-chilled (4 C) fixed-angle centrifuge. After centrifugation su-

pernatant was carefully aspirated. Cell pellets were then resuspended in 50 mL of ATAC-seq RSB containing 0.1% NP40, 0.1%

Tween-20, and 0.01% digitonin by pipetting up and down three times. This cell lysis reaction was incubated on ice for 3 min. After

lysis, 1 mL of ATAC-seq RSB containing 0.1% Tween-20 (without NP40 or digitonin) was added, and the tubes were inverted to mix.

Nuclei were then centrifuged for 5min at max speed in a pre-chilled (4 C) fixed-angle centrifuge. Supernatant was removed and nuclei

were resuspended in 50 mL of transposition mix (reference to OMNI paper) 2.5 mL transposase (100 nM final), 16.5 mL PBS, 0.5 mL 1%

digitonin, 0.5 mL 10% Tween-20, and 5 mL water) by pipetting up and down six times. Transposition reactions were incubated at 37 C

for 30 min in a thermomixer with shaking at 1,000 rpm Reactions were cleaned up with QIAGEN columns. Libraries were amplified as

described previously (Buenrostro et al., 2015).

Single cell ATAC-seq
Cells were collected by trypsinization and cryopreserved in 10% DMSO. Subsequently cells were thawed and nuclei prepared and

transposed according to the OMNI-ATAC protocol (Corces et al., 2017). From that point�2,000 cells were targeted for each sample

and processed according to the 10xGenomics scATAC-seq sample preparation protocol (Chromium Single Cell ATAC Library & Gel

Bead Kit, V1.0 10xGenomics).

Public data analysis
RNA-seqgene expression profile (RSEMcounts) and themajor breast tumor subtypes (Luminal A, Luminal B, Normal, HER2, andBasal)

in the TCGA cohort were obtained from Broad GDAC Firehose database (https://gdac.broadinstitute.org/). The three TNBC subtypes

were defined by using GSVA algorithm and gene expression signatures identified in our lab (B.J., unpublished data). JQ1 resistance

score was defined by using GSVA algorithm on the differentially expressed genes (DEGs) between untreated and JQ1-treated cells.

The intersected DEGs identified in SUM149 and SUM159 were used. Survival analyses were performed by using survminer R package

(https://cran.r-project.org/web/packages/survminer/index.html). Gene co-dependency data were obtained from DepMap portal

(https://depmap.org/portal/). The relationship between CRISPR screen results and gene co-dependency was studied.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software used in this study
cutadapt v1.8.1, bowtie2 v2.3.3, samtools v1.9, picard v1.123,MACS2 v2.1.0.20150731, Tophat2 v2.0.11, HT-seq v0.6.1p1, DEseq2

1.22.2, BWA, GATK, MuTect v1.1.4, ROSE v0.1, Cell Ranger v2.0.2, Seurat v2, MAGeCK v0.5.7

ChIP-seq data analysis
Adaptor sequences of ChIP-seq raw reads are removed by using cutadapt (https://doi.org/10.14806/ej.17.1.200). Trimmed reads are

aligned by bowtie2 using default parameters to version hg19 of human genome. The samtools (Li et al., 2009) and picard (http://

broadinstitute.github.io/picard) are used to sort and remove duplicated reads to avoid PCR bias from the sequencing process.

Peak calling (identification of regions of ChIP-seq enrichment over background) is performed by using MACS2 (Zhang et al.,

2008) with parameters of ‘‘–extsize=146 –nomodel.’’ Enhancers are identified from H3K27ac data in SUM149 and SUM159 by using

ROSE pipeline (Hnisz et al., 2013).

RNA-seq data analysis
Raw RNA-seq reads are aligned to version hg19 of human genome by using Tophat2 (Kim et al., 2013) with the default parameters.

Gene counts are quantified by using HT-seq (Anders et al., 2015) with REFSEQ annotation. Differentially expressed genes are iden-

tified by using DESeq2 (Love et al., 2014) with cutoff of q value < 0.001, ranked by the statistics.

Barcoding data analysis
We followed the method used in Bhang et al. (2015) with small modifications. In details, all sequencing reads are trimmed by using 30

adaptor sequence: AGCAGAGCTACGCACTCTATGCTAGTGCTAGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACTCACGAT

CGTATCTCGTATGCCGTCTTCTGCTTG with minimum alignment length of 40-nt. The trimmed reads with Ns or less than 30-nt or

without the WS x 15 pattern are removed. Then the 30-nt barcode sequences are extracted from the 30 prime end of the trimmed

sequences. Barcodes with an estimated Phred quality score of at least 10 for all nucleotides and with an average Phred quality score

greater than 30 are kept as qualified barcodes. The barcodes with only one count are excluded from the analyses to avoid the noise

derived from the sequencing error.

Drug synergy analysis
Synergy studies were performed in 384-well plates (Corning). SUM159 cells were seeded at a density of 200 cells/well, SUM159R

and SUM149 at a density of 500 cells/well, and SUM149R, CAL-120, CAL-51, HCC38, HCC3153, Hs578-T, MDA-MB-231,
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MDA-MB-436, and PMC42 at a density of 1000 cells/well, in 50 mL of media. The following day, the cells were imaged and counted

using the Celigo Imaging Cytometer (Nexcelom). Drugs were then pin-transferred into the wells from a 500X concentrated drug plate

made in a 384-well plate (Greiner Bio-One) using the JANUS Automated Workstation (Perkin Elmer). Five concentrations for each

drugwere chosen between 20%and 80% inhibition, and half doseswere used for combinations (see Table S5 for list of concentration

of each compound used), with 4 replicate wells for each concentration of each drug alone and 8 replicates of each concentration pair.

After approximately 3 cell doublings (3 days for SUM series, CAL-51, and MDA-MB-231; 4 days for PMC42; 5 days for CAL-120,

HCC3153, Hs578-T, and MDA-MB-436; and 6 days for HCC38), cells were stained with 5 mg/mL Hoechst 33342 (Sigma-Aldrich)

and 2 mg/mL propidium iodide (Sigma-Aldrich) in PBS, and nuclei were imaged and counted using the Celigo Imaging Cytometer.

Propidium iodide-positive dead cells were subtracted from the total Hoechst-positive nuclei to determine the number of live cells,

which were then normalized to the baseline number of cells. Combination indices were determined using the median-effect principle

of Chou and Talalay (1984). Isobologram plots were generated using R.

Single cell RNA-seq data analysis
Single cell RNA-seq data generated by 10x genomics were preprocessed using the Cell Ranger (https://www.10xgenomics.com/) to

obtain the UMI (uniquemolecular identifier) counts for each gene. To get a reliable single cell transcriptome dataset, we excluded the

cells with less than 200 genes expressed (UMI > 0) or the cells with more than 80%UMIs frommitochondrial genes. The filtered data

were then normalized and scaled by using Seurat to remove unwanted source of variations (Lun et al., 2016). T-SNE was performed

on the normalized data to visualize the single cells in two-dimensional space by using the top 10 dimensions of principal component

analysis (PCA). Unsupervised clustering was performed by using ‘‘FindClusters’’ function in Seurat package with parameter of res-

olution = 0.8. Cell cycle phases of all single cells were assigned by using cyclone function in scran package (Lun et al., 2016). Genes

with differential expression between clusters were obtained by usingWilcoxon rank-sum test. FDRwas then calculated to correct for

multiple testing.

Identification of pre-existing resistant cells from single cell transcriptome
Cell identity signatures of SUM149, JQ1-treated SUM149 and SUM149R cells: For each of the three cell types, we compare the bulk

gene expression of it with the other two cells together. We choose the topmost 100 upregulated and downregulated genes as the (up

and down) signatures of the cell type. Cell identity signatures of SUM159, JQ1-treated SUM159 and SUM159R cells are obtained in

the sameway. Calculation of cell identity score: For each single cell, we calculated the average expression of each set of up signature

genes minus the average expression of each set of down signature genes as the cell identity score. We carried out a bootstrap pro-

cedure to estimate the significance of the cell identity score. We randomly select 1,000 sets of up and down signatures with the same

size of the original true signatures, generated the bootstrap distribution of the cell identity score, and calculated the bootstrap p value

based on the distribution. We classified the single cells based on the bootstrap p value cutoff of 5%. If a cell did not pass the test of

any signature, it is annotated as unclassified. Hexagonal plots were used to show the bootstrap classification of single cells in indi-

cated cell populations, in which cells showed clear identity (passed the 5% threshold) are positioned on the edge of the plot.

CRISPR screen data analysis
CRISPR data were analyzed by MAGeCK and MAGeCK-VISPR essentially as described (Chen et al., 2018; Jeselsohn et al., 2018; Li

et al., 2015). Briefly, raw sequencing data are pre-processed by using MAGeCK (Li et al., 2014) to obtain the read counts for each

sgRNA. Control sgRNAs are used to normalize the data. MAGeCK TEST algorithm is used to compare treatment with control samples

to obtain the significant enriched and depleted sgRNAs and genes. Genes with p value less than 0.001 are candidate hits. Different

doses and replicates of JQ1 treatment libraries in the same cell line are tested separately and merged together by choosing the

lowest p value. If one gene is enriched in one library and depleted in the other, or vice versa, the gene is set as not changed. Mageck-

Flute package (Li et al., 2014) was used to visualize the data.

DNA methylation
DNA methylation profiling was carried out on Infinium HumanMethylation450K BeadChip arrays (Illumina, discontinued) at the Har-

vard Medical School-Partners HealthCare Center for Genetics and Genomics. The methylation status of the cell lines was obtained

using the Infinium HumanMethylation450 BeadChip Kit from Illumina. The unnormalized probe-level beta-values (Du et al., 2010) of

each sample were obtained from the raw data using the Illumina GenomeStudio software (GSGX v1.1.0). The normalization of the

beta-values was performed using the R Bioconductor package lumi. The normalized M-value thus obtained were converted back

to normalized beta-values using the following formula:

Beta� value = ð2̂ M� valueÞ=fð2̂ M� valueÞ + 1gðDuetal:; 2010Þ
The normalized beta-values of each sample were then collapsed to promoters and enhancers of genes. Briefly, each probe is attemp-

ted to be assigned to either a promoter, enhancer, or gene-body of a gene using the annotation provided in the output of the Ge-

nomeStudio software mentioned above. The methylation status of the enhancer of a gene is determined by taking the average

normalized beta-values of all the probes assigned to the enhancer of that. Depending on the position of the probes relative to the
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TSS of a gene, the probes are also assigned to either promoters (TSS200, TSS1500, 1stExon, and 50UTR) or gene-body (Body,

30UTR) of genes. Following that, single gene-level methylation values of each gene’s promoter and gene-body are obtained using

the average normalized beta-values as explained for enhancers. The gene-level enhancer, promoter, and gene-body methylation

values of each sample have been used to determine the correlation between the samples and their tissue of origin (lineage).

ATAC-seq
ChiLin pipeline 2.0.0 (Qin et al., 2016) is used for QC and preprocess of the ATAC-seq.We use Burrows-Wheeler Aligner (BWA) (Li and

Durbin, 2009) as a readmapping tool, andModel-based Analysis of ChIP-Seq (MACS2) (Zhang et al., 2008) as a peak caller, with a q-

value (FDR) threshold of 0.01.Based on a dynamic Poisson distribution MACS2 can effectively capture local biases in the genome

sequence, allowing for more sensitive and robust prediction of binding sites. Unique read for a position for peak calling is used to

reduce false positive peaks, statically significant peaks are finally selected by calculated false discovery rate of reported peaks.

Deeptools (Ramı́rez et al., 2016) is used for the heatmap plots. ATAC-seq peaks from all study samples weremerged to create a union

set of sites. Read densities were calculated for each peak for each sample, differential peaks betweenWT and KOwere identified by

DEseq2 (Love et al., 2014) with adjusted p % 0.05, |log2fold change| R 1.

Single cell ATAC-seq
Single-cell ATAC-seq data were processed using the Cell Ranger ATAC pipeline v1.1.0, which provides QC and clustering. Any cell

that had Fraction of reads in peaks (FRiP) < 0.2 and total fragments < 1,000 was removed from the analysis, total 2,701 cells passed

the QC. Median fragments per cell is 27,599, fraction of transposition events in peaks is 32.8%. The t-SNE analysis was performed

using the implementation from the Loupe Cell Browser 3.1.0.

Exome Sequencing
Exome sequencing was performed in the Dana-Farber Cancer Institute Center for Cancer Genome Discovery as previously

described (Shu et al., 2016).

RIME
Peptide intensities were normalized using median scaling and protein level quantification was obtained by the summation of the

normalized peptide intensities. A statistical analysis of differentially-regulated proteins was carried out using qPLEXanalyzer a Bio-

conductor R-package (Papachristou et al., 2018), which internally uses limma R-package from Bioconductor (Ritchie et al., 2015).

Multiple testing correction of p values was applied using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to control

the false discovery rate.
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