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Glioblastoma (GBM) is a devastating disease. Despite mul-
timodal treatment comprising surgery, radiotherapy and 
alkylating chemotherapy with temozolomide (TMZ)—

which is the current standard of care for all patients after diagno-
sis1—the prognosis of GBM is invariably fatal, with a median overall 
survival of about 1 year2,3. Clinical trials evaluating multiple differ-
ent dose-escalation approaches on the basis of the linear quadratic 
model of classical radiobiology have failed to increase survival4. 
Treatment strategies informed by an alternative approach explic-
itly modelling the mechanisms of treatment resistance and intra-
tumor heterogeneity are necessary to achieve improved outcomes 
for patients.

Histologically, GBMs are characterized by extensive prolifera-
tion of disrupted microvessels5, which create a distinct microen-
vironment that is designated the perivascular niche (PVN)6. This 
PVN is defined by the spatial relationship between cancer cells 
and endothelial cells6. Chemoradiation-resistant GBM stem-like 
cells (GSCs) preferentially reside in this PVN6, and localized sig-
nalling from the tumour microenvironment maintains and induces 
the stem-like phenotype of GSCs through nitric oxide or notch 
ligands7,8. Although other cell types may contribute to these func-
tional properties of the PVN, endothelial cells have been identi-
fied as the key mediators of stemness6,7,9. GBM cells dynamically 
transition between a more stem-like chemoradiation-resistant 
state and a more differentiated chemoradiation-sensitive state. 
Dedifferentiation of more differentiated cells to more stem-like cells 
occurs within hours after administration of radiation8. Accounting 

for this spatially explicit heterogeneity remains a challenge, with 
direct implications on the clinical management of this disease, as 
physical barriers in the tumour microenvironment restrict chemo-
therapy delivery to tumour compartments that are distant from the 
blood vessels.

In this Article, we hypothesize that the use of a computational 
model that quantifies how the spatial location of cells influences 
their sensitivity to therapy could be used to identify an optimized 
schedule for the administration of therapy for GBM that would 
maximize survival. To test this hypothesis, we developed a mas-
sively parallel, multiscale computational model of PVN dynamics 
that links phenomena that occur at the cellular and tissue levels. 
On the basis of the parameter values measured in mouse models 
of GBM, we identified a chemoradiation administration schedule 
that is predicted to optimize treatment efficacy. We validated our 
computational model predictions in a mouse PDGF-driven GBM 
model, which shows that the optimized schedule indeed increased 
survival. This method identified a schedule that could be difficult 
to implement in the clinic due to the requirement to administer 
radiotherapy at specific times and multiple times a day. However, 
it elucidated the finding that a key driver in determining optimal 
scheduling was the time between the administration of chemo-
therapy and radiotherapy. We next used our computational model 
to predict an optimal time for a single dose of each, administering 
TMZ 41 min before radiation given in standard fractionation, and 
showed in a mouse model that optimizing timing between therapies 
improved survival. Using human pharmacokinetics parameters, we 
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found an optimum time difference of 57 min between TMZ and 
radiation. Our findings lay the conceptual foundation for improved 
approaches for the clinical management of this disease.

Results
The aim of this research is to test the hypothesis that a computa-
tional model quantifying the effects of spatial location of cells on 
sensitivity to therapy can identify an optimized schedule for ther-
apeutic administration for GBM that maximizes survival. To this 
end, we developed a spatially explicit, agent-based model to capture 
responses to different therapeutic regimens. We used the model to 
identify non-standard radiation-treatment (RT) schedules that are 
predicted to lead to optimal and suboptimal outcomes as measured 
by fractional volume changes of the tumour. Fractional volume 
change is defined as the percentage change in the overall volume of 
the tumour. Efficacy was tested through the use of a mouse GBM 
model. On the basis of this initial study, the optimal offset between 
radiotherapy and chemotherapy, using standard fractionation, was 
determined and validated in the mouse model as compared to cur-
rent standard of care.

Development of a massively parallel computational model of 
GBM treatment response. We developed a spatially explicit stochas-
tic modelling approach to investigate the dynamics of GSCs and dif-
ferentiated GBM cells within the PVN (Fig. 1a). In our framework, 
the PVN is modelled as a collection of autonomous decision-making 
agents that act independently in accordance to their individual 
environment and rules. We considered the PVN to be a cylindri-
cal region in the brain and investigated two-dimensional (2D) 
cross-sections of the region for individual simulations. Our frame-
work contains four cell types: endothelial cells, microenvironmental 
(stromal) cells, GSCs and differentiated tumour cells (DTCs). The 
former two cell types are created at the initiation of the simulation 
and do not undergo division or death, but instead define the spatial 
structure of the PVN. Vascular remodelling after chemoradiation 
was not simulated because it typically occurs in the range of weeks 
after irradiation10 and is therefore beyond the time scale of our theo-
retical and experimental approach, whereas early post-irradiation 
endothelial cell apoptosis occurs only after single-dose suprath-
erapeutic irradiation11 and radiation-induced recruitment of bone 
marrow-derived cells does not contribute to vasculogenesis, but 
rather supports endothelial cell survival10. By contrast, GSCs divide 
asymmetrically to produce DTCs that then divide symmetrically z 
times before terminally differentiating or dying. Furthermore, the 
model incorporates the possibility of differentiation, dedifferentia-
tion and cellular quiescence/arrest effects on cells that may depend 
on therapy or paracrine signals. Further details of the model design, 
parameter estimation, and implementation of radiation and chemo-
therapy effects are provided in the Methods. Supplementary Table 
1 displays a list of parameters and their definitions as well as values 
estimated from GBM mouse models, whereas Fig. 1a shows a sche-
matic representation of the chemoradiation model. Figure 1b shows 
the overall workflow of the project. An instantiation of the stochas-
tic model for tumour growth is shown in Fig. 2a. Our approach 
was implemented as a massively parallel simulation framework 
and computation for the mouse schedules was completed using 
the Vulcan supercomputer, an IBM Blue Gene/Q system, at the 
Lawrence Livermore National Laboratory. To complete the neces-
sary simulations, 36 million central processing unit (CPU) hours 
(4,109 years) on 131,072 cores were used. For the human studies, 
500,000 CPU hours were used on the Duke Compute Cluster and 
2 million CPU hours were used on the Quartz supercomputer at the 
Lawrence Livermore National Laboratory.

Optimizing the chemoradiotherapy administration schedule. 
The massively parallel model, together with simulated annealing, 

was used to derive an optimized radiation schedule in the presence 
of TMZ (Methods). Parameters were selected that captured the 
treatment response in the PDGF-driven mouse model (Methods). 
We investigated 5 d of treatment with a total of 10 Gy radiation, 
with follow-up until death. The administration of TMZ was fixed 
to occur every day (Monday to Friday) at 15:00. To determine an 
improved schedule, the time and fractionation of radiation was var-
ied. Radiotherapy could be administered Monday to Friday between 
08:00 and 17:00, on the hour. Even though the computational model 
was parameterized using mouse data and validated in a mouse 
study, constraints were derived from information of the Brigham 
and Women’s Hospital/Dana-Farber Cancer Institute radiation 
oncology clinic for potential clinical translation in the future. The 
constraints specify that there could be no more than 8 h between 
the first and last dose per day, the maximum dose at one time was 
3 Gy and the maximum total dose per day was 4 Gy. There could be 
no more than three treatments per day and the maximum total dose 
over the course of treatment was set to 10 Gy.

Using this approach, we predicted the maximal survival time and 
investigated the treatment response (Fig. 2b,c) under our identified, 
optimized radiation administration schedule, as well as a control 
sequence that was predicted to perform worse and a zero-offset 
schedule that was designed to mimic the standard-of-care treatment 
in patients (Table 1a). When performing the parallel stochastic opti-
mization routine, we compared the fitness (that is, the total number 
of tumour cells present 30 d after treatment conclusion compared 
with that of the initialization condition) of a range of schedules 
(1,024 in each generation) over 30 generations. In this case, genera-
tion refers to the step or round of the simulated annealing heuristic. 
On average, when calculated for 128 instantiations of the stochastic 
simulation, we found that the predicted optimum schedule indeed 
resulted in a slower expansion of DTCs compared with the subop-
timum and zero-offset schedules (Fig. 3a). As the suboptimum and 
zero-offset schedules had similar predicted outcomes, we focused 
on the comparison between optimum and suboptimum schedules 
in the following analyses. The differences in expansion as defined by 
the increase in fractional volume are significantly different between 
optimum and suboptimum schedules, with a mean fractional 
volume change of 3.67 for the optimal schedule and 4.72 for the 
suboptimal schedule (P < 0.0001, two-tailed t-test). The observed 
variation was due to the stochasticity of the simulations and not 
due to uncertainties in the parameter values. We next performed 
sensitivity analysis to obtain information on the relative effects that 
changes in the parameter values have on outcome.

Computational model sensitivity. We conducted sensitivity stud-
ies to identify which parameters had the strongest influence on 
the results (Fig. 3b and Supplementary Fig. 1). Throughout these 
studies, the parameters of our model were systematically changed 
and the effect on fractional volume change was measured. This 
approach was taken to address questions relating to different indi-
viduals reacting to the drug differently but, more importantly, it was 
used to derive an understanding of which parameters were influ-
encing the outcome and why. We completed a series of uncertainty 
quantification tests to determine the effect of varying parameters 
such as the radius of the blood vessel, the maximum number of cell 
divisions before apoptosis and the cut-off for the number of times a 
cell divides before terminally differentiating. The radius of the blood 
vessel demonstrated no significant impact on the results when the 
size was varied between 1.5 μm and 3 μm (Supplementary Fig. 1a), 
which is on par with the size of vessels found in this region12,13. 
However, as the vessel radius increased beyond 3.5 μm, a significant 
change in relative fitness was observed. This observation was prob-
ably due to the influence of the diffusion of TMZ from the vessel 
wall being less substantial in larger vessels, reducing the role that the 
chemotherapy component of the schedule has in determining cell 
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behaviour at the centre of large vessels. As the vessels in the mouse 
and human PVN have a radius of less than 3.5 μm, we concluded 
that a change in vessel size has no significant effect on the results. 
We also found that varying the number of times a DTC could 
divide before terminally dedifferentiating (z) and the cut-off for the  

number of times a cell could dedifferentiate (zrevert) led to no signifi-
cant difference being observed (Supplementary Fig. 1b,c).

We also modelled the pharmacokinetic and pharmacodynamic 
parameters of TMZ at relevant tissue concentrations14 to identify 
whether variability in these factors could influence our findings. 
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Fig. 1 | A computational model of the GBM microenvironment. a, Schematic of the computational modelling approach used to describe the 
chemoradiation response. rd is the proliferation rate of differentiated sensitive cells after exiting quiescence, rs is the proliferation rate of stem-like resistant 
cells after exiting quiescence, as is the rate at which stem-like resistant cells convert to differentiated sensitive cells and v is the rate of reversion of 
differentiated sensitive cells to stem-like resistant cells. b, Summary of the workflow.
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These sensitivity studies (Fig. 3b and Supplementary Fig. 1d–f) 
showed no significant impact (P < 0.0001, standard t-test) when the 
maximum concentration that the drug achieves, Cmax, or the time of 
the maximum concentration, Tmax, were varied by ±30%. This range 
was selected to capture fluctuations derived from how the drug is 
processed in the body. Notably, these findings are consistent with 
the clinical lack of benefit from dose-intensified versus standard 
dose TMZ regimens in patients with GBM15,16. The concentration 
at which the response is reduced by half, IC50, demonstrated a small 
effect on the relative efficacy of the chemoradiation schedule, while 
the half-life of the drug, t1/2, showed a strong effect. The efficacy of 
the schedule—as defined by fractional volume change 30 d from the 
time of treatment start—was also sensitive to the radius of the ves-
sel at sizes above 3 μm. We found that the efficacy of the schedule 
was most sensitive to the drug’s half-life; if the drug takes longer to 
clear, it is able to diffuse further and therefore not only influences 
cells over a longer time period but also over a larger volume17. This 
information could have an important role in developing chemo-
therapeutics in the future.

The improvement in terms of fitness is shown in Fig. 3c. The 
relative volume fraction specifying fitness is defined as the ratio of 
the fractional volume change at 30 d after treatment for the sched-
ule tested in that generation to the fractional volume change at 
30 d for the schedule initializing the stochastic optimization rou-
tine. The resulting number of DTCs after treatment was typically 
smaller with each improved schedule. The schedule continued to be  

optimized until the same schedule was converged on for over three 
generations. At this point, a local minimum was identified. To cal-
culate the fitness of each schedule, a computationally expensive, 
parallel simulation was completed for 128 instances of each sched-
ule. The breakdown of time spent in each computational function 
is shown in Fig. 3d.

Investigating radiation and TMZ combination schedules. Next, 
we used our modelling approach to simulate five previously investi-
gated schedules18. We found that, in the presence of TMZ, the stan-
dard dose of 2 Gy administered each day was predicted to be the 
optimal of these five schedules. Due to this observation, the stan-
dard schedule was used as the template schedule to seed the parallel 
simulated annealing simulation for identifying the global optimum 
of chemoradiation administration. We set the fitness function end-
point as the number of tumour cells present 30 d after treatment 
initiation. Mathematically determining the global optimal sched-
ule was not computationally tractable due to the complex interde-
pendencies of our model. We therefore used the parallel simulated 
annealing model to identify an optimized combined therapeutic 
schedule as well as a suboptimal and zero-offset schedule (Table 1).  
Figure 3a shows the outcome of these schedules in terms of the 
number of DTCs, whereas Fig. 2 shows examples of the spatial dis-
tribution of the different cell types at different time points for both 
the optimized and suboptimal schedules. Qualitatively, Fig. 2 shows 
that the optimized schedule has fewer DTCs after treatment and the 

Number of differentiated tumour cells = 121, 3 d after Tx starts

Number of differentiated tumour cells = 134, 3 d after Tx starts Number of differentiated tumour cells = 87, 1 week after Tx starts

Number of differentiated tumour cells = 39, 1 week after Tx starts
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c

Fig. 2 | Modelling GBM growth and treatment response. a, The results of one stochastic simulation of tumour growth for three time points. Our spatially 
explicit stochastic process model of the PVN considers several distinct cell types, including endothelial cells (red), GSCs adjacent to the blood vessel 
(green) and DTCs (blue). b, The results of one stochastic simulation of the treatment response to chemoradiation administered according to the optimal 
schedule (Fig. 3a) for two time points: 3 d and 7 d after the start of treatment. c, The results of one stochastic simulation of the treatment response to 
chemoradiation administered according to the suboptimal schedule (Fig. 3a) for two time points: 3 d and 7 d after the start of treatment.
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influence of chemotherapeutic diffusion from the vessel can be seen 
in the distribution of the remaining cells. These observations are 
further confirmed quantitatively in Figs. 3a and 4. The tumour vol-
ume is significantly smaller after the optimized schedule compared 
with the tumour volume after the suboptimal schedule (mean dif-
ference = 0.72 mm3, 95% CI = 0.683–0.756, P < 0.0001; Fig. 3a) and 
the distance from the vessel of GSCs versus DTCs under each sched-
ule is significantly greater (for optimal, mean difference = 81.85 μm, 
95% CI = 81.511–82.198, P < 0.0001; for suboptimal, mean differ-
ence = 25.7 μm, 95% CI = 25.258–26.304, P < 0.0001; Fig. 4a,b). 
The optimized versus suboptimal schedule affected the distance 
from the vessel centre at which the DTCs were found (mean dif-
ference = 61 μm, 95% CI = 60.13–61.87, P < 0.0001), as well as the 
location of the GSCs (mean difference = 0.07 mm, 95% CI = 0.092–
0.047, P < 0.0001).

We next undertook a series of tests to investigate the cellular 
response 30 d after initiation of treatment. For this time duration 
from the start of the therapy to 30 d after treatment initiation, we 
determined the average age of GSCs (Fig. 4c) and DTCs (Fig. 4d), 
finding that GSCs were significantly older than DTCs (mean differ-
ence = 0.993 d, 95% CI = 0.795–1.191, P < 0.0001), whereas the age 

of GSCs had more variance. These findings primarily arose due to 
the proximate location of the GSCs near to the vessel wall, and these 
cells thereby experienced a greater effect of TMZ. Figure 4a,b shows 
the average distance from the vessel for both the GSCs and DTCs, 
demonstrating that GSCs tended to be much closer to the vessel over 
the course of treatment, for example, at 1 d after the start of therapy 
(mean difference = 22.9 mm, 95% CI = 20.99–24.93, P < 0.0001) 
and 7 d after the start of therapy (mean difference = 25.96 mm, 95% 
CI = 23.99–27.93, P < 0.0001). This localization pattern led to a 
fluctuation in distance as many of the cells present 1 d after treat-
ment initiation were killed by therapy. The suboptimal schedule 
resulted in more DTCs on average being located further from the 
vessel at 1 d compared with at 7 d after treatment initiation (mean 
difference = 0.025 μm, 95% CI = 0.003–0.047, P < 0.001), an obser-
vation that is probably due to the higher concentration of the che-
motherapeutic near the vessel and the associated relative increase 
in the chemotherapy response. The maximum distance that all 
cells move away from the vessel is shown in Fig. 4e, demonstrat-
ing that DTCs dictated the size of the cell population. The aver-
age cell distance from the vessel centre was greater as treatment 
progressed under both the optimal (mean difference = −3.25 μm,  
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Fig. 3 | Prediction of the responses to different chemoradiation administration schedules. a, Prediction plots of the expected fractional volume change 
over time for the optimized versus suboptimal and zero-offset treatment schedules from Table 1. To account for stochasticity, the simulations were run 128 
times to create the technical replicates required to account for stochasticity of the model. The differences in expansion as defined by increase in fractional 
volume are significantly different with a mean fractional volume change of 3.67 for the optimal schedule and 4.72 for the suboptimal schedule (P < 0.0001, 
two-tailed t-test). b, Sensitivity analysis of the model’s parameters, ranked from least to most sensitive, as determined by the sensitivity analysis 
in Supplementary Fig. 1. The variables that demonstrated a significant impact when varied by ±30% are shown in light grey (P < 0.0001, two-tailed 
t-test), whereas those with no significant impact are shown in black (P < 0.0001, two-tailed t-test). c, The relative fitness across stochastic optimization 
generations. Each generation consisted of 1,024 different schedules being tested with 128 instances of each schedule. These instances provided the 
technical replicates required to account for stochasticity of the model. d, The percentage of time spent in each component of the 36 million CPU hours on 
the IBM Blue Gene/Q supercomputer.
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95% CI = −3.35–3.14, P < 0.0001) and suboptimal schedules (mean 
difference = −6 μm, 95% CI = −6.1 to −5.9, P < 0.0001). However, 
the GSCs moved further earlier on under the optimal schedule. The 
change was small (0.81 μm to 0.58 μm) and, again, due to the spatial 
effects of the cell interaction with the chemotherapeutic. The com-
position of the cell population is shown in Fig. 4f, visualizing the 
percentage of GSCs at each daily time point. In all cases, GSCs made 
up less than 2% of the population. Under the optimal treatment 
schedule, this was further reduced from 0.82% to 0.486%; by con-
trast, under the control schedule, the percentage of GSCs increased 
from 0.96% to 1.65%. With 128 instances, a t-test demonstrates that 
this is a significant difference (P < 0.0001), with a mean difference 
between the groups of −0.69 with a 95% confidence interval of this 
difference from −0.72 to −0.65. This change in the percentage of 
GSCs was due to the cell interaction with TMZ.

Validation of model predictions in a genetically engineered 
mouse model of GBM. We next validated the mathematical 
modelling predictions through use of a mouse model in which 
tumour-bearing mice received either the optimized or the sub-
optimal treatment schedule in a randomized manner (Fig. 5a). 
A replication-competent avian sarcoma-leukosis virus (RCAS) 
long terminal repeat with a splice acceptor/tumour virus A-based 
PDGF-driven mouse model was used in concert with a Cdkn2a−/− 
(also known as Ink4a/Arf) germline mutation, which produces rapid 
and uniform gliomas. Tumour formation before treatment was con-
firmed by bioluminescence imaging and changes were recorded 
72 h after the last treatment dose (Fig. 5b). These images provide 
insights into tumour volume growth as the radiance is correlated 
with size. Radiance in both groups before treatment was similar 
(P = 0.95, unpaired t-test). The average bioluminescence signal 
after treatment was 34% of the baseline signal with the optimized 
schedule versus 105% with the suboptimal schedule (P = 0.008, 
unpaired t-test; Fig. 5c). The median survival of mice in the opti-
mized versus suboptimal groups was 11.5 d versus 9.5 d (log-rank 
hazard ratio = 0.46, 95% confidence interval = 0.24–0.87, P < 0.001;  
Fig. 5d), therefore validating the model predictions that the opti-
mized schedule leads to superior outcomes.

Optimization of the relative timing of chemotherapy and radia-
tion administrations. When considering the mechanism of dif-
ferential efficacy of the optimized versus suboptimal schedule, we 
noticed that the optimized schedule tended to have shorter time 
intervals between TMZ and radiation administrations compared 

with the suboptimal schedule. We therefore set out to investigate 
whether including a radiosensitization effect of TMZ might lead 
to the identification of improved schedules. Specifically, a survival 
improvement might be achieved through optimizing the time inter-
val between TMZ and radiation administrations such that radiation 
is administered at the time of peak TMZ concentration. Thus, the 
current standard-of-care administration schedule could be used 
with the exception that a specific time interval between TMZ and 
radiation administration would be prescribed. In contrast to the 
previous optimal schedule, this strategy would be simple to translate 
to patients with GBM.

To test TMZ-induced radiosensitization, we used the same 
mouse genetic background as above and updated our computa-
tional model to include a TMZ concentration dependence to the 
radiation-induced cell kill (equation (7)). Under these conditions, 
we first conducted a computational study to identify the optimal 
and suboptimal time intervals between administration of TMZ 
and radiotherapy. We again implemented stochastic optimization 
through the use of a simulated annealing strategy, with the frac-
tional volume change at 30 d after the start of therapy as the defined 
fitness for each schedule. This systematic method identified that the 
optimal time interval between the administration of the two thera-
pies is 41 min when using mouse parameters. The 30d fractional 
volume change for the identified schedules is shown in Fig. 6a and 
the reduction in relative fitness achieved using the optimization 
technique is demonstrated in Fig. 6b. Our findings demonstrate that 
the optimal and suboptimal offsets between therapies have a strong 
influence on the overall outcome. The influence of the interval size 
is visualized in Fig. 6c, in which fractional volume change is shown 
with a range of offsets around the identified optimum. Using just 
one dose of radiation per day, a similar behaviour is shown between 
schedules with optimal and suboptimal offsets and the derived 
optimal and suboptimal schedules discussed above. We further 
conducted a sensitivity analysis demonstrating that the results were 
robust to changes in the value of the radiosensitization parameter 
(Supplementary Fig. 2). To further assess the cellular response in the 
first 30 d after treatment initiation, we also investigated the change 
in average age, the distance from the vessel and the percentage of 
GSCs (Supplementary Fig. 3).

To validate the predictions of our computational modelling of the 
time interval between TMZ and radiation treatment, we conducted 
a mouse trial in an Cdkn2awt/wt background, with its extended sur-
vival and opportunity for increased treatment events. For this study, 
all mice received RT at the same time of day (2 Gy per day for 5 d), 

Table 1 | Treatment arms

Group Therapy schedule Day 1 Day 2 Day 3 Day 4 Day 5

Mouse 
schedule, 
TMZ 
50 mg kg−1

Clinical RT SoC 2 Gy, 15:00 2 Gy, 15:00 2 Gy, 15:00 2 Gy, 15:00 2 Gy, 15:00

Optimal RT fractionation No RT 1 Gy, 09:00;
1 Gy, 16:00

1 Gy, 08:00;
2 Gy, 09:00

1 Gy, 09:00;
2 Gy, 16:00

1 Gy, 09:00;
1 Gy, 17:00

Suboptimal RT fractionation 2 Gy; 13:00 1 Gy, 13:00;
1 Gy, 17:00

1 Gy, 14:00;
1 Gy, 15:00

2 Gy, 08:00;
1 Gy, 11:00

1 Gy, 17:00

All RT schedules TMZ, 15:00 TMZ, 15:00 TMZ, 15:00 TMZ, 15:00 TMZ, 15:00

Human 
schedule, TMZ 
75 mg m−2

Clinical RT SoC 2 Gy, 15:00 2 Gy, 15:00 2 Gy, 15:00 2 Gy, 15:00 2 Gy, 15:00

Optimal offset (57 min) TMZ, 14:03 TMZ, 14:03 TMZ, 14:03 TMZ, 14:03 TMZ, 14:03

Zero offset TMZ, 15:00 TMZ, 15:00 TMZ, 15:00 TMZ, 15:00 TMZ, 15:00

Bedtime chemotherapy TMZ, 21:00 TMZ, 21:00 TMZ, 21:00 TMZ, 21:00 TMZ, 21:00

The treatment arms used to predict responses to different chemoradiation schedules in both mice and humans. For the mouse schedules, the TMZ dosage was 50 mg kg−1; for the human schedules, a dose 
of 75 mg m−2 was used. For the mouse studies, three schedules were defined. The clinical RT standard of care (SoC) reflects the current standard of care, delivering 2 Gy at 15:00. Our computational model 
identifies an optimal RT fractionation and suboptimal RT fractionation schedule on the basis of simulated fractional volume change. For the human studies, computational models were used to determine 
the optimal offset or time between administration of TMZ and radiation. Four schedules were used: (1) clinical RT standard of care; (2) the derived optimal offset; (3) zero offset, whereby radiation and 
TMZ were administered concurrently; and (4) when TMZ was administered at bedtime or 21:00.
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and the optimal group was administered TMZ 41 min before RT 
and the suboptimal group was administered TMZ 8 h after RT; the 
latter choice was made because TMZ is usually taken at bedtime by 
patients. The median survival of mice in this optimized versus sub-
optimal radiotherapy fractionation schedule was 34.5 d versus 30 d 
(log-rank hazard ratio = 0.3925, 95% confidence interval = 0.1613–
0.9551, P < 0.001; Fig. 6d). The mouse study highlighted the impor-
tance of including radiosensitivity in the model considerations, as 
the survival time of the mice undergoing treatment with the opti-
mized offset was slightly improved over the originally defined opti-
mal schedule. Thus, the mouse trial validated our computational 
model predictions that the relative timing between TMZ and radia-
tion adminstration plays an important role in determining survival.

The optimum schedule is robust when considering acquired 
resistance to chemoradiation. To assess the potential influence of 
the emergence of cells resistant to treatment due to the accumula-
tion of (epi)genetic changes, we conducted a series of simulations 
with varying rates of appearance of resistant cells. Our model was 

modified to include a rate at which cells become resistant to chemo-
radiation, given by RR. Resistant cells were defined as cells that 
are impervious to both chemotherapy and radiotherapy. We then 
characterized the sensitivity of our results to the parameter RR. We 
varied its setting from 1 × 10−6 to 1 × 10−8 per cell division, as exam-
ple rates at which resistance arises per cell division, and observed 
no significant change in the overall fractional volume change 
(P = 0.7280), percentage of GSCs (P = 0.2921) or the location of the 
cells (P = 0.9743; Supplementary Fig. 4). As we observed no sig-
nificant change in the fractional volume change when resistance 
was introduced, no impact on the emergent optimized schedules is 
expected, as schedule fitness is defined on the basis of the size of the 
DTCs. As resistance to both chemotherapy and radiotherapy leads 
to no substantive change in population fitness, the weaker imple-
mentation, including a heterogeneous mix of radiotherapy-resistant 
and chemotherapy-resistant cells, has even less impact. Similarly, 
in this model, both GSCs and DTCs have the potential to generate 
resistant cells, providing a setup that would demonstrate maximal 
influence of the dynamics of emergence of resistant cells. As no 
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significant change was observed under these conditions, allowing 
only GSCs or DTCs to gain resistance results in an even smaller 
change. Here, the resistance rate RR was varied across two orders of 
magnitude and exhibited no measurable impact on the results; note 
that this finding might change if the rate is varied to a greater extent.

Translating the optimized administration schedule from mice to 
humans. When optimizing the schedules, we found that consider-
ing chemotherapy radiosensitization influenced the selection of the 
ideal offset between administration of chemotherapy and radiother-
apy. All of the studies discussed above focused on mouse-derived 
pharmacokinetic (PK)/pharmacodynamic (PD) parameters. To 
understand how this research could be extrapolated to a future 
human study, we completed a large-scale computational study to 
identify the optimal offset under human-derived conditions. PK val-
ues were modified to match data for humans19–21. Under these condi-
tions, the half-life of TMZ was set to 1.8 h, the dosage to 75 mg m−2, 
Tmax to 0.7 h and Cmax to 3.7 mg l−1. Treatment was undertaken for 
6 weeks and we simulated 150 d from the start of therapy. We next 
used simulated annealing to identify the optimal offset, which we 
found to be 57 min. We then compared the identified optimal offset, 

the zero offset in which both therapies are administered about the 
same time and the schedule when radiation is administered at 15:00 
but TMZ is given at bedtime, in this case 21:00. Table 1 presents the 
three assessed schedules: the derived optimum, the standard dosage 
of TMZ given at 15:00 and TMZ given at bedtime (21:00). Similar to 
the work described above for the mouse schedules, we used simu-
lated annealing to identify the optimal schedule for human TMZ 
PK parameters. The fitness function was defined as the fractional 
volume change 150 d after the start of therapy. The optimization 
results are shown in Fig. 7a. The routine was initially seeded with 
the standard schedule and, during each generation, we randomly 
perturbed this schedule in 128 different ways that were simultane-
ously assessed. The schedule that produced the minimal fractional 
volume change was then used to seed the next generation. We found 
that the optimal schedule administered TMZ 57 min before radia-
tion. The fractional volume change over the 150 d for each schedule 
is shown in Fig. 7b. We also assessed the distance from the vessel 
centre of both the DTCs (Fig. 7c) and GSCs (Fig. 7d). Finally, the 
percentage of the overall cell population comprising GSCs is shown 
in Fig. 7e. Thus, our model was able to predict schedules for poten-
tial testing in the clinic.
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Discussion
Gliomas are cellularly and spatially complex, consisting of mul-
tiple cell types with differing proliferation rates and sensitivities 
to DNA damage-based standard-of-care therapy. Previously, we 
showed that there is interconversion between cell types in vivo dur-
ing the time course of radiotherapy22. This insight led to the abil-
ity to optimize a schedule for radiotherapy alone, mirroring the 
clinical scenario of salvage radiotherapy for recurrent GBM, which 
achieved a substantial survival benefit18 and is currently being 
tested in a clinical trial (NCT03557372). The various glioma cell 
types occupy specific locations within the tumours, with the least 
proliferative and treatment-responsive cells closest to the vessels. 
The standard-of-care therapy for newly diagnosed GBM is radia-
tion, which delivers a uniform dose to all cells, and TMZ, which 
has time- and distance-dependent concentration gradients rela-
tive to the blood vessels, leading to a complex dynamic therapeu-
tic response. To identify optimal treatment strategies, models are 
required that can capture this spatiotemporal complexity.

Here we developed a massively parallel computational model 
of the GBM microenvironment to systematically investigate the 
effects of different treatment schedules on outcomes. To investigate 
how specific parameters influence the success of chemoradiation 
therapy, we developed a technique to sample the search space using 
large-scale stochastic optimization. We conducted one of the larg-
est simulation studies of tumour treatment response to date, using 

36 million CPU hours on the Vulcan supercomputer. This enabled 
us to both examine the sensitivity of the treatment to TMZ phar-
macokinetic and pharmacodynamic characteristics and study the 
relative efficacy of different administration schedules. Using this 
approach, we identified a chemoradiation schedule that was pre-
dicted to improve survival compared with standard schedules. This 
treatment strategy was then tested in a GBM mouse model and 
was found to indeed result in superior survival compared with the 
control schedule. Our approach is consistent with the hypothesis 
of spatial translocation of GSCs after cycling through a non-GSC 
state and the functional relevance of this process for resistance to 
chemoradiation.

When considering radiosensitivity, we identified that the sur-
vival outcome could be improved by optimally timing the distance 
between the administration of chemotherapy and radiotherapy. By 
timing the radiotherapy shortly after the administration of TMZ, 
there was enough time for the drug to diffuse to and interact with 
the cells. The optimal time between therapies was found to be 
shortly after the time at which the maximum concentration of TMZ 
is reached.

In summary, our computational approach identified that the 
close temporal association of TMZ treatment right before RT is par-
amount for improving the efficacy of this combination treatment. 
We reason that this temporal association of a synergistic effect of 
TMZ and RT may reflect not only the temporal restriction of the 
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interconversion of GSCs to a more chemosensitive state but also 
that this interconversion sets off early during the translocation of 
GSCs away from blood vessels, while they are still exposed to TMZ. 
Notably, using tissue markers to track GSCs in tissue has proven to 
be not feasible, probably because GSCs lose the expression of these 
markers after translocation away from the PVN.

Unfortunately, the necessary parameter values were not deter-
mined in one experiment by one laboratory for multiple individu-
als and there is therefore uncertainty connected to these values. 
Similarly, we did not have the ability to orthogonally validate all 
parameters. Furthermore, we considered that endothelial cells are 
constant over time, both in terms of number and spatial localiza-
tion; therefore, changing blood vessels during angiogenesis are cur-
rently not considered in our research.

Our findings have clinically relevant implications for the treat-
ment of patients with GBM. Phase-III randomized clinical trials 
demonstrating an important overall survival benefit from the addi-
tion of concurrent and adjuvant TMZ to radiation do not specify 
the time interval between TMZ and radiation administrations23,24. 
However, many oncologists administer TMZ at bedtime due to nau-
sea25. This administration schedule is not supported by high-quality 
evidence regarding efficacy. The contribution of a synergistic inter-
action between radiation and TMZ to this improvement in survival 
is not known. However, a study of radiosensitization by TMZ in 20 
different patient-derived orthotopic GBM xenografts showed that 
a subset of tumours exhibited synergy between radiation and TMZ 
when TMZ was administered 1 h before radiation26. Given that 
(1) a subset of patients could benefit from synergy between TMZ 
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and radiation; (2) no high quality evidence for the equivalence of 
bedtime administration of TMZ to administration shortly before 
radiotherapy exists; and (3) we have demonstrated in mice that 
administering TMZ shortly before radiotherapy improves overall 
survival compared with evening administration, we recommend 
that concurrent TMZ–radiotherapy for newly diagnosed GBM 
should use a 57 min interval between administration of TMZ and 
radiation. We believe that this time interval is driven by a combina-
tion of the time it takes for TMZ to reach its maximum concen-
tration in a patient’s bloodstream and the time it takes for TMZ 
to diffuse away from the blood vessel into the tumour and take its 
effect. As TMZ pharmacokinetics differ among patients and no data 
are available to investigate its variability within a population, we did 
not perform a sensitivity analysis to determine the range of time 
intervals that would be best for a patient population, but we expect 
that varying the optimum time by 5–10 min will lead to very similar 
results. As TMZ pharmacokinetics19 predicts a rapid absorption but 
slow decay, we expect that earlier administration of TMZ relative 
to radiation (that is, a greater time interval than 57 min) will lead 
to smaller differences in outcome than later administration. A ran-
domized clinical trial could be performed to directly test whether 
the administration time of TMZ affects overall survival.

However, the translation into clinical practice would need to 
take additional factors into account that affect therapeutic efficacy 
that might be present across a population of patients with GBM 
and within any one tumour. For example, the immune cell com-
partment, which comprises almost exclusively macrophages, was 
modelled only on the stroma functional level, because the interplay 
of macrophages and GSCs is widely elusive. In a rat glioma model, 
favourable modulation of the tumour-infiltrating lymphocyte com-
position by metronomic TMZ treatment schedules has been sug-
gested27, but translation of similar approaches to patients with GBM 
did not alter the outcome in the newly diagnosed15 or recurrent 
setting28, probably reflecting the overall lack of tumour-infiltrating 
lymphocytes in GBM29. Other variables that are not currently repre-
sented in these computational and mouse models that may or may 
not affect the optimal timing between TMZ and radiation include 
genetic alterations, such as subclonal mutations in p53 or the loss 
of PTEN30–32, heterogeneity of expression patterns between33 and 
within34 tumours, and epigenetic heterogeneity35. Future studies will 
incorporate such heterogeneity as well as immunotherapy response 
modelling.

Methods
Generation of mouse GBMs. All animal experiments were approved by the 
Institutional Animal Care and Use Committee of the Fred Hutchinson Cancer 
Research Center (Protocol ID, 50842). Tumours were generated by injecting 
RCAS-transfected DF-1 cells into the brains of mice that express the t-va receptor 
under control of the nestin promoter (N/t-va). DF-1 cells were obtained from the 
American Type Culture Collection (ATCC, CRL-12203) and grown in Dulbecco’s 
modified eagle medium containing 4 mM l-glutamine, 4.5 g l−1 glucose, 1 mM 
sodium pyruvate and 1.5 g l−1 sodium bicarbonate supplemented with 10% fetal 
bovine serum (DMEM, ATCC, 30-2002) at 39 °C without antibiotics. Transfections 
with custom-made RCAS-PDGFB-HA and RCAS-Cre were performed using 
the Fugene 6 transfection kit (Roche, 11814443001). Transfected cells (2 × 105) 
in 2 μl DMEM were injected into the brains of 6–8-week-old male or female 
N/t-va; Cdkn2a−/−; Ptenfl/fl; LuciferaseLSL/LSL or N/t-va; Ptenfl/fl mice. The bodyweight 
of the mice used was 20–25 g. Mice were generated and bred in house, the genetic 
background was a mixture of 129/Sv, CJ7, C57BL6/J, FVB/N and BALB/C36. Hair 
at the site of surgery was removed using an off-the-shelf clipper. The coordinates 
from the bregma were as follows: lateral, 2 mm; anterior, 0.75 mm; depth, 2 mm. 
After developing symptoms such as lethargy, weight loss or pareses, mice were 
euthanized using carbon dioxide.

Mouse chemoradiotherapy. Mice were treated 3 weeks after tumour initiation 
with TMZ (LKT laboratories, 85622-93-1) 50 mg kg−1 body weight daily for 5 d 
concomitant to whole-brain irradiation with 2 Gy daily for 5 d. TMZ was freshly 
dissolved in phosphate-buffered saline with 0.5% dimethyl-sulfoxide before 
intraperitoneal injection. Irradiation to the head was performed under anaesthesia 
with isoflurane using the X-RAD 320 Biological Irradiator from Precision X-Ray. 

Mice were monitored to check for tumour-related symptoms, such as lethargy, 
weight loss (15% body weight), seizure, hyperactivity, altered gait, poor grooming, 
macrocephaly and paralysis. After developing symptoms, mice were euthanized 
using carbon dioxide.

Bioluminescence imaging. Tumour-bearing mice were anaesthetized with 
isoflurane and retro-orbitally injected with 75 mg kg−1 body weight d-luciferin 
(Caliper, 122796). Images were acquired 3 min after injection of luciferin for 5 s 
using the IVIS 100 imaging system (Caliper). A photographic image was overlain 
with the pseudocolour image to depict the spatial distribution of photon counts.  
A 1 cm2 circular region centred manually between the ears was defined as a 
region of interest for the quantitation of radiance, defined as photons s−1 cm−2 sr−1. 
Emission filters were set to 560–420 nm. No normalization or autofluorescence 
removal was performed. Mice were imaged before and 72 h after the last dose 
of treatment. Images of repeated measurements were set to the same scale. Hair 
removal was not performed before bioluminescence imaging, potentially limiting 
the accuracy of the in vivo imaging.

Anaesthesia. Isoflurane (Baxter, 1001936060) was used for anaesthesia during 
surgery for tumour generation, irradiation of the brain and bioluminescence 
imaging. A VetFlo vaporizer (Kent Scientific, VetFlo-1205S) was used, with a 
concentration of 5% in oxygen for induction and 2% in oxygen for maintenance  
of sedation.

Sample size for survival experiments. The sample size for survival experiments 
was calculated to detect a 10% increase in median survival with the optimal 
versus suboptimal chemoradiation schedules with 90% power at a 5% alpha 
level. Assumptions included a s.d. of survival of 10% for the first chemoradiation 
experiment, which was subsequently refined to 7.5%. Using an open resource 
sample size calculator (www.clincalc.com), these assumptions yielded sample sizes 
per arm of n = 20 and n = 12 mice, respectively.

Computational modelling. We designed a spatially explicit stochastic 
process model to investigate the impact of spatial localization on an evolving, 
heterogeneous tumour population. Inspired by the cell setup process established 
in CHASTE37, we considered a 2D cross-section of the area surrounding a blood 
vessel (Fig. 2). For each proliferating cell type, we defined a stochastic cell cycle 
period t with a period defined as Uniform(tmin, tmax), after which the cell divides. 
For the initialization period before treatment, we enforce a shorter cell cycle 
to minimize the setup time without influencing the spatial locality or cell type. 
During the time of interest (during and after treatment), the range was set such 
to range from 0 h to 24 h, therefore having the cell divide typically once per 
day. To model cellular quiescence, we extended the time until cell division for 
the affected cell. To simulate a differentiation event, the cell dropped one level 
in the differentiation cascade. For GSCs, this event transformed the cell into a 
DTC at differentiation level i = 1. For DTCs at differentiation level i ≠ z, the cells 
remained classified as DTCs, but became more differentiated, gaining one level of 
differentiation. DTCs at level z became terminally differentiated cells. Regardless 
of cell type, the recently differentiated cells restarted their cell cycles. However, if 
the cells were quiescent, they maintained their quiescent period. Dedifferentiation 
events were treated in a similar manner: we considered a differentiation level 
zrevert ≤ z above which cells could dedifferentiate. DTCs at levels 1 < i ≤ zrevert became 
more stem-like, losing a differentiation level. DTCs at differentiation level i = 1 
became GSCs. Terminally differentiated cells and DTCs at differentiation levels 
zrevert < i ≤ z remained unaffected. Again, quiescence is also unaffected.

Spatial structure and interactions between cells. Each simulation was initialized 
with a blood vessel with a radius of dradius cell radii and a single cell-thick layer of 
GSCs. The location of these endothelial cells was fixed throughout the simulation. 
Furthermore, a fraction pmicro of cells within a distance dmicro near the blood vessel 
are microenvironment cells, such as stromal cells. These microenvironment cells 
do not move or divide, but do provide constraints on cellular motion and can 
provide cell signalling38. Cells in the simulation each have a preferred cellular 
radius d and exert a force on other cells to ensure that cellular space. The cells 
naturally reside with their centres at a distance of two cell radii apart. The 
interaction stress between the cells is derived from the Lennard–Jones potential39. 
This stress was used to determine the force exerted on each cell and move the 
cells appropriately, therefore ensuring that no two cells were too close together. 
Glial cells are estimated to be roughly circular with a fixed radius of approximately 
2 μm. This encapsulated the region that the glial cell and its appendages would 
occupy. Thus, in these 2D simulations, each cell was defined physically as a circular 
area with a fixed radius r and a cell’s coordinates were defined on the basis of 
the cell centre. We centred the simulation on the blood vessel; as such, the cells 
comprising the blood vessel did not move. Microenvironmental cells were assumed 
to be fixed to an extracellular matrix and so are not pushed by other cells. Given 
the immobility of blood vessel and microenvironmental cells, all collision forces 
involving those cell types are propagated solely onto the colliding cell. We also 
assumed that GSCs were less motile than DTCs and were therefore less likely to 
move than the DTCs. Cells near the blood vessel are allowed to potentially change 
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their phenotypes at a probability that is proportional to the distance to the blood 
vessel to simulate the effects of microenvironment factors. Thus, only a fraction 
fSTEM of the total collision force was absorbed by stem cells while the remainder of 
the force affected DTCs. Collisions between cells of the same type distributed the 
force between the cells evenly.

Motion in this system was primarily the result of cell division. Cell division 
imposed forces between the resulting daughter cells. In stem cell niches, a 
gradient of soluble factors causes the spatial orientation of the offspring of stem 
cells40. Therefore, when a stem cell divided, the division occurred such that the 
more-differentiated daughter cell was oriented further away from the blood 
vessel, with a minimum separation distance imposed upon the cells. By contrast, 
non-stem divisions were randomly oriented. Once the division had occurred, 
normal collision resolution, as described above, was applied, separating the two 
daughter cells and propagating the motion to nearby cells. Although we did 
include a small term of random noise in the motion of cells, we did not consider 
high cellular motility and assumed that cells do not undergo high levels of either 
directed or undirected motion.

Radiotherapy. We considered the effects of radiotherapy to be independent of the 
spatial structure of the PVN—that is, the region of interest is small enough such 
that edge effects of radiation are not significant. As such, cell death in response 
to radiation was modelled by two probabilities: one probability for GSCs and one 
probability for DTCs. For type T, the probability of death from a single dose d of 
radiation was given by:

pT,radio (d) = 1 − exp
(

−αT × d − βT × d2
)

(1)

following the well-known and used linear-quadratic model of radiation 
response14. We related the two radiation-based death terms by the following 
equalities: αGSC = ρ × αTB and βGSC = ρ × βTB. Cells that did not die as a result of 
radiotherapy became quiescent for a type-dependent period of time—we modelled 
radiation-induced quiescence as an exponentially distributed increase in cell cycle 
length QT ~ QT,min + exponential(QT,mean), where QT,min is the minimum quiescent 
period for type T and QT,mean is the mean of the exponential distribution. Finally, 
radiotherapy is known to induce an increase in side population cells in gliomas18. 
As such, we considered a probability γ that a DTC undergoes a dedifferentiation 
event as described above.

TMZ. In contrast to the spatially uniform dose distribution of radiotherapy, 
the TMZ concentration is spatially heterogeneous and dependent on the spatial 
structure of the PVN. TMZ enters the tumour through absorption into the 
blood followed by diffusion into the PVN. Thus, we modelled a dose of TMZ 
as a combination of two functions. The blood concentration of TMZ, Cblood(t), 
was modelled by exponential absorption of drug into the bloodstream until a 
maximum concentration Cmax was reached, followed by an exponential decrease in 
drug concentration with half-life t1/2:

Cblood (t) =











(exp (rt) − 1) 2−
t

t1/2 t < tmax

Cmax2
−

t−tmax
t1/2 t ≥ tmax

(2)

where r =
ln





Cmax

2
−

t
t1/2

+1





tmax
The parameter r in the above equation converts the known fixed point 

(tmax, Cmax) into a rate of change of the drug concentration by solving the Cblood 
function. We based the functional form of the TMZ blood pharmacokinetic model 
on known pharmacokinetics of TMZ16. Diffusion of chemotherapeutic into the 
PVN was modelled by diffusion processes: we approximated the 2D diffusion 
partial differential equation:

∂C
∂t = D

( ∂2C
∂x2 +

∂2C
∂y2

)

(3)

with the fundamental solution for the 2D diffusion equation given a single point 
source, positioned on the edge of the blood vessel:

C (t) =

1
4πD

τ=t
∫

τ=0

1
t − τ

exp
( x2 + y2

4D (t − τ)

)

dτ (4)

As in the plasma, the TMZ degrades in the tumour. We assumed the half-life in 
tumour tissue to be similar to the half-life in the blood:

C (t) =

1
4πD

τ=t
∫

τ=0

C
t − τ

exp
( x2 + y2

4D (t − τ)
−

t − τ

t1/2
ln 2

)

dτ (5)

To calculate the fraction of cells that die in a given time step at the given 
concentration, we set the EC50 value, the concentration at which the drug gives 
half-maximal response, for TMZ to 0.004268 mol m−3 on the basis of experiments 
by Wedge et al.41 and calculated the ECF value for the concentration using the 
following equation:

ECF

( F
100 − F

)1/H
EC50 (6)

where H is the Hill coefficient.
We set the Hill slope to 1.0 to represent a standard dose curve. We then 

stochastically determined whether a cell is killed due to chemotherapy in a given 
time step due to the response to the existing concentration of the chemotherapeutic 
that diffused to that cell’s spatial location. Note that the values for determining 
diffusion and response to the dose level of TMZ are based on parameters estimated 
from data from mouse models14. To adjust the model to humans, these parameters 
should be adjusted to the values reported by Brock et al.42.

Radiosensitization by TMZ. We considered the effects of a potential synergistic 
interaction between TMZ and radiation through the introduction of a 
radiosensitization parameter based on local TMZ concentration. The calculation  
of the probability of cell death from a single dose d of radiation (equation (1))  
was modified to include a dependence on C(t), the concentration of the 
chemotherapeutic at the time of radiation administration and ksens, a constant 
representing the magnitude of the radiosensitization:

pT,radio (d) = 1 − exp(−αT × (1 + ksens × C (t)) × d − βT × d2) (7)

This modification to equation (1) enabled us to account for exposure to TMZ 
to make it more likely for a cell to die due to subsequent radiation. The likelihood 
of dedifferentiation or the time period of quiescence after radiation remained 
unchanged and modelled using the equations described above.

Parameter selection. Parameter estimates of cell cycle lengths for GSCs and 
non-stem-like cells were obtained from cell line experiments18. Estimation of z in 
GBMs is difficult; however, mouse experiments have determined the value z = 5 
for normal brain glial cells18. The value of zrevert is unknown; we tested the effect of 
varying this parameter by conducting a sensitivity analysis. The number of DTCs 
started to vary significantly only when zrevert was less than 2 or greater than 14. We 
set zrevert to 7 for the subsequent simulations.

Using this simulation model, we investigated a set of cellular interactions and 
environmental effects characterized by GBM biology. We allowed cells near the 
blood vessel to revert to less differentiated states at a probability proportional to 
their distance to the blood vessel to simulate the effects of microenvironmental 
factors such as endothelial nitric oxide (eNOS)38. The diffusivity of eNOS has 
been experimentally determined43; however, the necessary concentration to 
induce a stem-like phenotype remains unknown. We initially imposed a linear 
decrease in the probability of reversion with decreasing concentration of eNOS. 
Furthermore, we allowed for an outward migration of cells similar to the motility 
of oligodendrocytic progenitor cells by imposing a force fmove to each cell oriented 
away from the blood vessel. A probability pdeath of random cell death was also 
included and allowed to vary across differentiation levels. Therapeutic intervention 
was addressed as a change in the death dynamics of the system. During 
radiotherapy, cells undergoing proliferation are preferentially targeted; other cells 
die at much lower rates and instead halt their cell cycles for a period of time. By 
contrast, TMZ preferentially targets cells closest to the blood vessel since there the 
concentration of drug is largest; however, GSCs have lower rates of death compared 
with other cell types.

Schedule optimization and parallelization on a large-scale supercomputer. 
To derive optimized schedules, simulated annealing (SA)44 was used. SA is a 
probabilistic algorithm that draws from statistical physics45 and is used for a range 
of combinatorial optimization problems in which the goal is to identify, among 
many configurations, the one that minimizes a certain objective or fitness function; 
for example, the fitness function could be dependent on the total number of 
tumour cells over time such that the best schedule is the one that minimizes that 
number. The method starts with a template input and creates small perturbations 
from this template. The fitness function is then calculated for the perturbed input. 
If the fitness for the perturbed input is greater than that for the template input, 
then the perturbed input will serve as the template in the next iteration. If the 
fitness is lower, stochasticity is introduced by accepting the perturbation over the 
template with a certain probability that is gated by a time-dependent parameter 
and the degree of fitness degradation. At a fixed probability, the method will get a 
‘kick’ whereby a randomly generated topology perturbation will be introduced. We 
defined the fitness function for minimization as the number of DTCs.

We defined a parallel implementation of SA such that the search space could 
be maximized and the likelihood of staying in a local minimum reduced. The SA 
method was adapted to the problem of schedule optimization by starting with the 
standard of care set as the template schedule. Perturbations were then created that 
matched the constraints that are outlined above. For the parallel version, many 
different perturbations to the schedule were created for simultaneous testing. 
To address the stochasticity in the problem, 128 runs for each schedule were 
simultaneously modelled. The average fitness for each schedule was determined, 
which was used for comparison. This research was completed on the Vulcan 
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supercomputer, an IBM Blue Gene/Q system, at the Lawrence Livermore National 
Laboratory. To complete the necessary simulations, 36 million CPU hours (4,109 
years) on 131,072 cores were used.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within the paper 
and its Supplementary Information. The raw and analysed datasets generated 
during the study are too large to be publicly shared, yet they are available for 
research purposes from the corresponding authors on reasonable request.

Code availability
The custom code used in this study is available at GitHub (https://github.com/
arandles/chemoradiation) under the BSD-3-Clause open-source license.
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