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Fitness variation in isogenic populations leads
to a novel evolutionary mechanism for crossing
fitness valleys
Debra Van Egeren 1,2, Thomas Madsen1,3 & Franziska Michor 1,3,4,5,6,7

Individuals in a population often have different fitnesses even when they have identical

genotypes, but the effect of this variation on the evolution of a population through compli-

cated fitness landscapes is unknown. Here, we investigate how populations with non-genetic

fitness variation cross fitness valleys, common barriers to adaptation in rugged fitness

landscapes in which a population must pass through a deleterious intermediate to arrive at a

final advantageous stage. We develop a stochastic computational model describing the

dynamics of an asexually reproducing population crossing a fitness valley, in which individuals

of the same evolutionary stage can have variable fitnesses. We find that fitness variation that

persists over multiple generations increases the rate of valley crossing through a novel

evolutionary mechanism different from previously characterized mechanisms such as sto-

chastic tunneling. By reducing the strength of selection against deleterious intermediates,

persistent fitness variation allows for faster adaptation through rugged fitness landscapes.
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Variation in reproductive fitness among individuals of a
population is common. In some cases, this variation is due
to genetic heterogeneity, where multiple segregating

mutations with different fitness effects exist simultaneously in the
population1,2. However, recent work quantifying interdivision
times in isogenic mammalian cell populations demonstrated that
fitness variation can exist even among individuals with the same
genotype3,4 (Fig. 1a, b). This non-genetic fitness variation may
originate from several different intrinsic and extrinsic sources,
each of which can have different persistence timescales. For
example, gene expression heterogeneity has the potential to
modify a cell’s fitness5 and is a source of non-genetic resistance in
cancer6. These transcriptional fluctuations have been shown to
persist over 3–4 human cell divisions7. Epigenetic modifications
such as DNA methylation persist over longer timescales (>20 cell
divisions)8 and may represent an additional source of stable fit-
ness variation in genetically identical individuals. Here, we
investigated how this non-genetic fitness variation affects evolu-
tion through complex fitness landscapes, and how these effects
depend on the magnitude and persistence length of fitness
variation.

Background fitness variation has previously been shown to
affect evolutionary trajectories by reducing the strength of
selection for or against new mutations. This phenomenon is
known as clonal interference or the Hill–Robertson effect9,10 in
the context of genetic fitness variation. When new mutations
arise, they are linked to the genetic background of the individual
in which the mutation occurred. If a population includes many
different genotypes, this linkage leads to greater variability in the
relative fitness of new mutants, reducing the average magnitude
of the fitness effect of the mutation and leading to weaker
selection11–13. In sexually reproducing populations, genetic
recombination breaks the linkage between the mutation of

interest and other loci in the original genotype, removing any
fitness effect conferred by that genotype in subsequent genera-
tions14. While the Hill–Robertson effect has been extensively
investigated in the context of a single locus or multiple inde-
pendent loci, the effect of fitness variation on populations in
rugged fitness landscapes with sign epistasis is less well under-
stood. Here, we investigate how stable fitness variation affects the
evolution of populations crossing fitness valleys, which are fre-
quently found in complex fitness landscapes.

Fitness valleys are barriers to adaptation that exist when a
population of individuals can acquire an advantageous trait only
by passing through an intermediate stage of lower fitness
(Fig. 1c). During tumorigenesis, for example, fitness valleys are
represented by situations in which cells that lost one functional
copy of a tumor suppressor gene are less fit than the original
population15. Other examples arise during the development of
antibiotic resistance in bacteria16, and immune system escape in
influenza17 and HIV18, and affect the speed and trajectory of
evolutionary adaptation in these populations. In particular,
selection against the deleterious intermediate stage decreases the
rate at which individuals of the final, advantageous evolutionary
stage arise, rendering adaptation to the fitness peak difficult.
Previous work19 characterizing the dynamics of valley crossing
identified two mechanisms by which populations can overcome
this adaptation barrier (Fig. 1d). First, in smaller populations with
a weakly deleterious intermediate, the intermediate stage may
reach 100% frequency via drift, after which final-stage individuals
emerge and sweep throughout the population. This evolutionary
mechanism is referred to as sequential fixation. However,
increasing the population size or the valley depth decreases the
chance of the population evolving along this route. In these cases,
valley crossing often occurs through a second mechanism known
as stochastic tunneling, in which final-stage individuals emerge
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Fig. 1 Variable fitness values in isogenic populations and mechanisms of adaptation to rugged fitness landscapes. a Single cell interdivision times in lineages
of primary murine CD8+ T cells and a murine lymphocytic leukemia cell line (L1210). Division times of cells in each generation (green and blue circles) are
variable, as shown by their distribution across the time axis. b Fitness distributions estimated from single cell PC9 (a human lung cancer cell line), CD8+,
and L1210 interdivision time data. Fitness is estimated as the reciprocal of the interdivision time. All distributions are scaled to have mean 1 and equal
variance. c Illustration of a fitness valley. Individuals of the initial evolutionary stage have fitness r0, individuals of the intermediate stage have a lower
fitness r1, and individuals of the final stage have a higher fitness r2. d Illustration of mechanisms of fitness valley crossing. If stochastic tunneling occurs,
individuals of the final evolutionary stage emerge before the individuals of the intermediate stage take over the population (top). Without tunneling, the
disadvantageous intermediate type fixes before the final advantageous trait emerges and fixes in the population (bottom)
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and reach fixation in the population before the deleterious
intermediate does20–22. The rates of both of these valley crossing
mechanisms have been derived for asexually reproducing popu-
lations without background genetic variation23.

The dynamics of fitness valley crossing has previously been
shown in models of viral dynamics to be affected by genetic clonal
interference and recombination. Neher and Shraiman derived the
rate of fixation of new mutations and the rate of stochastic tun-
neling for a mathematical model of HIV replication and recom-
bination in which mutations are common and clonal interference
is frequent24. They showed that the rate of fixation of the dele-
terious intermediate and the rate of stochastic tunneling are higher
in populations with more clonal interference, i.e., low recombi-
nation rates and high background fitness variation, leading to an
increased rate of fitness valley crossing. We hypothesized that a
similar increase in valley crossing rates also results from non-
genetic variation in genetically identical individuals. While prior
theoretical work suggests that a similar reduction in selection
strength results from noise in gene expression levels25, the effect of
non-genetic background fitness on evolution in more complex
fitness landscapes has not yet been systematically explored.

Here, we design a computational model in which small, fre-
quent stochastic fitness alterations generate population-level fit-
ness variation, recapitulating many of the features observed in
isogenic cell populations. Using this model, we find that non-
genetic fitness variation that persists across multiple generations
increases the rate of valley crossing. This increase in the rate of
valley crossing occurs via a new mechanism in which the emer-
gence of individuals of the intermediate stage with high-fitness
backgrounds increases the rate of intermediate-stage fixation.
Additionally, we show that the adaptation rate is increased as the
magnitude of the background non-genetic fitness variation
increases or as the persistence timescale of the fitness alterations
lengthens. Therefore, by reducing the efficacy of selection against
weakly deleterious intermediate traits, stable background fitness
variation increases the rate of adaptation in rugged fitness land-
scapes and leads to a novel evolutionary mechanism of crossing
fitness valleys.

Results
Fitness alterations lead to steady-state fitness variation. To
investigate the role of background fitness variation on the
dynamics of valley crossing, we considered a modified Moran
process26 in which asexually reproducing individuals acquire
(epi)genetic alterations that change their fitness during every
reproductive event (Fig. 2a, Methods). During its ith reproductive
event, an individual acquires a new multiplicative fitness effect mi

~ F(1, V) drawn from a distribution of fitness effects centered
around neutrality (mi= 1) with variance V. Each stochastic fit-
ness alteration persists through exactly τ cell divisions, including
the division in which the alteration was acquired. If fitness effects
are permanent (τ=∞), the mean fitness of the population
increases without bound due to selection; otherwise, the mean
population fitness fluctuates around a steady-state level (Fig. 2b).
The width of the steady-state relative fitness distribution increases
with the variance of the fitness effect distribution, V (Supple-
mentary Figure 1) and with the persistence timescale τ of fitness
alterations (Fig. 2c). Additionally, as fitness alterations become
more persistent, i.e., as τ increases, the shape of the steady-state
fitness distribution becomes less sensitive to the shape of the
fitness effect distribution, F (Supplementary Figure 2a-c). We
found that four different fitness effect distributions F (log-normal,
gamma, exponential, and centered Bernoulli) resulted in steady-
state fitness distributions that are similar to each other (Methods,
Supplementary Figure 2d). We used a log-normal distribution for

F for the remainder of our investigations as a representative
example.

Using this model, we found that the fitness distributions in
simulated populations with non-genetic fitness variation were
similar to fitness distributions measured in isogenic single cell
experiments (Fig. 2d). Using single-cell interdivision time data,
we estimated the fitness distribution of three types of cells: a
human non-small cell lung cancer cell line (PC9)27, primary
murine CD8+ T cells, and a murine lymphocytic leukemia cell
line (L1210)4 (Methods). We found that these experimentally
derived distributions were not significantly different from our
simulated distributions with fitness effects that persist over
10 generations (p= 0.99 for both CD8+ and L1210 fitness
distributions; Methods). Results from our variable fitness model
are, therefore, consistent with the experimentally observed fitness
distributions. However, multiple different sets of simulation
parameter values (τ, F, and V) result in similar population fitness
distributions. Therefore, we were unable to infer unique
combinations of τ, F, and V that would best match the
experimental data, but some of these parameter values are more
likely to be biologically relevant than others, such as τ on the
order of 3–20 generations7,8.

Stable fitness variation promotes valley crossing. To investigate
how populations with non-genetic fitness variation cross rugged
fitness landscapes, we specified a two-step evolutionary model
defining a fitness valley (Fig. 3a, Methods). During each repro-
duction event, individuals draw new random fitness effects as
described above, but also may mutate to the next evolutionary
stage. The population begins in the initial evolutionary stage S0
with average fitness r0. Here, we specify r0= 1 for simplicity.
Individuals of stage S0 can acquire a mutation to transition to the
intermediate stage S1 with probability u1 during each reproduc-
tive event. This transition to the intermediate stage is associated
with a multiplicative fitness cost r1/r0 < 1. Thus an S0 individual
with fitness w after the stochastic fitness alteration process gives
rise to a mutated S1 daughter with fitness w × (r1/r0).
Intermediate-stage individuals can then mutate to the final,
advantageous evolutionary stage with probability u2 per repro-
ductive event. The fitness of the final-stage relative to that of the
initial S0 individuals is given by r2 > r0, and the fitness benefit
conferred by the transition from S1 to S2 is therefore r2/r1 > 1. We
implemented this model as a stochastic computer simulation to
determine the rate of crossing fitness valleys and of stochastic
tunneling in populations with intra-stage fitness variability.

We found that populations with fitness variation that is stable
over multiple generations cross fitness valleys more quickly than
populations with no persistent fitness variation (Fig. 3b). In our
model, we assume that there is no back mutation since many
mutations that affect fitness are loss-of-function mutations which
have a very low reversal rate. Therefore, the final evolutionary
stage will eventually reach fixation in all populations. However,
the state of populations at intermediate timescales differ
depending on their non-genetic fitness variation properties. Here,
we focused on the state of populations after 3650 generations,
corresponding to timescales relevant for tumorigenesis28, and
found that this increased rate of adaptation strongly depends on
the fitness effect persistence timescale τ (Fig. 3c). Using the
parameter values shown in Table 1, if stochastic fitness alterations
only persist for approximately 1–10 generations, intra-stage
fitness variation does not result in valley crossing rates that are
different from those observed in the zero-variance model with no
intra-stage fitness variation. Additionally, populations with stable
fitness variation that acquire the final, advantageous trait are
more likely to cross the fitness valley without tunneling (Fig. 3d).
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These observations suggest that individuals with the disadvanta-
geous intermediate trait are more likely to fix when there is
persistent fitness variation in the population, which represents a
new, tunneling-independent mechanism of valley crossing.

Our results are robust to the shape of the fitness effect
distribution (Supplementary Figure 3) and the mutation rates
between the evolutionary stages (Supplementary Figure 4). The
mean relative fitness advantage of the final stage affects valley
crossing trajectories for lower values of the fitness advantage r2,
for which drift plays a more important role in the fixation of the
final evolutionary stage (Supplementary Figure 5). The effect of
persistent variation is most pronounced in intermediately sized
populations (Supplementary Figure 6). In large populations
(thousands of cells or more), stochastic tunneling is inevitably
the fastest trajectory for crossing the fitness valley. In smaller
populations, drift dominates and reduces the effects of selection,
leading to frequent fixation of the intermediate stage and
reducing the incidence of tunneling. Finally, this increase in
the valley crossing rate is observed in populations in which

non-genetic fitness effects do not have fixed lifetimes, but rather
have a fixed probability of reversion at every reproductive event,
leading to geometrically distributed effect lifetimes (Supplemen-
tary Figure 7, Methods). In this model, even fitness effects that are
expected to persist only for a few generations (>3 generations)
have an impact on valley crossing dynamics, which is in contrast
to our results from the deterministic lifetime model (Fig. 3c). This
difference between the deterministic and geometrically distrib-
uted non-genetic effect lifetime models is likely due to very long-
lived fitness effects from the heavy tail of the geometric lifetime
distribution that persist beyond the mean lifetime τ.

Fitness effect parameters affect valley crossing dynamics. We
hypothesized that an association of the disadvantageous trait with
a high-fitness background could explain the increase in the
fixation probability of the intermediate stage observed in popu-
lations with fitness variation. If the disadvantageous trait arises in
a particularly fit individual in the initial population that has
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accumulated stable beneficial fitness alterations, it will pass on
that advantage to its descendants, increasing the chance of fixa-
tion of that lineage. If associations arising by chance between
beneficial fitness backgrounds and the disadvantageous trait
explain our results, there should be two important characteristics
that affect the incidence of this novel valley crossing mechanism
in a population with fitness variation: First, the frequency of
emergence of intermediate-stage individuals with high-fitness
backgrounds; and second, the efficacy with which these indivi-
duals pass their fitness advantage on to their descendants.

The ability of a population to generate new intermediate-stage
individuals with relatively high fitnesses depends on the variance
V of the distribution of fitness effects. Larger values of V lead to
greater variability in the fitness of new intermediate-stage
mutants, in part by increasing the steady-state population
variance. Increasing V will therefore increase the chance of
generating particularly high-fitness intermediate individuals,
ultimately leading to higher rates of valley crossing without
stochastic tunneling. This prediction is validated by our
simulation data (Fig. 4a, b, Supplementary Figure 8). We also
found that populations with larger values of V are able to cross
deeper fitness valleys, again because they are able to produce a
small number of intermediates with relatively high fitnesses
despite large fitness disadvantages due to the deleterious
mutation.

The fitness effect persistence lifetime τ influences the fixation
probability of intermediate-stage individuals by modulating the
effect of a beneficial fitness background of a new intermediate
individual. Lower values of τ (less persistent non-genetic fitness
alterations) imply that any background fitness gains present in a
particular intermediate-stage individual will not be passed down
to many of its descendants and will not persist over the long
timescales needed to substantially affect its overall fixation
probability. Indeed, we found that for lower values of τ,
intermediate individuals that initially have high relative fitness
are about as likely to generate a successful lineage as individuals
with lower initial fitness (Fig. 4c). However, as τ increases,
intermediate-stage individuals with higher relative fitnesses
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Table 1 Simulation parameter values

Parameter Value Description

N 100 Number of individuals
F Log-normal Fitness effect distribution
V 1 × 10−4 Variance of F
u1 1 × 10−4 Initial to intermediate-stage mutation

rate
u2 2 × 10−4 Intermediate to final-stage mutation

rate
r0 1 Initial stage starting mean fitness
r1 0.95 Intermediate stage fitness disadvantage
r2 5 Final-stage fitness advantage
Tmax 3650(N) Truncation time (in elementary steps)

The definitions and default values chosen for each parameter of our model. All simulations were
performed with these values unless otherwise specified
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become more likely to establish a successful final-stage lineage.
The beneficial fitness alterations present in these intermediate
individuals are able to persist through several reproductive events
and ultimately have a greater impact on the fate of the new
lineage. The stability of the fitness effects across multiple
generations remains an important determinant of valley crossing
trajectories even after controlling for the increase in the steady-
state fitness distribution width at higher values of τ (Fig. 4d, e).

Discussion
Here, we characterized a mathematical model describing the rate
and mechanisms of adaptation to rugged fitness landscapes of
populations with inter-individual variation in fitness. Using this
model, we showed that populations with fitness variation that
persists across multiple generations can cross fitness valleys more
quickly than populations without such variation; the evolutionary

mechanism by which these populations adapt to such landscapes
allows them to fix the deleterious intermediate stage by hitch-
hiking on stochastically accumulated high-fitness backgrounds.
The magnitude of this effect strongly depends on the number of
generations over which fitness variation persists, the valley depth,
and the variance of the fitness effect distribution. Our analyses
revealed that populations with frequent fitness alterations medi-
ated by epigenetic mechanisms that are stable over multiple
generations are more likely to cross fitness valleys without sto-
chastic tunneling.

The dependence of this effect on the fitness effect lifetime is
supported by previous work on similar evolutionary phenomena.
Prior characterizations of the Hill–Robertson effect emphasize
that recombination reduces the impact of a variable fitness
background on the fate of a linked mutation9,10. In those con-
tributions, the recombination rate effects are related to the
timescale of association of the fitness background with the genetic
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mutations that specify the fitness valley—more recombination
implies that the fitness background has less of an impact on the
fate of a mutation over the time period during which it is seg-
regating in the population. Therefore, if the linkage between fit-
ness background and the trait in question is weak, theoretical
descriptions of Hill–Robertson interference predict that the effect
of fitness variation on selection is minimal. Similar observations
were made in our model when τ was small. Note that the effect of
the fitness effect lifetime τ on the adaptation rate is modulated by
other parameters in our model such as the amount of standing
fitness variation in the population. Therefore, there is no constant
critical threshold of τ for all populations below which stochastic
fitness alterations have a negligible impact on evolution.

The depth of fitness valleys that can be crossed with our
observed evolutionary mechanism increases with enhanced fit-
ness variation. Many deleterious mutations have low selection
coefficients (corresponding to valley depths r1/r0 > 0.9) as deter-
mined experimentally1,29, corresponding to the parameter regime
in which we observe this effect. Therefore, our proposed
mechanism for crossing fitness valleys may affect all evolutionary
trajectories through these deleterious states even at minimal fit-
ness distribution variances (V ~ 10−4–10−5) by increasing the
rate of fixation of deleterious mutations.

The population size N is particularly important for determin-
ing drift-selection dynamics relevant to valley crossing situations.
Previous work has demonstrated that intermediately sized
populations are governed by ‘one-hit’ dynamics when crossing
fitness valleys19. By accelerating the rate-limiting step of gen-
erating a substantially sized population of intermediate-stage
individuals, persistent fitness variation speeds up adaptation in
this range of population sizes. Such situations are of special
interest in carcinogenesis; for instance, colonic crypts are popu-
lated by a small number of stem cells30. In such situations,
increasing the amount of fitness variation (for example by
acquiring a mutator phenotype) may increase the rate of fixing
mutations with mildly deleterious fitness effects that can never-
theless lead to further adaptation.

While we demonstrated that stable fitness variation increases
the rate of adaptation of a population in a specific fitness land-
scape topology (fitness valleys), this type of heterogeneity also has
important consequences that affect evolution through other fit-
ness landscapes. One immediate consequence of the observed
increased fixation probability of weakly deleterious mutations is
an increased deleterious mutational load. These deleterious
mutations may potentiate further adaptation by acting as inter-
mediate stages in fitness valleys but may also lower the overall
population fitness. Furthermore, just as background fitness var-
iation reduces the strength of selection against deleterious
mutations, it also reduces the strength of selection for weakly
beneficial mutations, possibly hindering adaptation. These effects
may influence the way heterogeneous populations move through
fitness landscapes. Therefore, further theoretical and experi-
mental studies on more general fitness landscapes are warranted
and will lead to additional insight into the consequences of non-
genetic sources of inter-individual fitness variation.

Methods
Computational evolutionary model with fitness variation. Our model is a
variation of the standard Moran model of evolutionary dynamics that describes
fitness valley crossing with different amounts of fitness variation that persist over
one or more generations. In the Moran model, S0, S1, and S2 denote the initial,
intermediate, and final evolutionary stages (or ‘types’ of individuals), respectively.
The process initiates with a population of N asexually reproducing S0 individuals.
At every elementary time step, one individual is chosen to reproduce randomly
with a probability that is proportional to its fitness. Another individual is chosen at
random to die. The reproducing individual (‘mother’) gives rise to two daughters;
one daughter replaces the mother, and the other replaces the dead individual, so

that the total population size remains constant at all times. When dividing, one
daughter may mutate to the next evolutionary stage with probability u1 if the
mother is S0 and u2 if the mother is S1. No back mutation is permitted. The process
continues until S2 fixation is achieved or for Tmax elementary steps, whichever
comes first.

Here, we refer to the simplest model where all individuals of the same
evolutionary stage have the same fitness as the “zero-variance” model. We
compared this zero-variance model with a Moran model that incorporates fitness
variation within evolutionary stages. In this new model, fitness variation within
stages is caused by stochastic alterations in fitness that occur with every
reproductive event. These alterations are described by a distribution of fitness
effects that defines the probability of acquiring an alteration with a given fitness
effect, and an effect lifetime τ that specifies the number of generations for which
each alteration is inherited.

More specifically, let a particular individual in a population have absolute
fitness wi after its ith reproduction. This fitness

wi ¼ rj
Yi

k¼i�τþ1

mk

is the product of an evolutionary stage-specific fitness effect rj for a stage-j
individual and one or more stochastically acquired fitness alterations mk. The
values rj (which have the value r0 for initial-stage individuals, r1 for intermediate-
stage individuals, and r2 for final-stage individuals; r2 > r0 > r1) define the depth of
the fitness valley. For simplicity, r0 is set to 1 for the entire study. The fitness
alterations mk are drawn at each reproductive event k from a fitness effect
distribution F with mean 1 and variance V. Mothers pass on the same value of the
fitness alteration mk to both of their daughters at reproduction k to recapitulate the
high interdivision time correlations between sister cells observed in single cell
experiments3. Each fitness alteration persists through exactly τ reproductive events,
including the reproductive event that generated that alteration. Therefore, when
τ= 1, fitness alterations are not passed down to subsequent generations. In this
case, during each reproduction event, a new fitness for the dividing cell is selected
according to F, and the steady-state relative fitness distribution of a population of a
single evolutionary is equivalent to F. Conversely, as τ goes to infinity, fitness
alterations are permanent. The zero-variance model both represents the limit as
τ goes to 0 and the limit as V goes to 0.

All fitness modifications are modeled on the multiplicative scale (i.e., as a
percent change in fitness, rather than an addition or subtraction) to ensure that the
relative fitness advantage or penalty associated with a mutation does not change as
the absolute population mean fitness drifts upward in populations with long τ.
However, our results also hold when the fitness modifications are modeled on an
additive scale (Supplementary Figure 9); the disadvantage of this approach is that
the fitness penalties and bonuses associated with a mutation diminish as the overall
fitness of the population grows.

In most of our simulations, all sources of non-genetic fitness changes that occur
during a single reproduction create a single fitness alteration with one combined
fitness effect and a deterministic lifetime. However, in Supplementary Figure 7,
each non-genetic fitness alteration that occurs during reproduction is modeled as a
separate event. In this modified version of the model, a Poisson-distributed number
of these events occurs during reproduction, with an average of one event occurring
per reproduction. During subsequent generations, each individual alteration has a
fixed probability of reversion, leading to fitness effect lifetimes that are
geometrically distributed. Simulations of this evolutionary model are parameterized
by the expected fitness effect lifetime τ.

Fitness effect distributions. We investigated four different distributions for F: the
log-normal, double-exponential (Laplace), gamma, and centered Bernoulli dis-
tributions. Parameters for these distributions were chosen to provide mean 1 and
the appropriate variance. The log-normal distribution was used for the majority of
simulations, since the steady-state population fitness distribution is similar to the
experimentally measured distributions, even when fitness effects do not persist
beyond a single generation. The log-normal distribution provides similar results to
simulations using the other distributions, including the heavier-tailed exponential
and gamma distributions, which have previously been shown to describe muta-
tional fitness effect distributions31,32. The centered Bernoulli distribution repre-
sents the case in which all epigenetic changes have the same fitness effect
magnitude and are beneficial or deleterious with the same probability, and is
defined by the probability mass function

P kð Þ ¼
1
2 for k ¼ � ffiffiffiffi

V
p

1
2 for k ¼

ffiffiffiffi
V

p
(

:

Estimation of single cell fitness distributions. The CD8+ and L1210 fitness
distributions were estimated from single cell interdivision time data for two types
of murine cells4 (Fig. 1b). For the PC9 cell line, we leveraged previous work33

demonstrating that an exponentially modified Gaussian provides a good fit to the
intermitotic time distribution of these cells. We therefore used the maximum
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likelihood parameter estimates for PC9 cells treated with dimethyl sulfoxide
(DMSO) reported previously to estimate the PC9 fitness distribution27 (Supple-
mentary Figure 10). To estimate the corresponding fitness distributions for all three
cell types, we considered fitness to be inversely proportional to interdivision time;
this assumption enables us to create an empirical fitness distribution for each
cell type.

Comparison of simulated/experimental fitness distributions. To determine
whether the experimentally measured CD8+ and L1210 single cell fitness dis-
tributions could have been generated by our evolutionary model with permanent
non-genetic fitness alterations, we estimated the probability that the experimentally
measured distributions would be at least as different from our simulated fitness
distributions as we observed, using a two-tailed goodness-of-fit z-test34. Specifi-
cally, we tested the null hypothesis that

H0 : g xð Þ ¼ hðxÞ;

where g(x) is the experimentally measured fitness distribution (CD8+ or L1210)
and h(x) is the simulated fitness distribution of our model, with a log-normal
fitness effect distribution and non-genetic fitness effects that persist over 10 gen-
erations (τ = 10). The experimental distribution is sampled by n i.i.d. measured cell
fitnesses Xj, which are scaled and shifted to have the same mean and variance as the
simulated distribution. The mean-squared error (MSE) between the distributions

MSE ¼ R
g xð Þ � hðxÞð Þ2dx

¼ R
g2 xð ÞdxþR

h2 xð Þdx � 2
R
g xð Þh xð Þdx

can be estimated as

dMSE ¼ 1
n

Xn
i¼1

cg�i Xið Þ þ
Z

ĥ2 xð Þdx � 2
n

Xn
i¼1

ĥðXiÞ;

where cg�iðxÞ is the leave-one-out Gaussian kernel density estimate of g(x) from all
experimental data except the measurement Xi and ĥðxÞ is the Gaussian kernel
density estimate of the simulated distribution h(x). This estimated MSE is
asymptotically normal under the null hypothesis, with the test statistic

dMSEPn
i¼1

Pn
j¼1 K

2 Xi�Xj

h

� �� �1=2
!D Nð0; 1Þ;

where K is the Gaussian kernel function with bandwidth h used to estimate g(x)
above.

Estimation of simulated tunneling and fixation probabilities. Our results focus
on differences in the estimated final-stage fixation probability (i.e., proportion of
simulations that result in fixation of final stage individuals before 3650 generations
have passed) and the tunneling probability between simulated conditions. Here, we
define the tunneling probability as the conditional probability that intermediate
stage individuals fix at some point during the simulation, given that the final stage
fixes by the end of the simulation. We estimated the tunneling probability as

P̂ðtunneljfixÞ ¼ P̂ðtunneljfixÞ
P̂ðfixÞ

where the joint probability of tunneling and final stage fixation and the fixation
probability are directly estimated from the proportion of simulations with final-
stage fixation and tunneling or the frequency of final-stage fixation, respectively.

We used a similar strategy to estimate the conditional probability that a new
intermediate-stage mutant will give rise to a final stage lineage that fixes by the end
of the simulation, given that it arises with a specific relative fitness. Using Bayes’
theorem, we estimated

P̂ðfix final stagejfitnessÞ ¼ P̂ðfitnessjfix final stageÞP̂ðfix final stageÞ
P̂ðfitnessÞ

by estimating the density of fitnesses of new intermediate-stage individuals that
eventually lead to final-stage fixation (the conditional distribution P(fitness|fix final
stage)), the total density of all new intermediate stage individuals P(fitness), and the
overall frequency of new intermediate stage individuals that eventually lead to
final-stage fixation. In Fig. 4c, the fitness distributions for each condition were
estimated from all intermediate individuals created by de novo mutation in 10,000
independent simulations (approximately 300,000 individuals total). Probability
density functions were estimated by Gaussian kernel smoothing in R (version
1.0.143). The total probability of fixation of new intermediate-stage individuals was
estimated as the proportion of all new intermediate individuals that generate a
successful final stage lineage in 10,000 independent simulations per condition.

Study design and reproducibility. The number of simulations performed for each
condition (typically 10,000 trials) was chosen such that enough adaptation events
were observed to confidently estimate the mean tunneling probability for each
condition. For a conservative estimate of a final-stage adaptation probability of 0.1,
approximately 1000 adaptation events were observed, leading to an acceptable
standard error of the estimated tunneling probability of at most 0.016 (CV ~2%).

The findings from this study were verified for limiting cases of the simulation
parameters with separate custom simulation code by one of the authors who had
not seen the software used to generate the data presented in the paper. None of the
conditions tested had results that were unable to be reproduced. No data were
excluded from analysis. As this was a theoretical study, no blinding or
randomization methods were used.

Code availability. The stochastic evolutionary dynamics C++ software package
used for all simulations is available on GitHub (https://github.com/Michorlab/
evo_sim), with documentation. Input files to the simulation software used to
generate the results presented here are available at https://doi.org/10.7910/DVN/
5D6YPB within each individual data directory. Custom Python 2.7 and R scripts (R
version 3.4.1) used for data analysis and visualization are available with the data at
https://doi.org/10.7910/DVN/5D6YPB.

Data availability
Raw simulation data generated and analyzed in this study are available in the Harvard
Dataverse at https://doi.org/10.7910/DVN/5D6YPB.
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