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Hidden heterogeneity and circadian-controlled
cell fate inferred from single cell lineages
Shaon Chakrabarti1,2,3, Andrew L. Paek4,9, Jose Reyes4, Kathleen A. Lasick5,

Galit Lahav 4,6,7 & Franziska Michor 1,2,3,6,7,8

The origin of lineage correlations among single cells and the extent of heterogeneity in their

intermitotic times (IMT) and apoptosis times (AT) remain incompletely understood. Here we

developed single cell lineage-tracking experiments and computational algorithms to uncover

correlations and heterogeneity in the IMT and AT of a colon cancer cell line before and during

cisplatin treatment. These correlations could not be explained using simple protein produc-

tion/degradation models. Sister cell fates were similar regardless of whether they divided

before or after cisplatin administration and did not arise from proximity-related factors,

suggesting fate determination early in a cell’s lifetime. Based on these findings, we developed

a theoretical model explaining how the observed correlation structure can arise from oscil-

latory mechanisms underlying cell fate control. Our model recapitulated the data only with

very specific oscillation periods that fit measured circadian rhythms, thereby suggesting an

important role of the circadian clock in controlling cellular fates.
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E lucidating the mechanisms of cell cycle control has been one
of the most important endeavors in cell biology over the last
decades. Since the seminal discoveries of the cdc and wee

genes in yeast and the introduction of the idea of cell cycle
checkpoints1–3, much effort has been devoted to characterizing
the genes and proteins that act in concert to regulate the cell
cycle4. An important breakthrough in this regard has been the
recognition that the circadian rhythm likely plays a crucial role in
cell cycle control. While historically the cell cycle has been con-
sidered to be independent of the circadian clock, there is emer-
ging evidence that these two processes may be intricately
connected, with the circadian clock providing an extra layer of
control on the cell cycle5–7. Not surprisingly, the coupling
between the circadian clock, cell cycle and cell death pathways (or
the lack thereof) has major implications for anti-cancer thera-
pies8–10, and forms the basis of the emerging field of cancer
chronotherapy11. Whether any coupling exists in different cancer
types, the possible phenotypic outcomes of such a coupling, and
how it can potentially drive heterogeneous cellular responses to
cancer therapies remain fundamental questions to be addressed.

A recent study12 proposed that correlation structures in the
inter-mitotic times (IMT) of cells, which have been observed in
several experiments over the past decades12–17, could be gener-
ated as a result of circadian gating of the cell cycle. The origin of
these intricate correlation structures among cellular lineages has
been the subject of intense study, since they are expected to act as
key probes into the underlying biochemical and physical pro-
cesses governing cell cycle dynamics12–18. The recently proposed
circadian model can in principle capture the observed correla-
tions in IMT, including the widely varying mother–daughter
relationships and the so called cousin–mother inequality12,19
(where the cousin correlation in IMT is greater than the
mother–daughter correlation), but it does not account for the
distinct shapes of IMT distributions that have consistently been
observed in previous studies20,21. Inferring these distributions
from single cell data is a challenging task in scenarios with
multiple possible fates due to biases introduced in the observed
data as a result of stochastic competition among cellular fates22.
Current methods of inferring these distributions do not account
for this competition effect20, and hence are applicable only in
limited scenarios where a single fate dominates—for example
when drug concentrations are very low or very high. In addition,
there is evidence for the existence of strong correlations among
times to death of sister and cousin cells22–26. However, all pre-
vious computational approaches describe mechanisms that spe-
cifically explore correlations in either IMT or apoptosis times
(AT), and do not provide a unified approach to explain the
experimental observations in a comprehensive manner. Existing
models therefore cannot explain the entire set of observations
obtained from single cell lineage tracking experiments.

Here we set out to design an integrative method to address
these fundamental issues. We generated single cell lineage
tracking data of human colorectal cancer cells (HCT116), both in
the absence and presence of the chemotherapeutic agent cisplatin,
to explore lineage correlation structures in IMT and AT of cells.
We found complex correlation structures both in IMT and AT,
which depend on the degree of relatedness of the cells. Interest-
ingly, we also found that related cells display a large degree of
similarity in p53 dynamics and cell fate after cisplatin treatment,
providing strong evidence that cellular heterogeneity prior to
drug treatment predisposes cells to specific fates. This result is
reminiscent of previous work on TRAIL-induced apoptosis24 and
proliferation-quiescence fate choices in cells27,28, and suggests
that heterogeneous levels of proteins passed on from mother to
daughter cells can to a large extent determine cell fates early in
the daughter cell’s lifetime. Based on this result, we developed a
theoretical model in which the phase of a cellular oscillator at the
time when a mother cell divides controls eventual cell fate
probabilities in the daughters. To investigate the ability of this

theory to explain our experimental observations, we developed
two computational algorithms: (1) a general statistical method to
quantify the large extent of drug-induced hidden heterogeneities
in IMT, which cannot be directly observed in the data due to
stochastic competition between cell division and death events22,
and (2) a computational algorithm to mimic single cell lineage
tracking experiments allowing for oscillatory control of cell fates.
We showed that this integrative method, using a minimal set of
tunable parameters, can explain the entirety of the correlation
structures in addition to accounting for hidden heterogeneities.
Importantly, using the same theoretical formulation while
switching to physically realistic but non-oscillatory models of cell
fate control failed to recapitulate the cousin-mother inequality. In
addition, our model was not able to reproduce the
correlation structures for most values of the oscillation period,
except for a period of 24 h and a few other multiples of 12 h such
as 12 and 48 h. Our work therefore suggests an important role of
the circadian clock in controlling times to cellular fates, both in
the presence and absence of drugs, and provides a widely
applicable method for correctly inferring heterogeneities in times
to cell fate from single cell data.

Results
Correlation structures before and after cisplatin treatment. In
order to obtain accurate single cell lineage data on cell fates and
times to cell fates, we used HCT116 p53-VKI human colon cancer
cells, a previously established clonal cell line in which one allele of
the endogenous TP53 gene is tagged with the Venus fluorescent
protein29. We imaged untreated, proliferating HCT116 p53-VKI
cells for two days, followed by a switch to fresh media with 12.5
μM cisplatin. Time lapse microscopy and lineage tracking was
then continued for another three days after cisplatin adminis-
tration, and times at which cell divisions and death events took
place were recorded throughout (Fig. 1a, Supplementary Fig-
ure 14 and 15, Supplementary Movie 1). Intermitotic and apop-
tosis times (IMT and AT, respectively) were defined from the
time a cell was born to the time of mitosis or death (Fig. 1b). We
classified these events into three categories—events that occur
entirely before the time of cisplatin administration (Td), events
that straddle Td, and those that occur after Td (Fig. 1b).

By computing correlation structures in times to division before
cisplatin administration (Fig. 1c–e, Supplementary section 1), we
found that the mother–daughter correlation in IMT is insignif-
icantly different from 0 (Pearson correlation, ρ � �0:03 for 71
pairs, P-val [t-test]= 0.7, 95% CI [−0.26, 0.16]), sister correla-
tions are large (ρ � 0:73 for 80 sister pairs, P-val [t-test]= 2.9 ×
10−14, 95% CI [0.6, 0.8]), and the cousin–mother inequality12,30

(where the cousin correlations are larger than the
mother–daughter correlations) is satisfied (ρ ~ 0.34 for 46 cousin
pairs, P-val [t-test]= 0.02, 95% CI [0.1, 0.57]). Here sister cells
are defined as cells with the same mother while cousins are cells
whose mothers were sisters. For division events straddling Td (red
cells in Fig. 1b), we observed similar correlations among sisters
and cousins, though smaller in magnitude (Supplementary
section 1, Supplementary Figure 1). Note that for these events
mother–daughter relationships are not defined, since the mothers
are not part of this category. The apoptosis times (AT) of sister
and cousin pairs of cells treated with cisplatin (red and green cells
that die in Fig. 1b) also show significantly positive correlations
(Fig. 1f, g; ρ � 0:64 for 93 sister pairs, P-val [t-test]
= 3:09 ´ 10�12, 95% CI [0.48, 0.78]; ρ � 0:38 for 60 cousin pairs,
P-val [t-test]= 0.001, 95% CI [0.15, 0.54]).

We then explored correlations in cell fates after
cisplatin administration (Fig. 2a–b). We found that sister cells
shared the same fate (death or survival) about 80% of the time,
regardless of whether sisters divided before or after cisplatin
treatment (Fig. 2a, b). If cell fates were independent, sisters would
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be expected to share the same fate ~53% of the time (see
Supplementary section 2 for calculations). The similarity in fates
of related cells diminished with increasing numbers of divisions
separating the cells (Supplementary Figure 2a). Cells separated by
four divisions (3rd cousins) shared the same fate in similar

proportions to unrelated cells. We observed similar trends when
cell division following cisplatin treatment was also incorporated
into cell fate considerations (Supplementary Figure 2b, c). To rule
out possible spatial effects, such as similar cisplatin exposure
levels of physically proximal cells driving the similarity in sister
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fates, we measured distances between related cells. Though sister
cells tend to be close together in space (Fig. 2c), unrelated cells
separated by similar distances do not exhibit the same degree of
similarity in fates (Fig. 2d). This observation suggests that shared
fate is not the result of proximity-related factors but rather cell-
intrinsic factors that predispose cells to a particular fate. Using a
geminin reporter, we ruled out potential connections between cell
cycle stage at the time of cisplatin treatment and cell death
(Supplementary section 3, Supplementary Figure 3). However,-
cells in G1 during cisplatin treatment were more likely to
remain arrested following treatment than cells in G2/M

(Supplementary Figure 3i). Finally, we found that p53 dyna-
mics was correlated between related cells (Fig. 2e, f) and was
also correlated with the time to death (Supplementary Figure 3h),
consistent with our previous work on cisplatin-induced
cell fates being associated with p53 dynamics29. Taken together,
our results suggest that the state of a cell prior to
cisplatin exposure, likely inherited from its mother during
mitosis, affects the rate of p53 accumulation and predisposes it
to a specific cell fate. This finding motivated the development of
our birth-death process models and lineage simulations, as
discussed below.
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Fig. 2 Cell fate and p53 dynamics are correlated in sisters and cousins. a Sister cell pairs were divided into two groups: those that divided before
or after cisplatin treatment. b The percentage of sisters in each group that share the same fate. Experiment #1N= 61, N= 108, for experiment #2N= 150,
N= 150. The dashed lines represent the % of unrelated cells that share the same fate. c Mean distance separating cells when cisplatin was added by
relationship N= 61, 259, 414, 533. The centroid of the nucleus was used for the location of each cell. Euclidean distances were computed for every pair of
cells. d % of unrelated cell pairs that share the same fate grouped by distance separating cells when cisplatin was added. N= 243, 896, 1341, 1791. Sister
cells were on average 23 μM apart. The dashed line is the same as in b Error bars for c, d are standard deviation. e p53 onset in apoptotic cells was faster
than in surviving cells. N= 144, 250. Error bars represent standard error of the mean. Significance by t-test (f) p53 onset was correlated among sister and
cousin cells. ***P < .0001. See methods for calculations of significance

Fig. 1 Correlations in HCT116 cells before and after cisplatin treatment in a single cell lineage-tracking experiment. a Example of live-cell imaging of a single
cell before and after cisplatin. The white arrow points to the cell tracked. The red arrow at hour 77 highlights an apoptotic cell. Images are shown for each
cell division. Scale in top left image is 20 μm. b Cartoon representation of the time-lapse microscopy experiment. Cells that are born and divide before
cisplatin addition are colored purple, cells born before cisplatin treatment that eventually divide or die after treatment are red, and cells that exist purely
after cisplatin administration are in green. c–e Lineage correlations in inter-mitotic times of cells existing before cisplatin treatment (purple cells in b).
Pearson correlations (ρ) are shown on top of each panel, and colors for lineage correlations are maintained throughout the text. The mother–daughter
correlation is ρ ¼ �0:03 for 71 pairs, P-val= 0.7, 95% CI [−0.26, 0.16]. The sister correlation is ρ ¼ 0:73 for 80 pairs, P-val= 2.9 × 10−14, 95% CI [0.6,
0.8]. The cousin correlation is ρ= 0.34 for 46 pairs, P-val= 0.02, 95% CI [0.1, 0.57]. Cousin correlations are higher than the mother–daughter correlation,
a phenomenon called the cousin–mother inequality12. f, g Lineage correlations in times to death of cells treated with cisplatin (red and green cells in b).
Note that by definition mother–daughter pairs do not exist for cells that die. ρ � 0:64 for 93 sister pairs, P-val= 3.09 × 10−12, 95% CI [0.48, 0.78];
ρ � 0:38 for 60 cousin pairs, P-val= 0.001, 95% CI [0.15, 0.54]. Statiistical significance of the correlations was computed by a t-test (Supplementary
section 1)
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A statistical algorithm to quantify hidden heterogeneity. To
develop a mechanistic understanding of these lineage correlation
structures in HCT116 cells, it is crucial to correctly quantify and
account for the large heterogeneities in IMT and AT. However,
this is a challenging task in the presence of multiple competing
cellular fates22. The true underlying distributions governing cell
division and death processes are masked due to stochastic com-
petition between the fates, and the observed experimental data
(Fig. 3a–c) may therefore be very different compared to the true
underlying distributions22. The cause of this bias is the mutual
exclusivity of cellular fates—the only fate that is observed is the
one that happens to occur earlier. Hence values chosen from the
right tails of the true IMT and AT distributions are unlikely to be

observed due to the earlier occurrence of the competing fate. As a
result, the observed times to both division and death are skewed
towards shorter times; the extent of this bias depends on how
much the underlying IMT and AT distributions overlap.

In order to infer the correct underlying distributions of IMT
and AT, we developed a computational framework to model the
times to cell fates in the single cell lineage data, accounting for the
large sister correlations. In brief, we described the entire dataset
(the single cell data is provided as Supplementary Data 1 with a
detailed explanation of the data structure in Supplementary
Data 2) as a collection of sister pairs with concordant or
discordant fates, and designed a likelihood function to compute
the probability of observing the data. The basic form of the
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likelihood function for one sister pair is given by:

fi t
i
1; t

i
2; θ

� � ¼ cz 1� Si ti1
� �

; 1� Si ti2
� �� �

Si ti1
� �

h ti1; θ
� �

Si ti2
� �

h ti2; θ
� �

:

ð1Þ

Here fi t
i
1; t

i
2

� �
is the bivariate joint probability density of

observing the first sister cell in the ith pair to divide or die at
time ti1 after its birth, and the second cell of that sister pair to
divide or die at time ti2 since birth; Si ti1

� �
and Si ti2

� �
are the

univariate survival functions of the sisters, denoting their
probabilities to survive until times ti1 and ti2, respectively;
h ti1; θ
� �

and h ti2; θ
� �

are the univariate hazard functions of the
sisters, representing their risks of dividing (or dying) at times ti1
and ti2, respectively (see Supplementary section 5 for details); and
θ is the vector of parameters to be inferred from the data; it
depends on the functional form chosen to represent the
variability in IMT and AT. We used the Exponentially Modified
Gaussian (EMG) function for this purpose, since this function
was found to best describe our observed data (Supplementary
section 4, Supplementary Tables 1-3). The EMG has also
previously been shown to better explain cell division time
variability than other commonly used functions20,21. The EMG is
a convolution of a Gaussian with parameters μ,σ and an
exponential with parameter λ. Finally, we accounted for the large
sister correlations by using a copula cz, which is a function that
joins together one-dimensional density functions to form a
multivariate density function31 (Supplementary section 5). We
used a Gaussian copula throughout this work, parameterized by
the single parameter z, which represents the Pearson correlation
between sister cells. We modeled stochastic competition among
cellular fates using a competing risks framework. The full
likelihood function is a product of Supplementary Equation (1)
over all sister pairs in the dataset. Further details of the model are
provided in Supplementary section 5. We observed that
accounting for correlations among sisters led to significant
improvements in the estimation of the distribution parameters
using a simulation approach as well as direct observation of the
pre-cisplatin IMT data (Supplementary section 5, Supplementary
Figure 4). We also accounted for the cells that survive until the
end of the experiment or 72 h after cisplatin treatment, and
allowed for the possibility of a delay between the time of drug
administration and the realization of its effect on cell fates30

(Supplementary section 5). Copulas, while commonly used in
finance32, have rarely been used in biology. Our results highlight
the usefulness of this method for modeling correlated data in this
and potentially other biological contexts.

Our computational framework was first used to identify the
underlying IMT distribution of HCT116 cells in the absence of
cisplatin. Since there was very little cell death in this scenario, the
inferred IMT distribution should be almost identical to a
histogram of the IMT data, which is indeed what we found
(parameters of the EMG function in Supplementary section 4 and
Supplementary Table 4). In addition, since there are a relatively
large number of IMT pairs available in the data (80 pairs), a direct
calculation of the Pearson correlation of sisters from the data
should also be close to the inferred value. As expected, the
inferred sister–sister correlation of 0.71 (Supplementary Table 4;
standard error calculated as the square root of the parameter
variance, computed from the Hessian matrix) was within error
identical to the directly calculated value of 0.73 (Fig. 1d). These
results provide a direct validation of our inference procedure. The
bivariate density of the sisters is also captured well by the copula
framework with inferred univariate EMG margins and the
inferred Pearson correlation, as demonstrated in Supplementary
Figure 5.

We then inferred the drug-induced distributions of IMT and
AT, accounting for the measured sister correlations in IMT and
AT using the copula framework (Fig. 3d, e; inferred parameters
given in Supplementary Table 5 and Supplementary Table 6).
Remarkably, we found that the underlying IMT distribution is
very different from the distribution obtained directly by binning
the data (Fig. 3d): the directly computed mean of the division
times of cells that straddle the dosing event is 20 h as opposed to
the inferred mean of 47.22 h (Fig. 3d). Similarly, the standard
deviation of the observed histogram is 5.65 h, underestimating the
inferred but “hidden” heterogeneity with a standard deviation of
33.05 h (Fig. 3d). Current methods for analyzing this kind of
single cell data that treat cell division and death independently20

would therefore severely underestimate the effects of the drug.
The inferred distribution of AT (Fig. 3e) is also shifted, though
not as much as the IMT distribution, as expected (see
Supplementary Section 5 for a detailed discussion).

To independently confirm these results, we used the inferred
IMT and AT distributions from Fig. 3d, e as inputs to a
stochastic, age-dependent birth-death process simulation of
cellular proliferation33. Following single cells over time, we
generated stochastic waiting times to division or death of each cell
based on the hazard functions corresponding to the input IMT
and AT distributions (Supplementary section 6). A hazard
function, as outlined in the context of Supplementary Equation
(1), represents the risk of a cell dividing or dying at any point in
time, given that it has survived until that time. The results of these

Fig. 3 Quantifying hidden heterogeneity induced by cisplatin. The color code follows Fig. 1b. a Probability density function (PDF) of the IMT before cisplatin
treatment, with a mean of 16.1 h. b IMT PDF of cells straddling the cisplatin administration event. Mean time is 20 h, indicating a slowing down of the cell
cycle after cisplatin administration. As explained in the main text, this is a biased estimate of the mean cell cycle time. c Apoptosis time PDF measured
directly from the data. The experimental data in a–c are shown as histograms derived from 160, 104, and 186 data points respectively. The corresponding
best-fitting Exponentially Modified Gaussian (EMG) distributions are shown as solid curves. Gray shaded areas represent 95% confidence intervals
generated from 1000 bootstrapped samples of the data. Parameters for the curves are given in Supplementary section 4. d, e Experimental data and
inferences from our algorithm. d The inferred IMT distribution after cisplatin addition is shown as a green dashed curve. The inferred heterogeneity using
our statistical model (standard deviation of the green dashed curve) is 33.05 h while existing inference techniques20 using the red histogram would have
incorrectly concluded 5.65 h. e The inferred apoptosis time distribution after cisplatin is shown as a green dashed curve. As expected for a scenario where
the average death rate is higher than the division rate, the inferred time to death distribution is not heavily biased, unlike the inferred IMT distribution in
d. f–g Validation of our inferences using birth-death process simulations. f The histogram represents one example of the observed IMT distribution from
our birth-death process simulations, using the data generating the green dashed lines from panels d and e as inputs. The close match between the
histogram and the red solid line representing the data validates our inference procedure and inferred IMT distribution. g Similar to f, but for the apoptosis
time distribution. Parameters for the inferred distributions (dashed lines) are given in Supplementary Table 5 and parameters obtained from fits to the data
(solid red or green lines) are given in the Supplementary section 4. The gray shaded areas in f, g denote 95% confidence intervals generated from
500 simulations
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simulations provide the post-competition IMT and AT histo-
grams (Fig. 3f, g). We observed a close match between the
predicted IMT distribution and experimental results (Fig. 3f),
providing a confirmation of our inferences. A similarly close
match was obtained for the AT distribution (Fig. 3g). Conversely,
if the measured IMT and AT distributions (Fig. 3b, c,
respectively) were instead used as inputs to the simulation, the
results were not found to match the experimental data
(Supplementary Figure 6). This observation arises because the
observed data only exhibit the post-competition IMT and AT
distributions and do not represent the true underlying distribu-
tions that generate the observed data. This finding highlights the
importance of using an integrative analysis approach like ours to
correctly infer the underlying IMT and AT distributions.

Protein production/degradation models cannot explain corre-
lations. With the correct IMT and AT distributions inferred as
outlined above, we then explored probable mechanistic origins of
the lineage correlations in HCT116 cells. Previous work has
suggested that cell-to-cell heterogeneity due to the stochastic
production and degradation of proteins can influence cell fates
and explain the correlation in IMT and AT in closely related
cells25. We therefore sought to investigate whether such models
would also be able to recapitulate the cousin-mother inequality
observed in our data prior to cisplatin treatment (Fig. 1c, e). To
compute lineage correlations, we added the additional capability
of tracking lineages to our simulation framework using directed
graphs (Supplementary section 6). In this framework, each vertex
in the graph represents a unique cell and directed edges indicate a
mother-daughter relationship. We kept track of the birth time
and division time of each cell by assigning attributes to each
vertex (Supplementary section 6). It has previously been shown
that the level of a protein like CDK2 (or the ratio of the levels of
two proteins like Cyclin D1 and p21) inherited by daughter cells
at the mother’s division determines the chance of cell cycle
progression versus quiescence27,28. To mimic this phenomenon,
we generated stochastic trajectories of one protein (called Protein
X) or two independent proteins (Proteins X and Y) within each
single cell of our simulated lineage trees (Supplementary sec-
tion 6). The level of Protein X (or the ratio of X and Y) in the
mother cell that is passed on to the daughters sets the hazard
function for division in our model (see Supplementary section 6
for details). As the level of Protein X at the time the mother
divides increases, the probability of longer division times
increases for the two daughter cells. As the level of Protein X
decreases in the mother, there is an increased probability of
shorter divisions for the daughters. In the case of two proteins
controlling cell fate, the daughters are more likely to divide slower
or faster depending on the magnitude of the ratio of their levels,
X/Y. Within this general framework, we investigated a variety of
protein production and degradation rates to mimic the fact that
different proteins have varying “memory” levels and lose corre-
lation at different timescales34 (Supplementary section 6).

We found that none of these models were able to generate
higher cousin correlations than mother–daughter correlations.
Figure 4 shows the correlations obtained for the Protein X only
scenario, while the results for the Protein X and Protein Y models
can be found in Supplementary Figure 7. As shown in Fig. 4a,
when Protein X levels vary widely over time and lose memory of
the initial level rapidly, the cousin correlation is less than the
mother–daughter correlation and almost equal to zero (Fig. 4b).
On the other hand, when Protein X has strong memory of its
original state because of very low production and degradation
rates (Fig. 4c), not only is the cousin correlation lower than the
mother–daughter correlation, but the latter also becomes very
strongly positive (Fig. 4d), which does not recapitulate the near
zero mother–daughter correlation observed in our data. Similar

results were found for the two-protein case, as shown in
Supplementary Figure 7.

In summary, we found that simple models of stochastic
production/degradation of proteins and their inheritance across
cellular generations, representing our current understanding of
cell cycle control mechanisms, cannot explain our observed
correlation structures in the HCT116 cell line.

Unified theory with circadian gating explains correlations. The
HCT116 cell line was shown to exhibit strong circadian oscilla-
tions with a period of 24 h35, and previous experiments suggested
circadian control of both the cell cycle36–38 and cell death39,40
pathways. Motivated by these experimental observations and
studies linking circadian gating to lineage correlations in
IMT12,30, we developed a novel unified theory for explaining the
observed correlation structures in HCT116 cells before and after
cisplatin dosing. Since we had previously found that approxi-
mately 8% of HCT116 cells died over a period of 72 h in the
absence of cisplatin29, we introduced the added dimension of cell
death to our simulations (Fig. 5a) and found that while main-
taining the correct IMT distribution (Fig. 5b), the origin of the
correlations in the absence of drug cannot be ascribed to sto-
chastic competition of fates alone (Fig. 5c). Next, based on our
data suggesting that the cellular state inherited by a cell from its
mother plays a major role in the decision of apoptosis versus
division (Fig. 2a, b), we devised a form of coupling of the circa-
dian clock to the cell cycle and cell apoptosis pathways: both
hazard functions of division and death of any cell are determined
by the circadian phase at the time the cell was born from its
mother. Mathematically this coupling was achieved by introdu-
cing the following general structure for the parameter μ of the
EMG:

μ ¼ μ0 þ A sin Φð Þ; ð2Þ

where Φ represents the clock phase at the time a particular cell
was born, and μ0 and A are two free parameters. An example plot
of μ as a function of Φ and hazard functions of three cells born at
different phases of the clock is shown in Fig. 5d (see Supple-
mentary Equation 18 and Supplementary section 6 for further
details.). We modeled the circadian clock as a sinusoidal wave of
period 24 h, corresponding to a clock phase ranging from 0 to 2π.
For cells born between the π and 2π phases of the clock corre-
sponding to the second half of the circadian day, the probability
to divide or die at earlier ages is increased (pink dot and line in
Fig. 5d represent the risk of division; similar curves describe the
risk of death). For cells born during the remainder of the phases
(0 to π–the first half of the day), the probability is decreased
(yellow dot and line in Fig. 5d). These probabilities were again
modeled using hazard functions (Fig. 5d, Supplementary sec-
tions 5 and 6). This method of coupling the circadian clock to
the cell cycle and cell death pathways via the hazard function is
the defining aspect of our model, since it allows us to maintain
the correct IMT and AT distributions as inferred from the data.
The branching process model with this added gating mechanism
was able to quantitatively reproduce the lineage correlations and
the cousin–mother inequality observed in the pre-cisplatin part of
the experiment (within 95% confidence intervals, Fig. 5e, f).
Crucially, this model also reproduces the experimentally observed
IMT distribution (Fig. 5g) and requires just one free parameter to
recapitulate the correlation structures in addition to the three
parameters required to characterize the IMT distribution (Sup-
plementary section 6). Note that our results are robust to small
phase differences between mother and daughters at the time of
division36,41 (Supplementary section 6, Supplementary Figure 8).
Furthermore, our model does not require the circadian clock of
all cells to be synchronized (Supplementary section 6, Supple-
mentary Figure 9).
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The clock-driven correlations, as described above, were
obtained by assuming a period of 24 h for the oscillations that
couple to the cell cycle. We next investigated whether our model
would be able to reproduce the correlation structure with other
oscillation periods, since oscillatory processes distinct from the
circadian clock have also been suggested to affect cellular
proliferation42. To this end, we varied the oscillation period in
our simulations, choosing the tunable parameters in a way that
reproduced the sister correlations and IMT distribution observed
in the data (Supplementary section 6; parameters are provided in
Supplementary Table 7). Interestingly, we found that only certain
multiples of ~12 h time-periods (approximately 12, 24, 48 h; not
36) could reproduce the experimentally observed correlation
structure. For all other periods tested (for example 3.5, 6, 14, and
18.5 h), either one of two problems arose: (1) the
mother–daughter correlation became strongly positive, for
example with 14 and 18.5 h periods (Fig. 6 a, b and
Supplementary Figure 10) or (2) at very small time periods like

3.5 h, the cousin correlations reduced to almost zero (Fig. 6c, d).
An intuitive explanation for these observations is provided in
Fig. 6 a, c. The mother–daughter correlation is set by the interplay
between the variable cell cycle lengths and the period of
oscillations of the clock. The HCT116 cell line has an
approximately 16 h average cell division time. As shown in
Fig. 6a, this cell cycle time along with an 18.5 h oscillation period
would be expected to generate a strongly positive
mother–daughter correlation as daughters are born in a similar
part of the circadian cycle as their mothers. On the other hand,
when the oscillator frequency is high (time period ~ 3.5 h), the
heterogeneity in the cell division times will result in cousins being
born at randomly different phases of the oscillator, thereby
leading to negligible cousin correlations (Fig. 6c). These intuitive
expectations are backed up by our simulation results which
incorporate the correct heterogeneity in cell division times, and
hence suggest that the circadian clock with a 24 h time period is
likely to have generated the observed correlation structure.
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Ultradian oscillations, which have typical periods of ~2–4 h42 and
are common in mammalian cells, are therefore unlikely driving
the observed correlations.

We then investigated whether the circadian model could also
explain the data arising from cisplatin-treated cells, where there is
a significant amount of cell death and the drug induces a large
extent of heterogeneity in the cell division and death times
(Fig. 3d, e). We used the inferred IMT and AT distributions from
our statistical model (Fig. 3d, e; parameters in Supplementary
Table 5) as inputs to the birth-death process simulations. Similar
to the pre-cisplatin scenario, we first investigated a null model
with no coupling to the circadian clock (Fig. 7a, c) and
subsequently studied a model with coupling of only the cell cycle

to the circadian clock. We found that while the latter model was
capable of generating high correlations in division times, it was
not able to explain the experimentally observed magnitudes of
correlations among the apoptosis times of either sister or cousin
pairs (Supplementary Figure 11). This observation is interesting
especially in light of previous work suggesting that correlated
IMT of sisters can induce correlations among times to discordant
fates of sister cells22,43. Our analysis predicts that even if the IMT
of sisters are correlated due to circadian gating of the cell cycle,
stochastic competition of fates alone cannot induce sufficiently
large correlations in apoptosis times of sister or cousin cells.

A model with the circadian clock coupled to both cell cycle and
cell death pathways, however, was able to recapitulate the high
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correlations in both IMT and AT (Fig. 7b, d). Note that our
model predicts that the sister and cousin correlations in IMT after
cisplatin addition are smaller than their values pre-cisplatin (Fig.
5f vs. 7b), similar to observations made from the data
(Supplementary Figure 1 versus Fig. 1d, e). This decrease in
correlations is due to the increased heterogeneity in IMT induced
by cisplatin and highlights the importance of accounting for the
correct level of variability in cell division (or apoptosis) times. A
mechanistic model of lineage correlations therefore must be able
to simultaneously account for these heterogeneities. Indeed, our
circadian-gating model explains not only the correlation
structures (Fig. 7b, d) but also the entire post-competition IMT
and AT distributions (Supplementary Figure 12). Finally, to
determine if our computational framework can also recapitulate
the correlated fates of sisters (Fig. 2b), we introduced correlated
random numbers to decide cell fate (Supplementary section 6).
We found that this final computational model correctly predicts
similarities in sister cell fates (Supplementary Figure 13).

Since the above results suggest that gating of both cell cycle and
apoptosis pathways are simultaneously required, we explored the
consequences of introducing a phase difference (Δφ) in the gating
of the two pathways. When a daughter cell is born, the phase of
the circadian clock at that moment could cause both the risks of
eventual division or death to increase or decrease in sync (in
phase, Δφ= 0). We found that this scenario was able to
recapitulate the observed correlations in Fig. 7b, d. However,
the circadian phase at the time of cell birth could also in principle
increase the chance of division while decreasing that of death, and
vice versa (out of phase, Δφ= π). A representation of the risks of
division and death for these two extreme scenarios, Δφ= 0 and
Δφ= π, are shown in Fig. 7e. We found that, as Δφ tends towards
π (completely out of phase), the IMT correlations between sisters
decrease to 0 or even negative values (Fig. 7f), thereby not
recapitulating the observed data. These results suggest that the
cell cycle and cell death pathways must be gated approximately in
phase in the HCT116 cells treated with cisplatin.
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Overall, our unified theory provides a comprehensive explana-
tion of the correlation structures in intermitotic and apoptosis
times, suggesting that the circadian phase passed on from mother
to daughter cells during mitosis controls the chance of eventual
division or death of the daughter.

Discussion
Distributions of cell division and apoptosis times along with
lineage correlations among cells are signatures of underlying
cellular processes, and deciphering their origins would provide a
deep understanding of the fundamental principles of cell cycle
control in both normal and cancer cells. However, comprehensive
theories that account for both signatures do not currently exist. In
addition, correct estimates of the extent of heterogeneity in cell
division and death times, which are central to the understanding
of both signatures, are difficult to obtain directly from experi-
ments. Existing techniques for inferring these heterogeneities do
not account for strong biases that arise from competition among
various cellular fates.

To overcome these limitations, we developed a live cell imaging
system to track cellular lineages both before and after drug dos-
ing. Using this system, we uncovered complex correlation struc-
tures in the times to fate among closely related lineages both
before and after chemotherapy administration. In addition, we
found that correlations in cell fates and p53 dynamics in response
to cisplatin treatment were highest in sister cells, decreasing with
time and number of divisions separating cells, suggesting that a
cellular state inherited by daughter cells at the time of their

mother’s mitosis determines their likelihood of apoptosis.
Although in different contexts, conceptually similar conclusions
have previously been drawn in the case of TRAIL-induced
apoptosis24 and in the cellular decision of proliferation versus
quiescence27,28. Together, these results suggest the presence of a
heritable cellular state, which determines the probabilities of
eventual fate outcomes at the beginning of a cell’s lifetime.

We formalized these findings by creating a computational
modeling framework in which the heritable cellular state is under
circadian control. This approach provides a unified explanation
to the entire set of correlation structures in cell division and
apoptosis times both before and after treatment. Importantly, we
showed that the magnitude of these correlations depends on the
extent of heterogeneity in cell division and apoptosis times, and
provide a new method to correctly infer their distributions. Our
method, unlike previous approaches that treat cell division and
death independently20, can be applied to any cell line treated with
arbitrary drug concentrations. There is significant experimental
evidence suggesting the control of both cell cycle and apoptosis
pathways by the circadian clock36–40, thereby providing support
to our modeling approach. Indeed, we demonstrated that our
model was able to recapitulate the correlation structures of inter-
mitotic times only for a few oscillation periods that are
approximately multiples of 12 h, including 24 h (Fig. 6 and
Supplementary Figure 10). Ultradian oscillations with typical
periods of ~2–4 h42 are commonly observed in mammalian cells
and are unlikely to drive the observed correlations. We cannot
rule out some of the higher multiples of 12 h as potential time-
periods of the oscillations, likely due to the 95% confidence
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intervals on the measured correlations being fairly large in our
data.

Our circadian gating model is not mutually exclusive from
previous protein production/degradation models that have been
proposed specifically to explain correlations of sisters and cousins
in drug-induced apoptosis times24,26. Indeed, since the circadian
phase is likely to be passed on from mother to daughter cells via
the fluctuating levels of proteins, our model conceptually
encompasses the previously proposed mechanisms of generating
correlations. While our theory in its current form does not
explicitly model circadian protein concentrations and their
oscillations, this information is implicitly incorporated in the
varying circadian phase of our approach. However, we demon-
strate that stochastic protein production and degradation alone
cannot give rise to the entirety of the correlation structures, in
particular the cousin-mother inequality in IMT (Fig. 4 and
Supplementary Figure 7). Since by definition a cousin-mother
inequality does not exist for AT, we cannot currently rule out the
possibility that correlations in AT of related cells are due to
stochastic production/degradation of non-oscillatory proteins.
Finally, an advantage of our circadian gating model over previous
work12,30 is that it relies on the birth-death process representation
of cellular proliferation. A natural description of asexual repro-
duction where a single cell divides into two or dies after a sto-
chastic waiting period, the birth–death process is widely used in
contexts as diverse as the somatic evolution of cancer, bacterial
dynamics, and genome evolution44–46. This model allows us to
not only recapitulate the correlations observed in single cell data,
but also the correct shapes of the highly variable division and
death time distributions both before and after drug dosing. Our
model is the first to explain such a diverse array of single cell
results within one unified framework. It may, however, be pos-
sible to envision other more complex models that could explain
all lineage correlations without invoking oscillatory mechanisms.

Our model generates exciting predictions for future experi-
mental validation: we predict that both the IMT and AT should
become less variable and less correlated if clock proteins are
stabilized. This prediction may be directly tested by the addition
of drugs like KL001, which have been shown to maintain the CRY
protein at high levels throughout a circadian period47. In a recent
study, deleting the clock genes in cyanobacteria led to a nar-
rowing of the IMT distribution30, suggesting an important role of
circadian gating in establishing the variation in cell division times.
It would also be interesting to test our predictions in embryonic
stem (ES) cells, which have been shown to develop the circadian
clock only in later stages of differentiation as they lose their
pluripotency48. Comparing correlation structures between ES
cells in early versus late stages of differentiation could provide
important insights into the consequences of circadian gating on
cellular fates.

Methods
Cell culture and cell lines. HCT116 cells were obtained from ATCC and grown in
McCoy’s with 10% FBS, 100 µg/ml penicillin, 0.25 µg/ml streptomycin and
85 µg/ml Amphotericin. For lineage tracking we used a previously established
HCT116 p53-VKI clonal cell line where one allele of the TP53 gene is tagged at the
endogenous locus. A lentiviral H2B-ECFP reporter was used to track cells over
time.

Live-cell microscopy. To obtain cell lineages we plated approximately 5000
HCT116 p53-VKI H2B-CFP cells to poly-D-lysine coated glass bottom dishes with
No. 1.5 thickness (MatTek corporation, P35GC-1.5–10-C) in McCoy’s media with
10% FBS. Cells were incubated at 37 °C and 5% CO2 for 72 h to allow cells to attach
to the dishes. We then replaced the media with RPMI media lacking phenol red
and riboflavin (imaging media) to reduce background fluorescence. Cells were
imaged for 50 h in unstressed conditions to establish cell lineages. After 50 h, the
media was replaced with imaging media containing 12.5 µM cisplatin and imaged
for an additional 72 h to measure p53 dynamics and cell fate. Live cell microscopy
was performed in a Nikon Eclipse Ti-E microscope in an enclosure to keep cells at
37 °C, 5% CO2 and maintain humidity. Images were captured using MetaMorph

software every 30 min. We used the following filter sets: Venus—500/20, 515, 520
nM (excitation, beam splitter, emission filter); ECFP—436/20, 455, 480/40 nm. All
filters were obtained from Chroma.

Data analysis. For cell tracking and image analysis, we used custom made software
for Matlab (MathWorks) that allows the user to manually track cell lineages over
time using both the H2B-ECFP nuclear marker and Phase contrast images to
ensure faithful tracking49. Cell identities that were ambiguous were discarded to
ensure the reliability of cell lineages. The p53-Venus traces were extracted from
background subtracted images in Matlab and are the average of 9 pixels in the
center of each nuclei. Cell death and division was identified by morphology in the
phase channel, apoptotic cells detach from the glass while the membrane blebs out.
Morphology of the localization of the H2B marker also allows identification of cell
death and division, with cell death shown by a loss of the normal round nuclear
shape and division shown by condensation of the chromatin to mitotic chromo-
somes and then separation to two separate nuclei. To determine whether cell fate
was correlated in related cells a χ2 test was used to compare the expected and
observed portion of cells that share the same fate. For calculations of significance
for R-values in Fig. 2 and Supplemental Fig. 2, we compared measured R-values of
related cells to the distribution of 10,000 R-values measured from randomly paired
cells of equal size.

Mathematical models and simulations. The mathematical models and compu-
tational algorithms were written in R, version 3.4.0, and Wolfram Mathematica,
version 11.0. These are described in detail in the Supplementary Information.

Code availability. All code used for the computational modeling will be made
available on request to the corresponding authors. The code for lineage tracking
and quantifying single cell data can be downloaded at: github.com/balvahal/
p53CinemaManual.

Data availability
The lineage data generated in this study and used for all the analysis is available in
Supplementary Data 1 along with an explanation of the data structure in Sup-
plementary Data 2.
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