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Currently available bulk sequencing data do not 
necessarily support a model of neutral tumor 
evolution
To the Editor — Williams et al.1 analyzed 
next-generation sequencing data from bulk 
tumor samples, supporting the hypothesis 
that selection is limited to times before 
malignant transformation while tumor cell 
populations afterward evolve exclusively 
by neutral evolution. The authors arrived 
at their conclusions by showing that the 
expected number of mutations (M) in 
an exponentially increasing population 
undergoing only neutral evolution grows 
linearly with the inverse allele frequency 
(1/f) of mutant alleles. The allele frequency 
of a variant is defined as the proportion 
of cells containing that particular variant. 
Their reasoning was based on the fact that, 
in a neutrally evolving cell population, all 
subclones grow at the same rate, so the 
allele frequency is fixed as the inverse of 
the number of cells present at the time of 
appearance of a new variant. The authors 
then concluded that a tumor displaying a 
linear relationship between the number of 
mutations and the inverse allele frequency 
should imply that the population evolves 
without selection. They also performed 
simulations of a branching-process model 
with selection to show that selection cannot 
explain a linear relationship between M and  
1/f. Furthermore, they observed a high 
correlation between M and 1/f in about 
one-third of the patient samples investigated 
as further indication of neutral tumor 
evolution. Their findings corroborate 
previous results2 based on the ‘Big Bang’ 
model that suggested a similar conclusion 
in colorectal cancer using single-time-point 
bulk sequencing data.

We believe that the authors arrived at 
an erroneous conclusion, which also stands 
in contrast to other recent findings in this 
field3–5, based on flawed logic known as 
the ‘fallacy of the converse’. The fact that 
a model of neutral evolution leads to a 
linear relationship between M and 1/f does 
not imply that a linear relationship proves 
the presence of neutral evolution. In more 
abstract terms, A implying B does not 
necessarily mean that B implies A. Here we 
demonstrate that models with selection can 
also lead to a linear relationship between  
M and 1/f and that, therefore, linearity 
is a test statistic that cannot be used to 
distinguish between populations evolving 

with and without selection. Our results 
indicate that the claims made by Williams et al.1  
have little merit.

We designed and analyzed two alternative 
stochastic evolutionary models that both 
return a linear relationship and show 
similarly high R2 values for neutral as well 
as selection scenarios. To be consistent with 
the assumptions of the model and results 
used by Williams et al.1, both models are 

based on exponentially growing, non-
competing cellular populations with no 
spatial or microenvironmental effects 
and thus represent, by design, simplified 
versions of the tumorigenic process. The 
first model is a simple birth–death process 
of mutation accumulation (Fig. 1). In this 
model, each new mutation event gives rise 
to a single variant allele. This approach 
allows derivation of exact expressions for 
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Fig. 1 | A simple branching-process model of tumor evolution. a, Schematic representation for the 
accumulation of mutations in our model. b, Histogram of R2 values for the model with two mutational 
waves. Fitness values are as follows: type 0, 0.9; type i, 1 +  N(0.2, 0.012); type ia, 1 +  N(μ, 0.012), with  
μ =  0.5 (blue), 0.6 (green) or 0.7 (orange). Histograms were generated from 5,000 draws from N(μ, σ).  
c, One example draw with R2 >  0.985 from each of the three cases in b is shown with corresponding 
color codes. d, Fitness distribution of the clones corresponding to μ =  0.6 (green in b and c). e,f, As in c 
and d, but with three waves of mutations. Fitness values in f were chosen from a log-normal distribution 
with the same parameters as in e. The total size of the tumor in all cases is allowed to reach anywhere 
between 6 ×  107 to 7 ×  1011 cells.
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the expected size of all mutant clones, 
thus providing an easy way of testing the 
authors’ claim that a linear relationship 
can arise only from neutrality. The second 
model is a more complex infinite-allele 
branching-process model (Fig. 2) where 
multiple mutations may arise and lead to 
unique clones, making it analogous to the 
model developed by the authors. In both 
models, additive fitness effects in new 
clones are chosen from a fitness distribution 
such that any new mutant has a different 
birth rate that can lead to faster (or slower) 
growth in comparison to the parent clone. 
Furthermore, the second model incorporates 
more complex assumptions such as the 
infinite-allele model (rendering all mutants 
unique) as well as cell sampling and a 
Poisson-distributed number of variants 
(see below for details) to more closely 
match the model analyzed previously1. 
Simulation results from both models 
demonstrate that neutral (i.e., drift only) and 
selective evolution both give rise to linear 
relationships between M and 1/f. Using both 
models, we tested a number of scenarios of 
selection, including intentionally chosen 
extreme (although biologically improbable) 
cases where every clone has a large fitness 
advantage or disadvantage. Even under 
such selection scenarios, we demonstrate 
that linearity with high R2 values arises, 
highlighting a serious flaw in the authors’ 
method of determining neutral evolution 
from curves with high R2 values.

In the first model (Fig. 1a), clonal 
expansion begins with a single cell of the 
original, tumor-initiating type (type 0), 
which proliferates and dies with rates b0 
and d, respectively, and may accumulate 
mutations with probability μ during each 
cell division. The resulting mutant cells of 
type i (i >  0, birth rate bi and death rate d) 
constitute the first wave of mutated cells, 
which in turn can mutate to produce the 
second wave (type ia, birth rate bia and 
death rate d), and so on. By deriving the 
differential equations governing the time 
evolution of this model, the expected 
number of cells of any type can be solved for 
exactly over time (see ref. 6 for details of the 
solution). We first explored the case of two 
mutational waves (Fig. 1c,d). The additive 
fitness values (additional birth rates) of 
the cell types are chosen from a normal 
distribution N(μ, σ) with mean μ and s.d. σ.  
We allowed μ to become progressively 
larger with wave number. The cumulative 
frequencies of cell types (M) were then 
calculated as a function of inverse frequency 
(1/f), and the R2 values of linear regression 
between M and 1/f were calculated 
(examples where R2 >  0.985 are shown in 
Fig. 1c). This process was performed 5,000 
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Fig. 2 | An infinite-allele branching-process model of tumor evolution, including sampling as in the 
original study. We initiate each process with a single ancestor with birth rate of 1, a death rate of 0.1, 
and a double-exponential fitness distribution with mean fitness change of 0.01 (weak), 0.04 (strong) 
or 1 (very strong) along with a neutral evolution model where there is no change in fitness and a model 
with only increasing fitness changes. a, The time of a new subclone’s appearance with the birth rate 
colored by the subclone’s size at the end of the simulation, showing that subclone size in a simulation 
with strong selection is associated with age but also with fitness. Allowing the simulation to run longer 
would result in younger subclones with high fitness outcompeting older ones. b, A plot of the cumulative 
number of mutations (M) and inverse allele frequency (1/f) shows linear trends in simulations where 
a single mutation arises from any mutation event and no additional noise is added to mimic the effect 
of sequencing. c, A linear trend is apparent between M and 1/f in the same model where each new 
mutation event contains Poisson(100) mutations and alleles are sampled to account for sequencing 
errors to create a result that follows the methods of Williams et al.1. d, Box plots for 25 simulations in all 
models for 1,000 and 1,000,000 cells show there is little change in R2 as selection becomes larger, but 
allowing multiple mutations to occur at any mutation event has a large effect on linearity. VAF, variant 
allele frequency. e, The model is able to recapitulate nonlinear curves, suggesting the models with 
selection do not necessarily result in linear curves but can result in both linear and nonlinear curves.
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times, and histograms were generated 
showing the distribution of R2 values 
(Fig. 1b). This simple model of mutation 
accumulation already demonstrates that 
linear curves with high R2 values can be 
easily obtained even when mutant cells are 
allowed to have large (~50–80%) fitness 
advantages. This model is limited by the 
number of distinct clones present, which 
results in only a few data points for the 
linearity test (Fig. 1c). To check whether 
increasing the number of clones affected 
our results, we allowed for the possibility of 
a third mutational wave (Fig. 1e,f), which 
significantly increased the number of data 
points on the basis of which R2 is calculated. 
We also tested the ability of asymmetric 
fitness distributions to produce high R2 
values by choosing the additive fitness of 
mutants from a log-normal distribution with 
the same parameters as the previously used 
normal distribution (Fig. 1f). In all cases, R2 
values greater than 0.98 were easily obtained, 
thereby confirming our claim that models 
with selection can generate linear M versus 
1/f curves. Finally, we also show a curve 
where the R2 metric is less than 0.98 (Fig. 1f). 
The nonlinearity seen in this example is 
qualitatively similar to the examples shown 
by the authors in their Supplementary Fig. 11,  
thereby showing that this oversimplified 
model does recapitulate all scenarios 
demonstrated originally by the authors.

To go beyond this simplest model, we 
then constructed a continuous-time birth–
death mutation process analogous to the 
model created in ref. 1. Our process allows 
cells to live for an exponentially distributed 
time before dividing or dying, and cells 
may accumulate mutations during each cell 
division according to a given probability 
distribution (for details of the simulation 
technique, see ref. 7). To match the approach 
in ref. 1, a new mutant cell contains a 
Poisson-distributed number of variants with 
rate 100, which is the same distribution and 
rate chosen by the authors. This approach 
allows multiple variants to arise at each 
mutation event, and sampling to account for 
sequencing noise results in multiple alleles 
with similar, but not identical, frequencies. 
Under the neutral model, mutant cells have 
the same birth rate as their parents, but 
when allowing for selection a mutant cell has 
a birth rate equal to the sum of the parent’s 
rate and an additional fitness term generated 
from a double-exponential distribution, 
allowing mutations to be deleterious or 
advantageous. We continue the process 
until 1,000 cells (as in ref. 1) and 1,000,000 
cells accumulate to demonstrate how time, 
in addition to selection, affects linearity 
between M and 1/f. The ancestor individual 
splits into two new cells with rate b =  1 and 

dies with rate d =  0.1. Given a split, one of 
the daughter cells may become a mutant 
with probability μ, which is 0.1 for the 1,000-
cell scenario and 0.03 for the 1,000,000-cell 
scenario. A mutation results in a new clone 
with a birth rate of b +  s, where s is chosen 
from the fitness distribution. We consider 
multiple levels of selection and a model with 
only advantageous selection. These levels 
of selection are based on the width of the 
fitness distribution, parameterized by the 
rate of the exponential distribution. Weak 
selection is associated with a rate parameter 
of 100 for the double-exponential fitness 
distribution, leading to an average change in 
the birth rate of 0.01 for a single mutation, 
while strong selection has a wider fitness 
distribution with a rate parameter of 25 that 
changes the fitness by an average of 0.04. 
Very strong selection is also included where 

the rate parameter is 1 such that the fitness 
doubles or halves on average with each 
new clone, representing a very extreme and 
significant increase. Finally, the asymmetric 
distribution is a one-sided exponential 
distribution with a rate of 25 where 
fitness only increases in the population. 
As mutations accumulate, the fitness of 
subclones increases as well, and the stronger 
selection scenarios are expected to lead to 
many more subclones with large fitness 
values relative to ancestor fitness.

The results of our more complex model 
(Fig. 2) indicate that the contribution of 
clones to the final total population size 
is mainly due to early mutations, but the 
accumulating fitness suggests that later 
subclones have the ability to outcompete 
earlier ones given enough time. Later 
subclones with large fitness values are still 
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Fig. 3 | the model from the original study for multiple simulations. Using the code provided by 
Williams et al.1 for situations with selection, we show that linearity between the cumulative mutation 
count and inverse allele frequency is widespread. a–e, We used the code with different seed values than 
provided by the authors to initiate the random number generator, including 5 (a), 7 (b), 2 (c), 911 (d) 
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small owing to their young age but will 
eventually outcompete older, less fit clones. 
These subclones have usually accumulated 
multiple mutations, which allow for larger 
fitness values. The overlap in sizes among 
clones (Fig. 2a) also indicates that we 
cannot use cell counts or allele frequencies 
as a surrogate for time or age in such a 
population. Limiting our analysis to allele 
frequencies of [0.12, 0.24] as in ref. 1, the 
true allele frequency without accounting 
for multiple mutations or sequencing error 
is noticeable (Fig. 2b), but this effect is 
much stronger when multiple mutations 
are allowed to occur in an individual event 
and alleles are sampled from the population 
to represent noise in order to obtain results 
similar to the original analysis (Fig. 2c). 
Changing the Poisson parameter has the 
largest effect on linearity, as indicated by  
the box plots, and there is no apparent effect 
due to the strength of selection in the  
model (Fig. 2d). This observation suggests 
that R2, or even linearity, is not a proper 
statistic to distinguish neutral from selection 
regimes, as both regimes tend toward a 
linear relationship.

Even more impressive is the drastic 
increase in R2 as we increase the final cell 
count (Fig. 2b,c). The cumulative number 
of mutations for an individual sample in 
each scenario increases linearly with respect 
to inverse allele frequency in all scenarios, 
and the conformation to linearity becomes 
much stronger as the population size 
increases. However, we also show examples 
of relatively high R2 at 1,000 cells that 
have nonlinear relationships. This analysis 
illustrates the problem in using R2 as a 
cutoff, especially at such a high value where 
minor differences change the conclusion 
of neutral or selective evolution. Thus, we 
show relatively broad scenarios of evolution 
with selection that fit the original model1. 
This observation suggests that convergence 
to a linear relationship between mutation 
count and allele frequency is shared among 
branching-process models under the 
infinite-allele assumption, as previously 
shown8,9, suggesting that linearity may be 
achieved in even more general scenarios 
evolving according to branching processes.

However, nonlinearity is not necessarily 
guaranteed for models with selection. The 
authors created a model with selection that 
leads to nonlinear trends between M and 1/f, 
as we were also able to do with our models 

(Figs. 1f and 2e). Using the code provided 
in ref. 1, we found nonlinear trends for 
some simulation runs (Fig. 3a,b) but linear 
trends for others (Fig. 3c–e). In fact, 5,000 
simulations using their model with selection 
generated a distribution where a majority of 
simulations (66%) had R2 values greater than 
0.98 (Fig. 3f), showing that their own code 
does not support the authors’ conclusion.

Our results demonstrate the difficulty 
in drawing conclusions about parameters 
in population kinetics on the basis of data 
obtained at a single time point per patient. 
Even in the most simplified scenarios 
such as the absence of density-dependent 
interactions among cells and spatial 
components, the growth rate, mutation rate 
and tumor/clone age are all unknowns and 
provide too many degrees of freedom to 
elucidate estimates from single-time-point 
data. Our findings demonstrate that it is 
challenging to differentiate neutral from 
selective evolution given the data used in ref. 1  
without obtaining additional quantitative 
molecular information about the tumor. 
In this context, one might be tempted to 
brandish Occam’s razor and choose an 
apparently simpler neutral model for the 
30% of cases where a linear relationship 
between M and 1/f was observed1. However, 
because 70% of the data show evidence 
of selection, a mixture model would then 
be required to account for all cases. This 
observation suggests that choosing a neutral 
model to describe 30% of the data because of 
parsimony is inadequate—a more complex 
model would be needed to describe all data. 
Considering that we are able to account for 
linearity and nonlinearity in a single model, 
our approach could therefore be considered 
more parsimonious.

Finally, we argue that an arbitrary 
R2 value should not be used as a cutoff 
for linearity, especially when simulating 
branching processes to a number as low as 
1,000 cells. We present simulation results 
for neutral and selective evolution that are 
similar, yet within multiple simulation runs 
we observe a large amount of variability 
between sampled alleles. Increasing the final 
population size helps resolve that variability 
in both scenarios, further demonstrating 
the problem of using R2 without other 
analysis or exploratory work and suggesting 
a trend toward linearity as the number 
of cells increases regardless of the type of 
process. Given the inability to conclude that 

neutral evolution necessarily underlies the 
observed tumor mutation frequencies, we 
believe that estimates of patient-specific in 
vivo mutation rates, contrary to the authors’ 
claims, can also be seen as scientifically 
inaccurate.

reporting summary
Further information on research design can 
be found in the Nature Research Reporting 
Summary linked to this article. ❐
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Sample size N/A

Data exclusions N/A

Replication Multiple simulations were ran under all scenarios.

Randomization N/A

Blinding Describe whether the investigators were blinded to group allocation during data collection and/or analysis. If blinding was not possible, 
describe why OR explain why blinding was not relevant to your study.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging




