
There is a rich history of the physical sciences contribut-
ing to cancer research and treatment. Max Delbrück, a 
physicist, was one of the pioneers of molecular genet-
ics. In collaboration with the biologist Salvador Luria, 
he showed that phage resistance in a population of 
bacteria is caused by random mutations. The equa-
tions they developed to model this process are still used 
to predict how cancers gradually become resistant to 
chemotherapy. Francis Crick and Maurice Wilkins, two 
physicists, the biologist James Watson and the chemist 
Rosalind Franklin discovered the structure of DNA, and 
thus laid the foundation for cancer genomics and much 
of contemporary biology. Indeed, concepts from other 
fields as wide-ranging as agriculture (the seed-and-soil 
hypothesis1), developmental biology (Folkman’s anti-
angiogenesis strategy2) and mathematics (Nowell’s 
clonal evolution model3 and the multistep theory of 
tumorigenesis4,5) are at the core of cancer biology.

Treatments have also been influenced by the physi-
cal sciences. Chemotherapy began in chemistry labo-
ratories, in which chemists sought to develop new dye 
molecules. Radiation oncology, which is a cornerstone 
of cancer therapy, originated from basic physical chem-
istry research. Physics and mathematics are central to 
designing the accelerators that are used to generate 
radiation and the algorithms that are used to determine 
where the radiation should be delivered and how much 
radiation should be used. Most recently, the availabil-
ity of fairly inexpensive high-throughput sequencing is 
making it possible to contemplate highly personalized 
cancer therapies, in which patients are treated with drug 
regimens that are specifically tailored to their disease.  

In addition to laying the foundation for new, personal-
ized treatments, these large-scale sequencing efforts have 
also helped scientists to delineate the enormous com-
plexity of the disease and the degree to which signal-
ling, drug resistance and genomic alterations vary from 
patient to patient and even within one patient.

This new vista of cancer in all its heterogeneity and 
complexity suggests additional ways in which the physi-
cal sciences can assist cancer researchers and clinicians. 
For decades, physical scientists have been grappling with 
systems that are composed of many interacting parts 
and that exhibit considerable local variation, much like 
tumours in individual patients. Entire scientific fields, 
such as the study of superconductivity and the fractional 
quantum hall effect, are devoted to understanding the 
unexpected things that can happen when large numbers 
of simple pieces interact. It is very difficult, or it may 
even be impossible, to predict the aggregate behaviour 
of these systems even if all the laws that are relevant to 
each constituent are known. Ultimately, physical scien-
tists were forced to invent a completely new set of theo-
retical and computational tools, such as the Monte-Carlo 
method, to explore and to simulate systems with many 
coupled degrees of freedom.

Cancer is perhaps such a system. It has now become 
clear that cancer is not a strictly deterministic disease that 
progresses through a simple, fixed succession of specific 
mutations in two or three genes. Rather, there are many 
molecularly distinct routes to clinically identical cancers, 
and the final development of malignancy is influenced by 
a multitude of factors, encompassing the immune system, 
ageing, nutrition and microenvironmental details within 
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Superconductivity
A phenomenon of zero 
electrical resistance occurring 
in certain materials below a 
characteristic temperature.
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with cancer?
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Abstract | Large-scale cancer genomics, proteomics and RNA-sequencing efforts are 
currently mapping in fine detail the genetic and biochemical alterations that occur in cancer. 
However, it is becoming clear that it is difficult to integrate and interpret these data and to 
translate them into treatments. This difficulty is compounded by the recognition that cancer 
cells evolve, and that initiation, progression and metastasis are influenced by a wide variety 
of factors. To help tackle this challenge, the US National Cancer Institute Physical 
Sciences-Oncology Centers initiative is bringing together physicists, cancer biologists, 
chemists, mathematicians and engineers. How are we beginning to address cancer from the 
perspective of the physical sciences?
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Fractional quantum hall 
effect
A property of a collective state 
in which electrons bind 
magnetic flux lines to make 
new quasiparticles, and 
excitations have a fractional 
elementary charge.

Monte-Carlo method
A technique in which a large 
quantity of randomly 
generated numbers is studied 
using a probabilistic model to 
find an approximate solution  
to a numerical problem that 
would be difficult to solve by 
other methods.

Coupled degrees of freedom
The number of values in a 
study that are free to vary but 
that are constrained to vary 
together.

Emergent phenomena
Complex systems and patterns 
that arise from a multiplicity of 
relatively simple interactions.

Elastic energy
Energy stored in the 
configuration of a physical 
system as work is carried  
out to distort its volume or 
shape.

particular tissues. Like other emergent phenomena, cancer 
cannot be readily understood by merely characterizing all 
its components. Developing a fundamental understand-
ing of cancer that recognizes and embraces the great 
heterogeneity of tumours and their emergent properties 
may benefit from integrated teams of physicists, cancer 
biologists, mathematicians and engineers.

In this Review, we provide examples from four broad 
areas to illustrate the idea of the physical sciences con-
tributing to cancer biology. These four areas have well-
established clinical relevance, and in each of these areas 
there is also evidence, owing to decades of preceding 
research, that physics, mathematics, chemistry and engi-
neering are able to contribute, sometimes decisively, to 
breakthroughs in cancer research. These areas are cancer 
mechanics, cancer evolution, information coding and 
decoding, and transport and delivery in cancer.

A physicist’s view of cancer mechanobiology
Since Egyptian times6, physicians have noted that 
tumours are typically harder than the tissue that sur-
rounds them. This observation gave rise to the word 
oncology (from the Ancient Greek ‘onkos’, which means  
‘a mass’) and continues to be widely used to detect can-
cers. However, the connections between tissue mechan-
ics, cancer progression and patient outcomes are only 
now being established7–9. Much of what we know about 
the role of mechanics in biological function (and dysfunc-
tion) comes from studies of organ development10 and the 
investigation of clinical specimens with new tools such as 

magnetic resonance elastography11 and highly sensitive 
tissue indenters12. Tensile forces within developing organs 
are master regulators of cell sorting and packing, thereby 
specifying overall tissue architecture. For example, dif-
ferential cell cortex tension is a key factor in progenitor 
cell sorting and thus germ-layer organization13. Tensile 
forces arise from cell–cell and cell–matrix adhesion, sur-
face tension, and intracellular molecular machines and 
cytoskeletal elements. From the interplay of cell mechan-
ics and geometrical constraints, constructed by the gene 
expression of cytoskeletal elements and adhesion com-
plexes, emerge the approximately 250 distinct cell shapes 
and sizes found in the human body.

Once a tissue has formed, it remains sensitive to 
alterations to the shape and mechanics of all its con-
stituents. Cells change their shape when the subtle bal-
ance of forces that define their shape is modified — this 
is analogous to how a small stumble can immediately 
alter, and can quickly end, a game of tug-of-war. When 
changes of cell shape and mechanics spread in a tissue, 
as is the case in cancer, the organization and shape of 
the entire tissue is necessarily altered. Communications 
between and among cells are mediated through cell 
surface receptors and a network of signal transduction 
reactions. Mechanical forces actively alter large-scale 
spatial organization of signalling molecules14, providing 
a mechanism for physical forces to directly regulate 
chemical signal transduction processes. These, in 
turn, can activate or repress genes, modifying cell and  
extracellular matrix mechanics, and so on.

The physics of soap bubbles is a simple starting point 
for thinking about how cells may change their shape dur-
ing tumour progression. Single soap bubbles are spheri-
cal, the one shape that minimizes their surface area and 
thus their elastic energy. For bubbles, the principle of 
energy minimization is equivalent to surface area mini-
mization15. This makes it possible to precisely calculate 
the shapes of collections of soap bubbles. Developmental 
biologists have recently discovered intriguing similari-
ties between soap bubble configurations and growing 
and migrating cells. For example, surface mechanics 
seem to mediate pattern formation in the developing  
Drosophila melanogaster retina16 (FIG. 1). Despite the 
enormous obvious differences between soap bubbles and 
living cells, simple calculations and simulations invok-
ing only cell–cell adhesion, cell contractility and energy 
minimization reproduce the intricate six‑cell ommatid-
ium cell clusters that are found in the D. melanogaster 
retina17,18. The key equation used in this approach (FIG. 1a) 
is worthy of discussion. The first term comes straight 
out of a physics textbook — from elasticity theory. The 
second and third terms relate to the levels and effective 
stickiness of N-cadherins and E‑cadherins. These two 
terms blend at least five broad areas of science: genom-
ics, cancer biology, thermodynamics, soft condensed 
matter physics, and structural and membrane biology. 
Taken together, this then yields the characteristic six‑cell 
clusters of the D. melanogaster retina17,18. This example 
illustrates the power of bringing together the physical 
sciences and biology. It is tempting to speculate, but by 
no means proved, that similar integrated approaches will 

At a glance

•	Approaches from the physical sciences can contribute to the rate at which powerful 
new diagnostic tools and therapies can be discovered and brought into the clinic. We 
provide examples from four areas to describe how teams of physical scientists, cancer 
biologists, clinicians and cancer advocates are tackling cancer from the perspective of 
the physical sciences.

•	The principles of evolutionary biology can be used to study the mechanisms and 
dynamics of tumour initiation, tumour progression, the response to treatment and the 
emergence of resistance. For example, large-scale cross-sectional genomic data sets 
can be combined with novel evolutionary approaches to predict the temporal order 
of somatic events that arise during tumorigenesis. Such knowledge helps to guide the 
generation of the correct genomic context in animal models of human cancer and 
helps to prioritize the validation of potential drug targets.

•	DNA in vivo is often sharply distorted away from the canonical Watson–Crick structure; 
different DNA sequences vary greatly in the ease with which such sharp distortions can 
be accommodated. Most of the eukaryotic genomic DNA is bent around histones to 
form nucleosomes. The capacity of the DNA sequence to undergo such distortion can 
influence the specific preferred locations for many of the nucleosomes.

•	The existence of a cancerous lesion can sometimes be detected through the analysis 
of the altered behaviour of cells that are located substantial distances away from 	
the primary lesion, a phenomenon that is known as the ‘field effect’. Partial wave 
spectroscopy takes advantage of the field effect to allow for the sensitive and specific 
detection of cancers in tissues that are difficult to reach.

•	Cancer is an extraordinarily complex disease. Methods that are commonly used in 
physics can reduce the complexity of cancer to a manageable set of underlying 
principles and phenomena. In particular, Transport OncoPhysics views cancer as a 
disease of multiscale mass transport deregulation involving the biological barriers 
that separate different body compartments. Probes that can be used to investigate 
the mass transport properties of tissues can be used as directed vectors for the 
localized, preferential release of therapeutics into tumours.
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help to reveal why particular changes to cell and tissue 
architecture are so useful for detecting, identifying and 
staging cancer (FIG. 1b).

Moving beyond the fairly simple D. melanogaster 
retina to more complicated tissues with vasculature 
and dozens of different cell types will require qualita-
tively different approaches, some of which still need 
to be invented. The major issues are that cell–cell and 
cell–matrix interfaces are neither uniform nor static, 
and that there might be multiscale mechanochemical 
feedback within tissues, potentially yielding extremely 
complicated dynamics. For example, unlike soap bub-
bles with their homogeneous interfaces, cells and tissues 

have complex cell–cell and cell–matrix interfaces that 
change with time. Each cell inside a tissue monitors 
its surrounding tensile forces and chemicals. Different 
mechanochemical inputs to the cell change the genes 
that it expresses, altering its cytoskeleton and changing 
its stiffness. Thus, the global mechanochemical state 
of a tissue may modulate the mechanical properties of 
each of its constituent cells, and these in turn can initiate 
mechanochemical state changes that can ripple through 
the tissue (FIG. 2). This is perhaps the most difficult chal-
lenge in understanding the interplay of cell mechanics, 
signalling, genetics and tissue function: how do cause 
and effect interact in a tissue, when small changes may 
be synergistically amplified?

One insight from the physical sciences and neuro-
biology is that complicated chemical, physical or bio-
logical systems are best approached by tightly integrating 
manipulation (where possible), measurement and sim-
ulation. Simulations allow powerful experiments to be 
designed, and precision manipulation and measure-
ment allow models to be decisively tested and gradually 
refined. Implicit in such an approach is that experiments 
are carried out in a way that allows error estimates to 
be assigned to each measurement. For example, in par-
ticle physics, new particles are announced in terms of 
their sigmas: the probability of scientists being wrong. 
Overall, the triad of manipulation, measurement and 
simulation allows physical scientists and engineers to 
simulate the Earth’s global climate with increasing reli-
ability, investigate the time evolution of the universe, 
and design and flight-test aircraft purely in silico. This 
approach is also showing impressive results in systems 
and synthetic biology19.

Another insight that is relevant to cancer mechanics 
is the utility of measuring system dynamics, which stems 
from the fundamental link between the forces that drive 
a system from one state to another and the dynamics with 
which that change takes place. A good example is an elec-
tron moving through space. A single picture of this pro-
cess, however detailed, contains little information beyond 
revealing the presence of the electron. By contrast, a movie 
of this process allows the forces that control the motion of 
the electron to be accurately inferred; this is how electro
dynamics, the theory of charge, light, radio waves and 
electricity, was developed. Essentially, all known physi-
cal laws were discovered by watching how things move, 
whether they are planets or atoms. In a cancer mechan-
ics context, the ideal experiment would be to watch the 
cell boundaries within a living tumour and its surround-
ing tissue move with great accuracy and over long time 
periods. Such a movie could then be inverted to reveal 
the alterations of the normal cellular ‘tug-of-war’ that 
take place in a tissue during carcinogenesis and subse-
quent metastasis. However, this inversion will require the  
generation of new and complex mathematical models.

A final consideration is the value of simultaneously 
determining correlations among many parameters. For 
example, perturbing a cell and then quantifying the 
degree to which the fluctuations in the concentration 
of, or the location of, two or more proteins are corre-
lated can reveal important information about signalling 

Figure 1 | Similarities among soap bubbles, cells in the Drosophila eye and loss of 
tissue organization in cancer. The normal ommatidium structure within the 
Drosophila melanogaster retina is shown (part a). Note the beautifully regular pattern of 
six cells, four in the middle and two around, which constitutes the basic organizational 
unit. The geometry of the ommatidium mirrors that of four soap bubbles (part b), 
suggesting that surface tension has an important role in defining the shape of the 
ommatidium. Cells misexpressing N‑cadherin are marked with green fluorescent protein 
(GFP; false-coloured purple) (part c). Cell outlines are visualized with fluorescent 
E‑cadherin (green). A simplified form of an equation is shown, which was used by 
Hilgenfeldt et al.18 to model the interplay of physics (for example, membrane mechanics) 
and biology (for example, N- and E‑cadherin levels). Kronecker delta function terms 
representing homophilic interactions are not shown for clarity. Equation terms are 
explained in the text. Alterations in cell and tissue architecture in colorectal cancer are 
shown (part d). The arrows represent normal and dysplastic crypts (with diameters of 75 
microns and 150 microns, respectively). Parts a–c are reproduced, with permission, from 
REF. 16 © (2004) Macmillan Publishers Ltd. All rights reserved. Part d is courtesy of  
B. Vogelstein, John’s Hopkins University, USA.
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network topology, feedback loops and the role of noise 
in gene expression19,20. The cancer research literature 
still features reports of single genes or proteins that are 
asserted to cause cancer. The flood of results from the 
cancer genomics and cancer systems biology efforts 
makes one wonder, however, about the actual utility of 
relating any one isolated gene or protein to the disease. 
A new generation of measurement technologies that are 
able to simultaneously measure many cellular and tis-
sue parameters, thereby relating them and thus allowing 
cause and effect to be distinguished, would be of great 
use. Imagine, for example, being able to mechanically 
manipulate cells within a tissue and then following the 
activity of all 50‑plus proteins of the RAS effector path-
ways within single cells and thus seeing how the network 

is influenced by local mechanics and how it might work 
around a mechanically induced or a drug-induced  
reduction of kinase activity.

So far, we have been emphasizing the role of mechan-
ics in development and disease, and we have also tried to 
provide a glimpse of related ideas that may be useful for 
cancer research. This is only one small part of a much 
larger puzzle. An equally important way to approach 
cancer is by studying how it evolves, as this reveals the 
physiological, mechanical, genetic and biochemical 
forces that guide the disease and its progression.

Evolution and evolutionary theory of cancer
Tumours result from evolutionary processes within tis-
sues3,21–25. From an evolutionary standpoint, tumours can 

Figure 2 | Tissues are complex dynamic systems that feature multiscale mechanochemical coupling. Progress has 
been made particularly in delineating the molecular mechanisms of force generation by the cytoskeleton, the details of 
cell–cell adhesion and force sensing by proteins such as talin 1 and vinculin. However, mechanical effects in biology are 
inherently multiscale, in the sense that single cells can generate stresses and strains that contribute to the mechanics and 
the organization of entire tissues, and in turn, millimetre-scale tension fields within tissues can provide signals that are 
sensed by potentially millions of cells within that tissue. Understanding this interplay will require new types of 
experiments that can interrogate all relevant scales simultaneously, and broad conceptual and theoretical advances.  
ECM, extracellular matrix; FAK, focal adhesion kinase; P, phosphorylation; ROCK, Rho-associated, coiled-coil containing 
protein kinase; SFK, SRC family kinase.
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be regarded as collections of cells that accumulate genetic 
and epigenetic alterations, which are then subjected to 
the selection pressures operating on the cells that har-
bour them. These alterations have heritable effects on 
the fitness of cells and may thus lead to rapid increases 
or decreases of mutant clones within the tumour26,27. 
Beneficial alterations can generate adaptations, such as 
an increased growth rate, motility and ability to invade 
into surrounding tissue, as well as the induction of angi-
ogenesis and evasion of the immune system. The fitness 
of a tumour cell thus results both from the accumula-
tion of alterations and from the interaction with cells and 
other components of its microenvironment. Changes 
that are beneficial to the cell are normally detrimental to 
the organism and thus neoplastic processes are an exam-
ple of conflicting selection acting on different hierarchi-
cal levels28: evolution and natural selection generally lead 
to increased proliferation, survival and evolvability on 
the cellular level and results in progression, invasion 
and resistance. Selection at the level of organisms and 
genes has led to the evolution of oncogenes and tumour  
suppressors in the genome23,29.

Viewing neoplasms as a result of evolutionary forces 
operating on tissues within multicellular organisms 
provides physicists, mathematicians and population 
geneticists with an opportunity to use their tools to 
describe the evolution and ecology of cancer cells with 
mathematical constructs. Such theoretical modelling, 
together with the principles of evolutionary biology, has 
been successfully used to study the mechanisms and 
dynamics of tumour initiation4,5,30,31 and progression32,33, 
as well as the response to treatment and the emergence 
of resistance34–36. For example, an interest in understand-
ing and preventing the evolution of resistance against 
anticancer therapy has inspired the development of sev-
eral mathematical approaches. Coldman and co-authors 
pioneered the field by introducing stochastic models of 
resistance to chemotherapy to guide the selection of 
treatment schedules35,37. The thought process introduced 
by these investigators was later applied to study the risk 
of pre-existing resistance38–41, resistance emerging during 
treatment39,40,42 and the optimal scheduling of treatment 
administration under various circumstances43–47. Related 
efforts have led to such seminal results as the discov-
ery of tumour suppressor genes30,48 and the multistage 
theory of carcinogenesis4,49.

The recognition of cancer as a disease that is caused 
by the accumulation of several somatic alterations has 
motivated recent large-scale efforts to annotate the can-
cer genome and epigenome for many human cancers50–52. 
When combined with computational approaches that 
can distinguish significant, recurrent events from the 
background noise in high-resolution data sets, these 
cancer genome and epigenome surveys yield molecular 
portraits that are specific for each cancer type and con-
sistent across multiple sample sets in that they uncover 
a subset of events in many samples of the same cancer 
type53,54. These emerging, large cross-sectional data 
sets are the basis for investigations by computational 
biologists, physicists, mathematicians and evolution-
ary biologists to address a multitude of questions about 

the generation and persistence of genetic and epige-
netic alterations in cancer. Here, we summarize two 
recent advances in a mechanistic understanding of  
these alterations — one addressing the propensity of genetic  
alterations to arise at particular loci in the genomes of 
evolving cancer cells, and the other concerning the 
deduction of the temporal order in which genomic alter-
ations arise during tumorigenesis using evolutionary 
mathematical approaches.

Which factors determine the mutagenic potential of 
the genome? An unstable genome is a hallmark of many 
cancers55. The mechanisms of the generation of genomic 
variation, however, have not yet been entirely elucidated. 
It is unclear, for example, whether some mutagenic fea-
tures that drive somatic alterations in cancer are encoded 
in the genome sequence or whether they can operate in a  
tissue-specific manner. Therefore, a genome-wide analysis 
of the properties associated with DNA breakpoints that 
are related to somatic alterations in cancer is of fun-
damental interest for many areas in biology, including  
cancer genomics, genome informatics and evolution.

Many exogenous and endogenous factors, as well 
as molecular mechanisms, can cause double-strand 
breaks and erroneous DNA repair, leading to genomic 
alterations in cancer genomes56–58. Under certain cir-
cumstances, DNA can adopt non‑B conformations, 
which can similarly contribute to DNA damage59–61. 
Guanine-rich sequences (G3+N1–7G3+N1–7G3+N1–7G3+) can 
adopt four-stranded structures called G‑quadruplexes 
(G4s)62–64. As these sequences occur frequently in the 
human genome, they could potentially contribute to 
DNA damage in multiple areas of the genome. Indeed, 
G4 structures have the potential to obstruct the move-
ment of DNA polymerase65, thereby increasing the risk 
of DNA breakage or of non-allelic homologous recom-
bination. A recent genome-wide analysis of DNA break-
points that are associated with somatic copy number 
alterations (SCNAs) from 2,792 cancer samples classified 
into 26 cancer subtypes led to the identification of SCNA 
hotspots66. Despite a subset of these hotspots being pre-
sent in the genomes of apparently healthy individuals, 
this investigation uncovered that G4 structures could 
be causally implicated in genomic instability and the 
generation of DNA breakpoints in cancer. The genomic 
alterations that were associated with DNA breaks had a 
strand-specific pattern that was consistent with a causal 
role of G4 structures in their generation. An analysis of 
methylation data from several different tissue and can-
cer types subsequently led to the finding that abnormal 
hypomethylation in genomic regions that are enriched 
in G4 sequences is likely to be a key mutagenic factor 
that is associated with tumorigenesis. These findings 
are consistent with observations that G4 structures are 
implicated in germline deletion67–68 and recombina-
tion69 events. These studies suggested a mechanistic 
model for the generation of tissue-specific mutational 
landscapes in cancer, showcasing the ability of compu-
tational approaches, together with modern cancer data 
sets, to provide mechanistic insights into the evolution 
of cancer genomes.
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The temporal order in which genomic alterations arise 
during tumorigenesis. These emerging, cross-sectional 
cancer data sets have also recently been linked to a novel 
evolutionary approach for predicting the temporal order of 
somatic events that arise during tumorigenesis. Knowledge 
of this temporal order helps to guide the generation of the 
correct genomic context in animal models of human can-
cer, and aids in prioritizing the validation of potential drug 
targets, as changes that occur early in malignant transfor-
mation may result in the rewiring of the signalling cir-
cuitry or may confer a state of addiction to the new signal.  
A novel evolutionary approach, called retracing the evolu-
tionary steps in cancer (RESIC)70, determines the sequence 
of genetic events using cross-sectional genomic data from 
a large number of tumours.

RESIC is based on the principles of population genetics71 

(BOX 1). RESIC predicts the distribution of patients across 
possible mutational states that are defined by specific 

genotypes; this distribution is then compared with the 
numbers of clinical samples that contain the correspond-
ing genotypes. This mapping is used to optimize the 
evolutionary parameters by minimizing the difference 
between the predicted and the observed frequencies in 
the data set. The output of RESIC is given as a percentage 
of the flux through the network through each particular 
evolutionary path, thus specifying the temporal sequence 
of somatic alterations in cancer samples.

The established sequence of genetic events aris-
ing during the multistep process of colorectal carcino
genesis72, neurofibromin (NF1)‑driven primary 
glioblastoma73 and secondary acute myeloid leukaemia74 
provided an opportunity to validate the ability of RESIC 
to recover the orders of events from cross-sectional data 
sets70. This methodology was also applied to a large, 
integrated genomics data set of primary glioblastoma 
samples53. First, areas of significant gene copy number 

Box 1 | Retracing the evolutionary steps in cancer (RESIC)

Consider a population of N cells at risk of accumulating the genetic changes that lead to cancer. Cells proliferate according 
to a stochastic process: at each time step, a cell is chosen that is proportional to fitness to produce a possibly mutated 
daughter cell. Subsequently, another cell is chosen at random to die, and is replaced by the newly produced cell to 
maintain homeostasis. A mutated cell can take over the population (that is, reach fixation) or go extinct owing to stochastic 
fluctuations (see the figure). If the population size is smaller than the inverse of the mutation rate, then at any time, there 
are at most two types of cells in the population: type i and type j. Cells of type i differ from cells of type j by only one genetic 
alteration. Their respective fitness values (that is, growth rates) are denoted by r
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. Depending on the order of appearance of alterations, the population follows different evolutionary paths towards 

the fully mutated state (part a).
Cancers are considered to originate from a single population of cells per person. Using this model, we study the 

evolutionary dynamics of individuals accumulating the mutations leading to cancer (part b). We consider the dynamics of 
patients in steady state: there is a constant influx into the unmutated state, representing diagnosis of disease, and a constant 
outflux from the fully mutated state, accounting for diagnosis and deaths of patients or their cure. The evolutionary 
dynamics of a population is described by X = XM + F, where the vector X(t) consists of the frequencies X

i
(t), the matrix M 

contains the transition probabilities m
i,j
, and F = (f,0, …–f) represents the influx into the initial node and outflux from the fully 

mutated node. At steady state, the population is distributed across all possible states; this steady state distribution can be 
compared with the numbers of clinical samples that have the corresponding genotypes, where the total number of patients 
in a data set is equal to the sum of patients in all states (part b). This mapping is used to optimize a subset of parameters in the 
mathematical model (that is, the fitness values of cell types) by minimizing the difference between the prediction and the 
observed frequencies in the data set. Other parameters, such as cellular population size, mutation rate and influx rate, are 
estimated from experimental results and tested for robustness over several orders of magnitude. The output of RESIC is 
given as the percentage of flux through the network via each particular path, and can be used, together with cross-sectional 
cancer genome profiling studies, to identify the temporal sequence of events arising during tumorigenesis (part c).
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alterations were identified using Genomic Identification 
of Significant Targets in Cancer (GISTIC)75, and then 
alterations that were significantly positively correlated 
with each other were selected for further analysis; cor-
relations between alterations are a prerequisite for the 
methodology, as the determination of an order of onco-
genic events is only meaningful for those events that  
co-occur sufficiently often. This approach determined 
that homozygous deletions of the CDKN2A locus (which 
encodes INK4A and ARF) frequently co-occur with epi-
dermal growth factor receptor (EGFR) and PTEN altera-
tions (P value < 10–8) in primary glioblastoma. When 
studying this mutational network, RESIC predicts that 
the most common early alterations are EGFR low-level 
amplification and CDKN2A deletion, which have a simi-
lar likelihood of occurring. Although there is no single 
most frequent path through the network, the frequency 
of paths concluding with high-level amplification of 
EGFR is highest; the second most frequent final event 
is homozygous CDKN2A deletion70. These data suggest 
that glial progenitor cells can tolerate full EGFR activa-
tion only after the inactivation of CDKN2A or PTEN. 
This result agrees with the fact that EGFR overexpres-
sion is insufficient for tumorigenesis in mouse models 
of glioblastoma76,77, providing support for the temporal 
order of events predicted by RESIC.

Evolutionary methods of analysis such as the ones 
presented here will provide the research community with 
tools for the identification of tumour-initiating events 
using modern cancer genome and epigenome data sets; 
furthermore, such frameworks of tumorigenesis will help 
with the generation of hypotheses that can be tested using 
transgenic mouse models of human cancer. Many oppor-
tunities exist to use evolutionary approaches to further 
our knowledge of cancer initiation, cancer progression, 
the response to treatment and therapeutic resistance.

Information coding and transfer in cancer
Current thinking in information coding and decoding in 
biological systems generally implies a one-way informa-
tion flow — from DNA to transcribed RNA to translation 
to protein. Recent studies in developmental biology and 
epigenetics, however, have demonstrated that this infor-
mation can flow in both directions, and that this flow 
can be influenced by external physical forces, even if the 
underlying DNA sequence remains unaltered. It is becom-
ing increasingly clear that this biological information sys-
tem is not only made up of two-way communication, but 
that feedback loops, inter-connectivity and modulation by 
external environmental forces also introduce a previously 
unappreciated level of complexity. Moreover, studies are 
revealing that new kinds of biological information exist, 
ranging from genetic information that is encoded in the 
mechanical properties of DNA, to information in protein 
sequences that control the lifetime and post-translational 
processing of the protein. This complexity represents an 
opportunity for physicists, chemists and engineers to work 
together and has led to studies at the interface of physical 
science, genetics and oncology. These investigations are 
yielding rapid advances in our understanding of chromo-
some structure and function at multiple length scales and 

are shedding light on gene regulation in normal health 
and development, which in turn may help to explain, 
diagnose and treat gene misregulation in cancer. Here, 
we summarize two of these advances — one concerning 
fundamental physical chemistry in gene regulation that 
is related to the lowest levels of chromosome structural 
organization, and the other concerning a novel cancer 
diagnostic technique that seems to be measuring aspects 
of the highest levels of chromosome organization.

Sequence-dependent DNA mechanics, nucleosome 
positioning and gene regulation. An especially active 
research area concerns the rules governing the most 
fundamental level of chromosome architecture78, in 
which short stretches of DNA (147 bp) are wrapped 
locally in ~1.75 turns around octameric cores of his-
tone proteins, creating nucleosomes79. Nucleosomes 
are separated from each other by ~10–50 bp stretches of 
unwrapped linker DNA; thus, only 75–90% of eukary-
otic genomic DNA is wrapped in nucleosomes. DNA 
that is wrapped in nucleosomes is sterically occluded 
from most other DNA-binding proteins, and moreo-
ver is sharply distorted away from the DNA confor-
mations that are favoured by most other proteins80. 
Consequently, the placement of nucleosomes along the 
DNA profoundly influences essential DNA interac-
tions, such as gene regulation, transcription, replica-
tion, recombination, chromosome breakage, retroviral 
and transposon integration sites and DNA repair81–92.

It is perhaps not surprising, therefore, that recent 
studies have shown that nucleosome positioning is tightly 
regulated, and that there is an additional layer of genetic 
information, superimposed or multiplexed directly on 
top of other kinds of regulatory and coding informa-
tion, which functions to bias where nucleosomes can be 
located along the DNA. The nature of this information 
lies in the sequence-dependent mechanics of DNA93. 
Different DNA sequences differ greatly regarding the 
ease with which they can bend around a nucleosome94,95, 
conferring differences of many thousand-fold or more 
on the affinity of nucleosomes for one DNA sequence 
versus another96. The concentration of nucleosomes in 
the cell is kept below 100% saturation of the genomic 
DNA, and thus different regions of DNA compete for 
nucleosome occupancy. DNA sequences can dictate 
which DNA regions will compete well for nucleosomes 
and have high intrinsic nucleosome occupancy, and 
which will not. Like transcription factor binding sites, 
natural genomic nucleosome positioning sequences are 
not determined purely through highest possible affinity96, 
allowing degeneracy in the choice of DNA sequence used. 
Thus, the degeneracy introduced by variations in the 
genetic code, transcription factor binding sites and the 
mechanical constraints of the nucleosome DNA sequence 
preferences97,98 allow the preferential locations of many 
nucleosomes to be specified alongside DNA coding and 
conformation changes that constitute genetic information 
and conventional gene regulatory information.

Approaches that are more commonly used in the 
physical sciences are contributing to this work in 
two ways. Diverse new experimental studies99,100 and 
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Mesoscopic
A subdiscipline of condensed 
matter physics that deals with 
materials of an intermediate 
length scale, between the size 
of a quantity of atoms (such as, 
a molecule) and of materials 
measuring microns.

theoretical studies, ranging from atomic101 to multi
scale102 and mesoscopic97,98,103, seek to measure and 
explain the sequence-dependent mechanics of DNA, 
with the goal of being able to predict the influence of 
the genomic DNA sequence on nucleosome formation 
and on the stability or occupancy of other structures 
involving tightly bent DNA (such as, numerous sharply 
looped gene regulatory complexes) from first principles.

Additionally, physical science tools have already ena-
bled advances in predicting important aspects of nucleo
some organization in vivo, using phenomenological 
definitions of the nucleosome DNA sequence preferences 
that have been obtained in direct binding experiments104. 
This prediction problem is complicated by the combina-
tion of the high concentration of nucleosomes along the 
DNA and the physical reality that nucleosomes cannot 
overlap along the DNA in any one cell at any one point 
in time. The problem is that where any one nucleosome 
resides along the DNA not only partly depends on the 
DNA sequence inside that nucleosome, but also on  
the positions of the neighbours of that nucleosome; how-
ever, where those neighbours are not only depends on 
the DNA sequences inside them, but also on where their 
neighbours reside — and so on, out to the ends of the 
chromosome. If nucleosomes occurred only rarely along 
the DNA, then one might be able to ignore the problem, 
as the chances of two favoured nucleosome locations 
overlapping on the DNA might be very low. This is the 
case in typical analyses of transcription factor binding 
sites, for example, as the recognition sites for any given 
transcription factor are typically sparsely distributed 
along the genome. But for nucleosomes this is definitely 

not the case; some sort of ‘holistic’ theoretical approach 
is required, which solves the nucleosome distribution 
problem for an entire chromosome all at once.

The assembly of nucleosomes in vitro from purified 
components104 has identified the sequences to which 
nucleosomes are more likely to bind. This information 
specifies an effective potential for a nucleosome to start 
at each basepair along the DNA. But calculating where 
the nucleosomes will actually be is complicated by com-
petition between nucleosomes, which occupy space and 
cannot overlap. If one poses the hypothesis that nucle-
osomes equilibrate their locations along the DNA — a 
conjecture that could at best be only approximately true 
— then this problem reduces to a famous problem in 
statistical mechanics, namely that of a one‑dimensional 
solution of hard rods in an external potential, and thus 
can be approximately solved by Monte Carlo meth-
ods105 or exactly solved by numerical integration106, 
recursion107 or dynamic programming78,97 (BOX 2). The 
solution of these equations yields the probability of a 
nucleosome starting at each basepair, and the probability 
that each basepair is covered by any of the 147 differ-
ent nucleosomes that could potentially cover it (as each 
nucleosome covers 147 bp). The solution bears a striking 
resemblance to the locations of nucleosomes genome-
wide (and a highly significant genome-wide correlation) 
measured in vivo, suggesting that the assumptions made 
in the theoretical analysis could be reasonable.

Of course, the real problem in the cell nucleus is not 
simply one of nucleosome positioning; rather, there is an 
ongoing dynamic competition between nucleosomes and 
changing constellations of transcription factors and other 

Box 2 | Nucleosome positioning

Following the recursive approach, one defines a potential V
n
 for a nucleosome located at basepair n, V

n
 = –k

B
T

0
 ln P

n
, 	

where k
B
 is Boltzmann’s constant, P

n
 is the likelihood of a nucleosome starting at basepair n in the absence of 

nucleosome–nucleosome interactions, given by a Markov model used to specify the intrinsic DNA sequence preferences 
of the nucleosome 78,104 and T

0
 is the reference temperature at which the Markov model is defined. Thus, the likelihoods 

given by the nucleosome–DNA interaction Markov model are treated as an apparent free energy landscape onto which 
nucleosomes will be placed at equilibrium subject to the rule that they cannot overlap in space and time.
One then defines a recursion relation (see equation 1):

 	 	 	 	 	 	 	 	 (1) 

where μ is the nucleosome chemical potential (related to the nucleosome concentration (c) by μ = μ
0
 +k

B
T ln (c), where μ

0
 is 

a constant) and the H
n
 are given by equation 2:

(2)

for a nucleosome occupying (excluding another nucleosome for a length of) a basepairs. The H
n
 capture the different 

ways a given site can be blocked by neighbouring nucleosomes. One initiates the recursion by forbidding a nucleosome 
from occupying less than length a basepairs at the right-hand end of the DNA, setting the H

n
 values for those a–1 

basepairs = 1. One then solves equations 1 and 2 iteratively from large to small n. The probability ρ
n
 of a nucleosome 

starting at each basepair n is then given by equation 3: 

	 	 	 	 	 	 	 (3) 

which is solved iteratively from small to large n. Finally, the occupancy σ
n
 of a given basepair by any of the a nucleosomes 

that potentially occlude it is given by equation 4: 

 		 	 	 	 	 	 	 	 	 (4)
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DNA binding proteins, each seeking to bind to favoured 
sequences along the DNA. Transcription factors may have 
high sequence specificity but they are present at fairly low 
concentrations, whereas nucleosomes may have lower 
specificity but are present at high concentrations, and 
thus both make important contributions to the outcome. 
In a sense, therefore, the genome sequence is specifying 
how this dynamically evolving competition will play out.

Similarly, it can be assumed that the nucleosomes and 
changing sets of competing factors approximate a distri-
bution equilibrium for any given window of time (that is, 
for any given set of competing factor concentrations), and 
the statistical mechanics model summarized in BOX 2 can 
be generalized to allow for competition not just between 
nucleosomes, but also between one or more different tran-
scription factors with each other and with nucleosomes108. 
This problem can again be solved exactly by using 
dynamic programming97,109. An example of the competi-
tion of nucleosomes with themselves and with a single 
factor binding at two nearby sites is shown in FIG. 3. In this 
model, nucleosomes reconfigure in response to changing 
transcription factor concentrations simply because of the 
changing nature of the competition. The transcription 
factors influence the resulting distribution of nucleosome 
locations and occupancies, while the nucleosomes equally 
influence the distribution of bound transcription factors, 
as well as the occupancies of the transcription factors110.

By complementing such an analysis of nucleosome 
and transcription factor binding configurations with 
information relating transcription factor binding and 
the eventual transcriptional output, it might be possible 
in the future to predict the transcriptional state of many 
genes in a cell given only the genomic DNA sequence, 
concentrations of key transcription factors, and the 
known sequence preferences of those transcription fac-
tors108. Such a predictive ability would in turn be valuable 
for understanding how a normal cell is transformed into 
a malignant one, and conversely, how a malignant cell 
might be transformed back into a non-malignant one. 
Currently, however, other outstanding issues remain, 
most notably, the extent to which these models will  
predict biological reality, as determined by experiments.

Higher order chromosome structure and novel can-
cer diagnostics. At the other, highly compacted, end of  
the structural hierarchy of the chromosome, little detailed 
structural information is currently available111, but there 
is great potential for important advances to be made from 
using approaches that are commonly used in the physical 
sciences. Indeed, methods from the physical sciences are 
already being used in cancer diagnostics.

Partial wave spectroscopy (PWS)112 takes advantage of 
the field effect, in which apparently normal cells, which 
are distant from a cancerous or potentially precancer-
ous lesion, can develop anomalous properties that may 
be detectable even in the absence of knowledge regard-
ing the exact location of the lesion itself (FIG. 3). The PWS 
experiment yields a signal, the magnitude of which can be a 
highly sensitive and specific predictor of the existence of 
a cancerous lesion some distance away in the body. This 
approach has great potential in the diagnosis of cancers, 

such as those of the colon, lung and pancreas, for which 
existing diagnostics are ineffective, unpleasant or have a 
substantial risk of complications. Although PWS was ini-
tially developed as a purely phenomenological indicator, its 
striking preliminary successes have heightened interest in 
better understanding the underlying physical and biological 
changes that it monitors. Quantitative studies on patient 
samples versus normal controls have shown that increased 
PWS disorder strength in cells that are distal to a cancerous 
lesion is a strong indicator of the existence of a lesion112,113. 
However, the PWS technology has not yet been applied to 
problems of distinguishing pre-malignant from malignant 
disease, which is an important goal of future studies.

PWS measures the refractive index, which is related to 
the polarization of molecules, and in turn is related to elec-
tron density. Of the main macromolecular constituents of 
a cell with amounts that might plausibly have significant 
variability on subwavelength length scales, nucleic acids 
and phospholipids stand out by virtue of having fairly 
high amounts of the electron-rich element phosphorous. 
Chromatin in particular is both highly phosphorous-
enriched and highly heterogeneous in subcellular (and 
subnuclear) distribution, with notable regions of high 
local chromatin concentration observed cytologically 
as dense heterochromatic regions. Hence, one expects  
that dense nucleic acid-containing superstructures, such 
as large-scale regions of compact heterochromatin, might 
dominate the PWS disorder strength measurement.

Consistent with this expectation, direct tests show 
that both the nucleus and the cytoplasm contribute to 
the measured disorder strength, but that the nuclear con-
tributions dominate114. Certainly within the nucleus, one 
expects chromatin structure to dominate refractive index 
inhomogeneities and so the PWS disorder strength115.

Therefore, for the case of PWS, physical science 
approaches have already made a valuable contribution 
to cancer diagnostics. This approach potentially pro-
vides diagnostic sensitivity and specificity in many can-
cer types that are comparable to or better than those that 
are presently available using much more invasive tests. 
PWS should also help in understanding the intracellular 
organization of chromatin, a problem that has resisted 
a definitive solution for many decades. Much anecdotal 
evidence suggests that there is a relationship between 
higher order chromatin compaction and transcriptional 
repression. Advances using PWS spectroscopy as a dis-
covery tool, together with other approaches from physi-
cal sciences ranging from micromechanical studies on 
whole chromosomes, to novel imaging modalities such 
as super-resolution optical microscopy and electron 
microscopy using engineered nanoparticle markers, will 
probably shed much light on this longstanding problem 
in fundamental molecular biology. Furthermore, a better 
understanding of the chromatin organization and how it 
relates to the PWS disorder signal may in the future lead 
to further refinement of this promising diagnostic tool.

Deconvolving cancer complexity
Complex systems represent major areas of study 
for physical scientists. Fundamental insights from 
areas such as thermodynamics, fluid and classical 
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Figure 3 | Physical sciences shed light onto nucleosome and transcription factor competition and chromosome 
packaging. Schematic illustration of the partial wave spectroscopy (PWS) experiment (part a). Cells from the tissue of 
interest are brushed from the tissue and studied ex vivo. Each cell is individually scanned in a two‑dimensional lattice of  
diffraction-limited pixels (strictly voxels because of the thickness of the cell). The cells are illuminated with light of 
wavelength λ, and backscattered waves propagating along one‑dimensional paths within each voxel are measured as 
functions of lateral position over the cell (x,y) and of wavelength λ. Wavelength-dependent variability in reflectivity R at 
each pixel arises from the interference of photons scattered from refractive index fluctuations within the cell at that 
location, providing information about internal cellular heterogeneity on subwavelength length scales. The magnitude of 
the spectral fluctuations at each pixel in the image are represented by a disorder strength, L

d
 = <Δn2> x l

c
, where Δn is the 

local fluctuations in intracellular refractive index and l
c
 is the correlation length of these fluctuations. For many different 

cancer types, the measured disorder strength increases in cells that that are located some distance away from a cancerous 
lesion, even though the cells being analysed are themselves not cancerous. Parts b–g illustrate the free energy landscape 
from a typical section of genomic DNA97. The 10 bp oscillations in interaction energy arise from the ~10 bp helical symmetry 
of DNA, the approximately circular DNA wrapping in the nucleosome, and the mechanical nature of the nucleosome–DNA 
interaction (part b). Parts c–g illustrate nucleosome–transcription factor competition97. The purple curves in part d show 
the corresponding distribution of nucleosome start probabilities with no transcription factor present (from the solution 
of equation 3 in BOX 2), and the top two rows of orange ovals (part e) represent two of the many different nucleosome 
configurations, all of which have significant probability in the  equilibrium distribution. The purple curves in part g show 
the corresponding distribution of nucleosome occupancy (summed over the full set of allowed configurations, from the 
solution of equation 4 in BOX 2). The free energy landscape of a transcription factor, shown in part c, highlights two 
specific binding sites with equal energies (affinities), as indicated by the two sharp valleys in energy (the two green lines). 
The transcription factor also has slightly varying affinities for nonspecific sequences (indicated here by the thickness of 
the green bar covering the remainder of the landscape). In this example, the model is solved for a transcription factor 
concentration that is sufficiently high so as to give high occupancy at one of the binding sites (probability approaching 1; 
green curve in part d). However, because this site overlaps a preferred nucleosome location, binding at this site requires 
redistribution of the local nucleosome organization, to a new distribution of nucleosome start probabilities (orange 
curves in part d). The bottom two rows of orange and green ovals in part f represent two of the many different 
configurations of nucleosomes and bound factors, respectively, which have significant probability in the resulting 
equilibrium distribution. The corresponding nucleosome and transcription factor occupancies are shown in orange and 
green, respectively, in part g. Even though the two transcription factor sites have identical intrinsic affinities for the 
transcription factor, the required nucleosome redistribution is energetically inexpensive for the right-hand transcription 
factor binding site, compared with the left-hand transcription factor site, which allows a higher occupancy at the 
right-hand site for a given transcription factor concentration. The image of the nucleus in part a is reproduced, with 
permission, from REF. 146  (1997) National Academy of Sciences. The graph in part a is reproduced, with permission, 
from REF. 112. Parts b–g are reproduced, with permission, from REF. 97. a.u., arbitrary units.
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mechanics, in combination with advanced computa-
tional visualization and simulation, could potentially 
aid in understanding cancer. Genomic instability is 
a fundamental characteristic of cancer, inherently 
variable between patients even with nominally the 
same disease and during cancer progression within 
the same patient116. The current clinical taxonomy of 
cancer technically defines more than 200 types, but 
closer inspection reveals that cancers are like ‘malig-
nant snowflakes’, with no two cases identical at the 
cellular level117–119. Heterogeneity is higher in tumour 
types that originate later in life and increases during 
tumour progression120,121. As is particularly evident 
in pancreatic cancer122, tens or hundreds of different  
diseases coexist within the same person with metastatic dis- 
ease, with each metastasis having a distinct genetic  
profile and distinct signalling pathways, growth, inter-
action with the microenvironment and response to 
treatment.

Non-genetic and extrinsic factors greatly add to 
the complexity of cancer: the stochastic partitioning of 
proteins during cell division, which generates random-
ness in protein abundance123; epigenetic heterogeneity 
including DNA methylation, histone modifications, 
nucleosomal occupancy and remodelling, chromatin 
modifications and remodelling, non-coding RNAs124 
and proteomic profiles125; microenvironmental hetero-
geneity between cancer types and metastases126, as well 
as within a single tumour; and the macroscopic hetero-
geneity of the patient, including age, gender, weight, 
immune status, lifestyle and mental health.

Faced with this overwhelming diversity, medicine has 
not substantially advanced in the treatment of metastatic 
cancer — and perhaps it never will, unless the root causes 
of this heterogeneity are clarified. Complexity theory 
in mathematics and physics is defined by the quest to 
understand and predict the emergence of order and 
structure in complex and apparently chaotic systems, 
such as turbulent flows. A major advance in breaking the 
overall problem into more manageable pieces lies in 
the answer to the question of what defines a cancer. Six 
fundamental, distinct hallmarks have been proposed55. 
It is possible that cancer can be understood in terms 
of these hallmarks, which is akin to resolving a six- 
dimensional vector into components along six coordi-
nate axes. However, each ‘axis’ further comprises a lim-
ited number of mutated genes that define pathological 
pathways127. This is accompanied by the heterogeneity 
of genetic mutations even in two nominally identi-
cal tumours, owing to a large number of infrequently 
mutated genes, which may be crucial drivers of the 
development and the progression of tumours128. Systems 
biology129 offers a promising approach to the organiza-
tion of genomic data into quanta of biological order, and 
information on molecular circuitry connecting cellular 
pathways and diseases states130. The quest for intelligi-
ble underlying structures in cancer to which complexity 
theory could be applied can be thought of as the search 
for ‘super-genes’ that are shared among cancer types, 
which form 3–5% of the mutated gene population, and 
which affect the key pathways in which the other muta-
tions tend to cluster127,128. Even with this approach, the 
assessment of cancer complexity challenges our opti-
mism about finding cures with the currently available 
molecularly targeted therapeutic approaches127,131,132.

The conventional approach to metastatic disease, 
which is what kills most cancer patients, involves the 
use of systemically administered agents, in the form of 
chemotherapy, radiotherapy or biomolecularly targeted 
therapeutics that have the capacity to reduce the selective 
fitness advantage of metastasizing and/or metastasized 
cells. Such chemical and biological agents are expected 
to simultaneously carry out a triad of functions: trans-
port from the point of administration to the intended 
cancer target sites, preferential accumulation at these 
target sites and preferential cytotoxicity or cell signalling 
modulation. The failure to treat metastases stems from the 
failure to develop agents that are capable of reducing the 
reproductive success of metastatic cells, as well as  
the failure to address the three functions simultane-
ously, for all different presentations of the disease within 
a patient at any given time. One ‘blind spot’ has been 
the physics of mass and momentum transport. This 
is a starting point for a different perspective on cancer, 
termed Transport OncoPhysics133. This approach aims to 
reduce the complexity of apparently disparate biological 
hallmarks to the unifying notion that these hallmarks all 
reflect the deregulation of mass transport. In this frame-
work, cancer is viewed as a disease of mass transport 
deregulation at multiple scales — bridging the molecular 
to the cellular, the microenvironmental, organ and organ-
ism levels (FIG. 4). An intriguing view emerges of a family of 

Figure 4 | The application of physical science approaches for understanding 
deregulated transport in cancer. This is an illustration of the efforts to develop a 
broader understanding of the physical barriers and the biological factors that are involved 
in the progression of tumours and the efforts to design novel biocompatible delivery 
carriers that can overcome or take advantage of these barriers with favourable 
pharmacokinetics and tissue distribution profiles for highly efficient delivery of novel 
therapeutic and imaging agents. A physics- and biology-driven, and a mathematics-based, 
design of the engineered drug delivery vectors multiplies the probability of recognition  
of the novel targets, thus providing a synergistic solution for the imaging and therapy of 
tumours at the interface of physics, engineering, mathematics and cancer biology.
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Probes
Nanoparticles or 
macromolecules that test the 
transport properties of tissues 
and biological barriers.

Delivery vector
A carrier nanoscale or 
microscale particle, for 
injection in the systemic 
circulation, that encapsulates 
anticancer therapy, and 
delivers it preferentially to 
target tissue.
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Conclusion and outlook
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