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Breast tumours maintain a reservoir of 
subclonal diversity during expansion

Darlan C. Minussi1,2,13, Michael D. Nicholson3,4,5,13, Hanghui Ye1,2,13, Alexander Davis1,2, 
Kaile Wang1, Toby Baker6, Maxime Tarabichi6, Emi Sei1, Haowei Du1,7, Mashiat Rabbani1,7, 
Cheng Peng1,7, Min Hu1, Shanshan Bai1, Yu-wei Lin1,2, Aislyn Schalck1,2, Asha Multani1, Jin Ma1, 
Thomas O. McDonald3,4,5,8, Anna Casasent1,2, Angelica Barrera9, Hui Chen10, Bora Lim9, 
Banu Arun9, Funda Meric-Bernstam9, Peter Van Loo6, Franziska Michor3,4,5,8,11 ✉ & 
Nicholas E. Navin1,2,12 ✉

Our knowledge of copy number evolution during the expansion of primary breast 
tumours is limited1,2. Here, to investigate this process, we developed a single-cell, 
single-molecule DNA-sequencing method and performed copy number analysis of 
16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The 
results show that breast tumours and cell lines comprise a large milieu of subclones 
(7–22) that are organized into a few (3–5) major superclones. Evolutionary analysis 
suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and 
genome doubling, there was a period of transient genomic instability followed by 
ongoing copy number evolution during the primary tumour expansion. By 
subcloning single daughter cells in culture, we show that tumour cells rediversify their 
genomes and do not retain isogenic properties. These data show that triple-negative 
breast cancers continue to evolve chromosome aberrations and maintain a reservoir 
of subclonal diversity during primary tumour growth.

Aneuploidy is a salient feature of human breast cancers and is particu-
larly prevalent in patients with triple-negative breast cancer (TNBC) 
harbouring TP53 mutations3,4. Although the underlying molecular 
mechanisms of aneuploidy have been elucidated in model systems5, 
our knowledge of when and how chromosomal rearrangements emerge 
and are maintained during the growth of primary tumours in humans 
remains limited. A long-standing paradigm for tumour progression is 
that mutations and chromosomal aberrations accumulate gradually 
and sequentially over time, leading to more malignant stages of cancer6. 
However, an alternative model is punctuated copy number evolution 
(PCNE), in which many chromosomal rearrangements are acquired 
together in short bursts of genomic instability early in tumour evolu-
tion7–12. Evidence for this model has been reported in breast tumours7,8, 
colon cancers9 and prostate cancers10 and may be common in many 
types of human cancer13.

Whether there is also ongoing copy number evolution after the 
initial burst of genome instability remains unresolved1,7,14. In our pre-
vious work, we found that PCNE is common in patients with TNBC7, 
but were unable to ascertain whether copy number profiles contin-
ued to evolve after the initial catastrophic event, when tumour cells 
undergo clonal expansions. Resolving these models has been diffi-
cult owing to the limited number of cells that could be sequenced, as 

well as extensive technical noise in first-generation single-cell DNA 
sequencing (scDNA-seq) technologies8. Here we report on a key tech-
nical advance that enabled us to sequence thousands of single cells 
and address fundamental questions regarding the natural history of 
chromosome evolution in patients with TNBC.

Single-molecule single-cell sequencing
We developed a method called acoustic cell tagmentation (ACT), which 
combines fluorescence-activated cell sorting (FACS) of single nuclei, 
tagmentation and acoustic liquid transfer (ALT) technology to perform 
high-throughput scDNA-seq at single-molecule resolution (Fig. 1a). 
To perform ACT, nuclear suspensions are prepared from fresh or fro-
zen tissues and stained with DAPI for flow-sorting into high-density 
(N = 384) plates. The isolated nuclei undergo a three-step amplification 
chemistry, which involves: (1) nuclear lysis, (2) direct tagmentation of 
genomic DNA using a Tn5 transposase to add universal adapters, and 
(3) PCR to incorporate dual barcodes for cell library multiplexing. The 
chemistry steps are robotically automated and the Tn5 enzyme is scaled 
down (1:20) to nanolitre volumes using ALT15. This approach generates 
barcoded single-cell DNA libraries with a mean size of 312 base pairs (bp) 
that are pooled together for next-generation sequencing (Extended 
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Data Fig.  1a). ACT has several advantages over first-generation 
scDNA-seq methods8 that rely on whole-genome amplification steps, 
including fewer experimental steps and a shorter time frame (reduced 
from 3 days to around 3 h), increased cell throughput and the ability 
to measure single-molecule DNA information by positional barcoding 
(Extended Data Fig. 1b).

Technical properties of single-cell data
The technical performance of ACT was evaluated by comparing 
sparse data (about 1 million reads per cell) with those from three 
other scDNA-seq methods, including a microdroplet platform (10X 
Genomics CNV), two datasets previously generated using the direct 
library preparation (DLP) method16 and data from a first-generation 
scDNA-seq method (DOP-PCR)7,8. We evaluated the coverage breadth 
and technical noise by overdispersion, which showed that ACT achieved 
a significant improvement (P < 0.05, Kruskal–Wallis test) over the other 
three methods (Fig. 1b, c, Extended Data Fig. 1c, d, Supplementary 
Methods). To further evaluate the coverage performance of ACT data, 
we sequenced two SK-BR-3 breast cancer cells at high depth (8.28× and 
7.72×). To avoid the influence of copy number changes on coverage, 
we restricted our analysis to two diploid regions on chr4p and chr10q 
(Extended Data Fig. 1e, f). We compared the read counts of genomic 
bins, in which the duplicate molecules were retained or removed 
by positional barcoding, revealing an increase in uniformity in the 
single-molecule data and at most one or two reads for most genomic 
regions, whereas the duplicate-retained data had higher (8×) mean 
coverage depths (Extended Data Fig. 1f). From these data, we estimated 
that 97% of the reads were resolved to a single-molecule depth of  
1 or 2. Lorenz curves showed that the coverage uniformity of the ACT 
single cells (Gini coefficient, G = 0.728 and 0.678) is similar to that of 
bulk DNA sequencing (DNA-seq) data (G = 0.678) and is more uniform 
than DOP-PCR data (G = 0.957) (Extended Data Fig. 1g). The physical 
coverage of the two SK-BR-3 cell libraries showed saturation on nearly 
50% of the genome (Extended Data Fig. 1h). Finally, we observed that 
the genomic bin count data (220-kb resolution) are distributed close 
to those of the integer copy number segments, as exemplified in a 

representative aneuploid cell from a ductal carcinoma in situ (DCIS) 
tumour (TN1) (Fig. 1d). These findings led us to conclude that ACT 
represents a technical improvement over existing scDNA-seq methods.

Copy number substructure of tumours
We applied ACT to sequence 9,765 cells from 8 TNBC tumours, including 
the TN1 DCIS sample, three untreated invasive ductal carcinoma (IDC) 
tumours (TN2, TN6 and TN7), and four untreated synchronous DCIS–
IDC samples (TN3–TN5 and TN8) (Supplementary Table 1). Nuclear sus-
pensions were generated from frozen tissues and flow-sorted by ploidy 
distributions ranging from 2.65–3.95N, suggesting that whole-genome 
duplication (WGD) events had probably occurred in all of the tumours 
(Extended Data Fig. 2a, Supplementary Table 1). Clustering of the ACT 
data identified 7–22 subclones that were organized into 3–5 super
clones across the 8 tumours (Fig. 2a, b). We define ‘subclones’ as clusters 
of cells that share highly similar copy number profiles, representing 
a clonal expansion from a single genotype, and ‘superclones’ as a 
higher-order organization of subclone groups that share a subset of 
copy number aberration (CNA) events. TN3 and TN5 showed the low-
est number of subclones, whereas the remaining tumours had higher 
subclone numbers and genomic diversity indices (Fig. 2b, Extended 
Data Fig. 2b).

We define CNAs as segments of the genome in which two sets of chro-
mosome breakpoints have increased or decreased integer copy number 
values relative to the ground state or ‘neutral’ copy number that corre-
sponds to the mean DNA ploidy of the tumour (Methods). CNA analysis 
identified three major classes on the basis of the frequency of the sub-
clones in the population of tumour cells: (1) clonal CNAs (cCNAs) that 
were shared by all subclones; (2) subclonal CNAs (sCNAs) that occurred 
in a subset of the tumour cells and were present in two or more sub-
clones; and (3) unique CNAs (uCNAs) that had exclusive copy number 
states or breakpoints in one subclone (Methods). Of note, the uCNAs 
represent a subclass of sCNAs with a unique copy number state at a 
given segment identified in only one subclone. The CNA classes varied 
across the tumours, with TN5 having the highest number of cCNA events 
and TN4 having the highest uCNA count (Fig. 2c). Most of the genomic 
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Fig. 1 | The ACT method and technical performance. a, Schematic of the ACT 
protocol, including the dissociation of nuclei from tissues, isolation of single 
nuclei into high-density 384-well plates by FACS, ALT of tagmentation 
reagents, PCR addition of dual barcodes and pooling of single-cell libraries for 
multiplexed sequencing. dsDNA, double-stranded DNA. b, Breadth of coverage 

for sparse scDNA-seq data from four different methods, including ACT, 10X 
Genomics CNV, DLP and DOP-PCR using 100 sampled cells. c, Overdispersion 
of bin counts in sparse scDNA-seq data from ACT, 10X Genomics CNV, DLP and 
DOP-PCR using 100 sampled cells. d, Copy number ratio (dots) and 
segmentation plots (line) for a single cell from sample TN1.
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regions of subclonal CNAs were not shared across individuals and the 
three CNA classes had similar genomic size distributions, with the excep-
tion of TN2 (Extended Data Fig. 2c, d). Furthermore, the fraction of cells 
with CNA gains, losses and copy-neutral (ground state) events showed 
variation across the subclones in each tumour (Extended Data Fig. 2e).

In sample TN1, the single-cell data revealed 17 subclones that were 
organized into 4 superclones (Fig. 2d). The superclones were distin-
guished by 29 sCNAs, whereas the subclones were distinguished by 
34 uCNAs, of which many events intersected breast cancer genes 
(Fig. 2f). In sample TN2, the ACT data identified 15 subclones that 

were organized into 4 superclones (Fig. 2e). The superclones were 
distinguished by 65 sCNAs, whereas the subclones were distinguished 
by 26 uCNAs and intersected several breast cancer genes (Fig. 2g). 
Similarly, the 6 other TNBC tumours harboured a large number (7–22) 
of subclones that were organized into a few (3–5) major superclones 
(Extended Data Fig. 3).

To assess the robustness of subclone clustering, we performed boot-
strapping, which showed that most clusters were stable (0.702 ± 0.15 
(mean ± s.d.), Jaccard similarity) (Extended Data Fig. 2f). These data 
further revealed a relationship between the stability of a cluster and 
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the number of cells (Extended Data Fig. 2g). To orthogonally validate 
the clonal substructure, we performed scDNA-seq of 1,946 cells from 
two tumours using a different platform (10X Genomics CNV; Methods). 
The 10X data validated our ACT copy number state distributions and 
showed that all subclones were composed of a mixture of cells from 
both platforms, suggesting a high concordance across the orthogo-
nal technologies, despite some variation in the clonal frequencies 
(Extended Data Fig. 4; Methods).

Clonal lineages during evolution
We next reconstructed the evolution of CNAs before the expansion 
of the primary tumour mass. Exome sequencing was performed on 8 
tumours (107× mean depth) and matched normal tissues (76.3× mean 
depth), which showed a median of 102 somatic mutations, including 
TP53 driver mutations in all tumours (Extended Data Fig. 5a, b, Sup-
plementary Table 2; Methods). To infer the evolutionary history of the 
tumours up to the most recent common ancestor (MRCA), we classified 
mutations as either clonal or non-clonal (Extended Data Fig. 5b; Meth-
ods). We then selected clonal mutations and copy number changes to 
reconstruct which events occurred before versus after WGD in seven 
tumours (Methods). The resulting data showed that TP53 mutations 
occurred consistently before WGD in seven tumours and that WGD 
occurred late in mutational time in most (five out of seven) individuals 
(Extended Data Fig. 5c).

To investigate tumour evolution after the MRCA, we used the ACT 
data to infer phylogenetic trees (Fig. 3a, b, Extended Data Fig. 5d). While, 
as expected, a large number of CNAs were clonal7, the resulting trees 

further revealed branching lineages with large distances after the 
MRCA. Notably, the branching distances from the MRCA to the extant 
node (11,193 ± 4,106 (mean ± s.d.)) were similar to the truncal distances 
from the root diploid node to the MRCA (10,063 ± 2,504 (mean ± s.d.); 
P = 0.52, two-sided t-test), suggesting ongoing copy number evolution 
after the MRCA in all eight tumours (Extended Data Fig. 5e).

We then performed a more detailed analysis of the branching phy-
logenies after the MRCA by computing consensus CNA profiles of the 
subclones to construct balanced minimum evolution trees (Fig. 3c, d, 
Extended Data Fig. 6a). In TN1, the MRCA underwent an initial lineage 
split leading to 2 ancestral clones (A1 and A2) that further diverged into 
4 clades corresponding to the 4 superclones that split into 17 distinct 
subclones (Fig. 3c). Similar branching phylogenies were observed 
after the MRCA in the seven other individuals (Fig. 3d, Extended 
Data Fig. 6a). In addition, we merged single-cell data by superclone 
groups and computed allele-specific copy numbers, which showed 
that most loss-of-heterozygosity (LOH) regions were consistent with 
the bulk exome data (median 96.1% region overlap), suggesting that 
they occurred before the MRCA (Extended Data Fig. 6b; Methods). On 
average, 41.21% of the genome (range 18.1–59.8%) showed LOH events in 
the 8 individuals. Collectively, these data show a large number of sCNA 
and uCNAs that were acquired after the MRCA, continuing to diversify 
the clonal genotypes during the expansion of the primary tumour mass.

Mathematical modelling of evolution
We next aimed to quantitatively investigate two alternative models of 
genomic evolution: a model in which the PCNE event is followed by the 
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gradual accumulation of CNAs at a constant baseline rate; and a model 
in which the PCNE event leads to a transient period of elevated genomic 
instability, followed by a return to gradual evolution at a constant baseline 
rate (Fig. 4a, b). To describe the accumulation of chromosomal break-
points, we used a stochastic branching-process model (Fig. 4c; Supple-
mentary Methods). To model transient instability, we considered the 
CNA rate to be elevated until the tumour exceeds a threshold size, after 
which the rate decreases to a baseline value (Fig. 4d, e). The alternative, 
gradual model assumes that the CNA rate remains at the baseline value. 
All else being equal, transient instability would lead to an enrichment of 
high-frequency breakpoints (that is, in many cells). To investigate these 
scenarios, we derived formulas for the number of breakpoints expected 
to be present at a given frequency for both cases (Extended Data Fig. 7a; 
Methods, Supplementary Methods). We then embedded these formulae 
into a likelihood framework incorporating breakpoint-detection errors, 
which enabled a quantitative assessment of which scenario provides a 
superior fit to the ACT data. We used the Akaike information criterion 
(AIC) obtained under each scenario as a summary statistic, which we 
validated on simulated data and was observed to be conservative for 
calling transient instability. Applying our method to the eight TNBC 
tumours, we obtained a lower AIC for the transient instability model for 
all eight cases, suggesting that an early elevated CNA rate is more likely 
(Fig. 4f, g, Extended Data Fig. 7b). These results indicate that a transient 
period of elevated genomic instability early in tumorigenesis explains 
the patient data better than a gradual evolution model.

Copy number substructure of cell lines
We next investigated whether the extensive copy number diversity 
observed in human TNBC tumours also exists in TNBC cell lines. We 
selected four TNBC cell lines with TP53 mutations and aneuploid karyo-
types17 (MDA-MB-231, BT-20, MDA-MB-157 and MDA-MB-453) and applied 
ACT to sequence a total of 6,413 cells, after which clustering was used to 
delineate their clonal substructure (Fig. 5a, Extended Data Fig. 8a, b).  
Similar to the primary tumours, the four cell lines showed 11–20 sub-
clones, organized into 3–5 superclones (Fig. 5b, c, Extended Data 
Fig. 8a–c). Furthermore, the Shannon diversity indices and frequencies 

of cCNA (47.3%), sCNA (27.4%) and uCNA (25.3%) events were in a similar 
range to the TNBC tumours, as were the segment size distributions 
(Extended Data Fig. 8d–f). To validate the subclonal copy number states, 
we designed probes to target 9 breast cancer genes in MDA-MB-231 and 
performed DNA-FISH to quantify the copy number values for a similar 
number of cells (N = 1,000) that were sequenced by ACT, confirming the 
clonality of all CNA events detected (Extended Data Fig. 8g, h; Methods). 
Collectively, our data suggest that these cell lines are representative of 
the copy number substructure of human TNBC tumours.

Estimating copy number evolution rates
To estimate the rate of CNA evolution, we physically subcloned and 
expanded 2 single daughter cells (MDA231-EX1 and MDA231-EX2) from 
the MDA-MB-231 parental cell line for 19 cell doublings and measured the 
number of de novo CNA events that were acquired (Fig. 5d; Methods). 
These data showed that the 2 expanded daughter cells rediversified 
their genomes into 7–12 subclones in the time it took a single cell to fill 
a 10-cm culture plate (Fig. 5e, f). During the two expansions, 7 sCNAs 
and 9 uCNAs were acquired in MDA231-EX1, while 5 sCNAs and 10 uCNAs 
were acquired in MDA231-EX2 (Fig. 5g, Extended Data Fig. 8d, i). In con-
trast to the parental TNBC cell lines, the new expansions showed fewer 
sCNA events compared with cCNAs and uCNAs (Extended Data Fig. 8d). 
We used the chromosome-breakpoint data from the expanded cells to 
estimate the de novo CNA rate per cell division18, and obtained an aver-
age rate of 0.242 CNAs per cell division (0.235, 95% confidence interval 
(0.189, 0.288) for EX1 and 0.249, 95% confidence interval (0.204, 0.3) for 
EX2) (Methods). Our mathematical modelling framework showed that, 
in contrast to the primary tumours, a gradual model was more likely to 
explain the data from both cell-line expansions (Extended Data Fig. 7c). 
These data show that single cancer cells do not maintain a stable clonal 
genotype after expansion, even during a relatively short time frame.

Effect of subclonal CNAs on gene dosage
We further investigated whether the subclonal CNAs resulted in gene 
dosage effects that influenced gene expression levels by expanding 
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78 single daughter cells (e1–e78) from MDA-MB-231 for 19 genera-
tions and performing matched bulk DNA-seq and RNA sequencing 
(RNA-seq) (Extended Data Fig. 9a; Methods). By co-clustering the bulk 
DNA-seq data with the ACT data (820 cells), we found that 10 out of 13 
of the subclones in the parental MDA-MB-231 cell line were reflected 
in the expansions, which we refer to as expanded clusters (Extended 
Data Fig. 9b–d). Principal component analysis of the expanded clone 
bulk RNA-seq data alone revealed groups of expansions that corre-
sponded to the superclone genotypes (Extended Data Fig. 9c). A global 
analysis of CNA events across the entire genome showed that copy 
number states in MDA-MB-231 were significantly correlated (R2 = 0.45, 
P < 2.2 × 10−16) with gene expression levels (Extended Data Fig. 9e; 
Methods). Similarly, when this analysis was restricted to subclonal 
regions, we found that 68% of chromosome segments were signifi-
cantly associated with expression changes (P < 0.05, Kruskal–Wallis 
test), as exemplified in selected CNA regions (Extended Data Fig. 9f, 
g). We further investigated the effects of subclonal CNAs across larger 
chromosomal regions, which showed that 100-gene expression win-
dows tracked well with subclonal copy number changes and affected 
the expression of many cancer genes (Extended Data Fig. 9h, i; Meth-
ods). Beyond the localized effects of gene dosage, the subclonal CNA 
events also had a broader effect on the expression of many genes in 
pathways and cancer hallmark signatures19 across the entire genome 
(Extended Data Fig. 9j).

Discussion
Our data show that the copy number substructure of human TNBC 
tumours consists of a large milieu of subclones (7–22) that are organ-
ized into a few major superclones (3–5) and share a common evolution-
ary lineage. Although the number of superclones is consistent with 
previous studies of breast cancer7,8,20, the number of subclones vastly 
exceeds previous estimates. Our study extends previous findings of 
TNBC evolution7 by showing that TP53 mutations, genome doubling and 
extensive LOH are important early evolutionary events that occurred 
before the MRCA. Our data further show that after the MRCA, a period 
of transient instability generates a large number of subclones before 
transitioning to a basal rate of ongoing copy number evolution that 
persists during the expansion of the primary tumour mass. These data 
suggest that while there may be some stabilizing selection21, the tumour 
cells continue to explore the fitness landscape during the growth and 
expansion of the primary tumour. On the basis of these results, we 
propose a revised model for TNBC evolution after PCNE (Extended 
Data Fig. 10).

By sequencing DNA and RNA from the same expanded subclones, 
we showed that the subclonal CNAs can influence gene expression, 
consistent with bulk CNA and RNA data across many human cancers22. 
By expanding single daughter cells in vitro, we showed that cancer 
cells can quickly rediversify their genomes at a rate of approximately 
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one new CNA per four cell divisions. Our results are consistent with a 
previous study that reported extensive copy number and mutational 
evolution during the passaging and subcloning of cancer cell lines23. 
These data serve as an important warning for the research community, 
namely that isogenic subcloning, a widely used procedure in molecular 
biology24, can still result in heterogeneous cell populations when used 
in downstream functional assays.

ACT represents a major technical improvement over first-generation 
scDNA-seq methods8,25. A few other studies have also implemented 
tagmentation-based approaches to perform scDNA-seq, including 
two lower-throughput methods using microfluidic chips (around 100 
cells)16,26, and one high-throughput method that was scaled up using a 
nanowell system27. Another study developed a combinatorial-indexing 
approach that uses tagmentation and is highly scalable but has  
limited genomic resolution28. Other work has developed a whole- 
genome amplification-based approach on a microdroplet platform (10X 
Genomics CNV) that is scalable but does not achieve single-molecule 
resolution. Compared with these methods, ACT represents an improve-
ment in technical performance and is cost-efficient.

A notable limitation to our study is that the number of subclones 
that we detected is an ‘operational definition’ and is dependent on 
the total number of cells that are sequenced, and therefore probably 
represents an underestimate of clonal diversity. Finally, we postulate 
that PCNE and subclonal reservoirs may not be unique to patients with 
TNBC and may exist in other solid tumours, particularly in aneuploid 
cancers that harbour TP53 mutations. Beyond cancer, we expect that 
ACT will have broad applications for investigating aneuploidy in diverse 
fields of biology and biomedicine.
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Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized. The investigators were not blinded 
to allocation during experiments and outcome assessment.

Human samples
The 8 breast tumour samples were obtained as frozen de-identified sam-
ples from the MD Anderson Breast Tissue Bank under an Institutional 
Review Board (IRB)-approved protocol. All individuals consented to 
have their tissue used for research studies. The triple-negative status of 
the tumour samples was determined by immunohistochemistry for oes-
trogen receptor (<1%) and progesterone receptor (<1%), and FISH analy-
sis of HER2 (also known as ERBB2) amplification using the centromere 
control probe CEP-17 (ratio of HER2/CEP17 < 2.2). TN1 was classified as 
DCIS by histopathology, while all other samples were invasive ductal 
carcinomas or synchronous DCIS-IDC (Supplementary Table 1). Most 
of the tumour samples were untreated, with the exception of TN1 which 
was treated with adriamycin cyclophosphamide before the collection 
of the tissue sample. Approximately 0.5 × 0.5 × 0.5 cm of total tissue 
was used in each experiment, combining macrodissected pieces from 
multiple sectors in each tumour. More information on the tumour sizes, 
grades and histopathology are provided in Supplementary Table 1.

Cancer cell line samples
The TNBC breast cancer cell lines were obtained from the Charac-
terized Cell Line Core (CCLC) Facility at the University of Texas MD 
Anderson Cancer Center. The cell line identities were confirmed 
by restriction fragment length polymorphism analysis and sparse 
whole-genome sequencing to determine copy number profiles. All 
cell lines tested negative for mycoplasma contamination before run-
ning the experiments.

Generation of expanded subclonal cell lines
Expanded clones from a parental MDA-MB-231 (80% confluency) were 
isolated by FACS (BD Melody) into 96-well flat-bottom culture plates 
containing 100 μl of cell culture medium, followed by visual confirma-
tion by light microscopy after 0 and 24 h. Wells with multiple cells or 
doublets were eliminated, while wells with confirmed single cells were 
used for subsequent expansions. The single cells were propagated 
until ~80% confluency in a 10-cm dish, after which the cells were used 
for scDNA-seq or bulk DNA and RNA sequencing.

Isolation of single nuclei by FACS
Nuclear suspensions from frozen tumour tissue were prepared using 
an NST-DAPI lysis buffer as previously described8,29. Suspensions were 
filtered through a 40-μm mesh and single nuclei were flow-sorted (BD 
FACSMelody, BD FACS AriaII or Beckman MoFlo Astrios). The DAPI 
intensity was used to set gates on aneuploid cells populations for all 
tumours. Single nuclei from TN5 were sorted from the aneuploid G2M 
peak. Single nuclei were then deposited into individual wells of 384-well 
plates (Eppendorf 951020702). The sorting instrument alignment was 
assessed under a microscope before each experiment to ensure single 
nuclei were accurately deposited into the centre of each well using a 
film-bottom 384-well plate (Greiner 781091). After flow sorting, plates 
were spun at 1,500g for 4 min, sealed and stored at −20 °C until ready for 
ACT processing. Bulk nuclei were FACS sorted into LoBind tubes (Eppen-
dorf 022431021) for 10X Genomics CNV or exome-capture reactions.

ACT procedure
FACS-sorted 384-well plates were spun at 1,500g for >4 min. The Echo525 
system (Labcyte) was used to dispense tagmentation reagents (Illumina 
FC-131-1096) at nanolitre scale, with plate and liquid types detailed in 
the following steps. Thorough mixing and spinning of each plate after 
every dispense and incubation period is crucial to maximizing assay 

performance. Nuclei were lysed in 200 nl (384PP_SPHigh) of freshly pre-
pared Tx Lysis buffer (Protease (1.36 AU ml−1) diluted 1:9 in 5% Tween 20, 
0.5% Triton X-100 and 30 mM Tris pH 8.0). Lysis thermocycler settings  
were programmed as: 55 °C for 10 min, 75 °C for 15 min, and hold at 4 °C,  
lid temperature 80 °C and volume 1 μl. After lysis, 600 nl of tagmenta-
tion reaction mixture (TD:ATM 2:1, 384PP-Plus_GPSA) was dispensed. 
The ACT reaction settings on the Thermocycler were: 55 °C for 5 min, 
hold at 4 °C, lid temperature 60 °C and volume 1 μl. The ACT reaction 
was neutralized with 200 nl (384PP_SPHigh) of NT buffer for 5 min  
at room temperature. The final PCR reaction included 1.11uM N7XX 
(5′-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCT 
CGG-3′) and S5XX (5′-AATGATACGGCGACCACCGAGATCTACAC 
XXXXXXXXTCGTCGGCAGCGTC-3′) primers (384PP_AQBP) in 2X HiFi 
HotStart Ready Mix (Roche# KK2602, 6RES_GPSA). XXXXXXXX denotes 
dual barcode sequences in primers. Unique dual barcode combina-
tions for each well in the 384-well plate were achieved by dispensing 
16 unique N7XX barcodes across each row and 24 unique S5XX bar-
codes across each column (Supplementary Table 3). The PCR reaction 
was performed using the following conditions: 72 °C for 3 min, 98 °C 
for 30 s, (98 °C for 10 s, 63 °C for 30 s, 72 °C for 30 s) for 15–18 cycles, 
72 °C for 5 min, hold at 4 °C, lid temperature 105 °C and volume 6 μl. 
ACT performance was evaluated by Qubit fluorometer and TapeSta-
tion (Agilent) from selected cell libraries. Final libraries were pooled 
together and purified with 1.8X AMPURE XP beads. The final libraries 
were sequenced at 50 or 76 single-read cycles with dual barcodes on 
the Illumina HiSeq4000 system.

10X Genomics CNV single-cell sequencing
Nuclear suspensions were stained with NST-DAPI and sorted by FACS. 
The DAPI intensity was used to set gates on aneuploid cell populations 
(see ‘Isolation of single nuclei by FACS’). The resulting aneuploid nuclei 
suspensions were used as input material for the Chromium (10X Genom-
ics CNV) single-cell DNA cell bead kit (cat. no. 1000056) as described 
in the user guide with a target capture of 1,000 cells using chromium 
single-cell chips C and D (cat. nos 1000022 and 1000042, respectively). 
DNA libraries were prepared using chromium single-cell DNA library 
and gel bead kit (cat. no. 1000040) and were sequenced at 200 cycles 
on the NovaSeq6000 S1 flowcell (Illumina).

Fluorescence in situ hybridization
MDA-MB-231 cells were cultured until 80% confluency in a 10-cm dish 
and transferred to 15-ml conical tubes and centrifuged at 1,500 rpm for 
7 min. Cells were subjected to hypotonic treatment (0.075 M KCl) for  
20 min at room temperature and fixed in methanol and acetic acid mix-
ture (3:1 v/v) for 15 min, washed three times with the fixative and air-dried. 
DNA fluorescence in situ (DNA-FISH) hybridization was performed on 
the above cytological preparations using SHC1-20-GR, EGFR-20-GR, 
VEGFC-20-GR, PIK3CA-20-GR, AKT3-20-GR, FGFR3-20-GR, MET-20-OR, 
PDGFRA-20-OR and BCAS2-20-OR probes (Empire Genomics).  
Slides were hybridized with the FISH probes according to the manu-
facturer’s instructions (Empire Genomics) with slight modifications. 
In brief, 2 μl of each of the two probes were mixed with 6 μl of the in situ 
hybridization buffer. The probe was applied on the slide and covered 
with a glass coverslip (22 × 22 mm) and sealed with rubber cement. 
The slides were then denatured at 72–73 °C using Thermobrite system 
(Abbott Laboratories) and incubated at 37 °C overnight. The slides 
were then washed using 2× SSC at 45–70 °C for 1–2 min, counterstained 
with DAPI and analysed using a Nikon 80i microscope on the green and 
orange fluorescent channels. The copy number states of each probe 
were counted across 1,000 cells and multiple imaging fields for each 
experiment.

Bulk DNA-seq and RNA-seq of MDA-MB-231
Expanded subclones from MDA-MB-231 were cultured until ~80% con-
fluency in a 10-cm dish and split into triplicates. From each triplicate, 



a portion of cells was separated for DNA copy number analysis and 
a second portion was used for RNA extraction using TRIzol (Fisher, 
cat. no. 15596-018) from the same plates. Genomic DNA was isolated 
from each expanded subclone with the QIAamp DNA Blood Mini Kit  
(Qiagen, cat. no. 51106). Recovered DNA was sonicated to 250 bp using 
the S220 acoustic sonicator (Covaris) and libraries for each sample 
were prepared with the Kapa HyperPrep Kit (Roche, cat. no. KK8504) 
and NEXTflex-96 barcodes (Bioo Scientific). The NEBNext Ultra RNA 
library prep kit for Illumina with poly(A) mRNA magnetic isolation mod-
ule (NEB, cat. nos E7530 and 7490) was used for the bulk RNA libraries 
according to the manufacturer’s instructions. The protocol was modi-
fied to include the NEXTflex-96 barcodes with 14 PCR cycles. DNA-seq 
and RNA-seq libraries were sequenced on 76 paired-end cycles on the 
Illumina HiSeq4000 platform.

Bulk DNA exome capture
Genomic DNA from aneuploid tumour nuclei sorted by FACS (see ‘Iso-
lation of single nuclei by FACS’) was isolated using Qiagen DNA blood 
mini kit (cat. no. 51106) and matched normal tissue genomic DNA was 
isolated using Qiagen DNA micro kit (cat. no. 56304). Recovered DNA 
was sonicated to 250 bp using a S220 acoustic sonicator (Covaris) and 
libraries for each sample were prepared with the Kapa HyperPrep Kit 
(Roche cat. no. KK8504) and NEXTflex-96 barcodes (Bioo Scientific), 
purified with 0.8X AMPure XP beads and amplified by PCR following 
the manufacturer instructions. Exome libraries were captured with 
SeqCap EZ Exome V2 kit following the manufacturer’s instructions 
(Roche cat. no. 05860482001) and sequenced with 100 paired-end kits 
on HiSeq4000 or NextSeq2000 300 cycles kit (Illumina).

Inference of DNA copy number
Sequencing reads were demultiplexed into single-cell FASTQ files allow-
ing 1 mismatch of the 8-bp barcode. FASTQ files were aligned to hg19 
(NCBS build 36) using bowtie2 (v2.2.6)30 and converted from SAM to 
BAM files with SAMtools (v1.2)31. Positional barcoding was performed 
by marking fragments with equal start position as PCR duplicates and 
removed from subsequent analysis to obtain single-molecule data. 
Copy number profiles were inferred with the variable binning pipeline 
as previously described7. In brief, aligned reads were counted in variable 
bins averaging 220 kb. Bin counts were normalized for GC content with 
lowess regression and bin-wise ratios were calculated by computing the 
ratio of bin counts to the sample mean bin count. Segmentation was 
performed with circular binary segmentation (alpha = 0.0001 and undo.
prune = 0.05) from R Bioconductor DNACopy package32. MergeLevels 
was applied to join adjacent segments with non-significant differences 
in segmented ratios. Cells with excessive noise were excluded according 
to the following criteria: (1) removal of cells with bin counts that were  
2× s.d. below the mean, (2) removal of cells with large breakpoint counts 
that were 2× s.d. above the mean, and (3) removal of outliers using 
density-based spatial clustering R package dbscan (v1.1-5)33 (minPts = 5, 
bucketSize = 10, k = 5, eps parameter was determined by the elbow 
method from the k-nearest neighbours distance matrix).

Calculation of technical metrics
The Gini coefficient for high-depth sequencing of single-cells from 
SK-BR-3 for ACT, DOP-PCR and bulk sample was calculated as follows. 
Let xi be the set of depths observed and let ni be the number of sites 
with depth xi,
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Single-cell coverage breadth was calculated from BAM files with 
duplicates removed. We sampled 100-sparse-single-cell sequencing 
data from BAM files from each scDNA-seq method, ACT (TN1-TN4), 

10X-CNA, DOP-PCR34 and DLP16 and downsampled the data to 800k 
reads trimmed to 50 bases to match the lowest read length and depth 
across all samples. Coverage from all sites was calculated using bedtools 
(v2.26.0) genomeCoverageBed35. Overdispersion was calculated by 
the index of dispersion of bin counts, that is, the variance over mean, 
normalized by the mean bin counts for each single cell. Let ϕ be the 
overdispersion parameter, b be the mean bin counts and iod the index 
of dispersion, ϕ = (iod – 1)/mean(b).

Multi-sample segmentation and integer copy number 
estimation
We used the R bioconductor package with the ‘copynumber’ (v1.26) 
function ‘multipcf’ (gamma = 30)36 to perform joint segmentation and 
determine common break points for all single cells on the bin count 
matrices with an added pseudocount of 5, followed by ‘MergeLevels’ to 
join adjacent segments with non-significant differences in segmented 
ratios. Average tumour ploidy was calculated with DAPI fluorescence 
values from FACS data. The first peak from the DAPI fluorescence histo-
gram was assumed to be normal (2N) diploid stromal cells. The ratio of 
the mean DAPI fluorescence from the gated aneuploid population over 
the mean DAPI fluorescence of the 2N population was multiplied by 2, 
resulting in the average tumour ploidy, that is, ground state. Segment 
ratios from joint segmentation were multiplied by the FACS-derived 
average tumour ploidy and rounded to the nearest integer value.

Clustering of superclones and subclones
Integer single-cell copy number data from multi-sample segmentation 
was embedded in two dimensions using UMAP27,37 with R package ‘uwot’ 
(v.0.1.8, min dist = 0, n neighbours = 40, seed = 55 for TNBC tumours 
and n neighbours = 25, seed = 206 for cell-lines, distance = “manhat-
tan”). To identify superclones, the resulting embedding was used to 
create a shared nearest neighbour (SNN) graph with R Bioconductor 
package ‘scran’ (v1.14.6)38. For each superclone SNN graph, different k 
values were used (TN1, 45; TN2, 63; TN3, 65; TN4, 75; TN5, 41; TN6, 51; 
TN7, 35; TN8, 43; MDA-MB-231, 93; MDA-EX1, 55; MDA-EX2, 17; BT-20, 55; 
MDA-MB-453, 65; MDA-MB-157, 75), the connected components of the 
SNN graph were identified using the R package ‘igraph’ (v1.2.5)39 and 
classified as superclones. To identify subclones the UMAP embedding 
was used as input for the clustering algorithm hdbscan (minPts = 17 
for TNBC tumours and 15 for cell lines) from R package ‘dbscan’  
(v1.1-5)27,40. Hdbscan is an outlier aware clustering algorithm, since 
extensive filtering of the dataset was applied before clustering (see 
‘Inference of DNA copy number’), any cell classified as an outlier was 
inferred to the same cluster group as its closest, non-outlier, nearest 
neighbour according to Euclidean distance. Subclones were further 
organized with hierarchical clustering (Manhattan distance, ward.
D2 linkage), further substructures identified by hierarchical cluster-
ing were not considered additional subclones. Jaccard similarity for 
clusters was computed by bootstrap with R package ‘fpc’ (v2.2-7) with 
mean Jaccard similarities being reported. Heat maps were plotted with 
R package ComplexHeatmap (v2.2.0)41. Clonal structure on heat maps 
was organized according to the clonal lineage from the subclonal con-
sensus copy number profiles (see ‘Calculating consensus copy number 
profiles of subclones’ and ‘Phylogenetic reconstruction of single-cell 
and clonal lineage trees’).

Co-clustering of ACT and 10X Genomics CNV single-cell data
ACT and 10X genomics single-cell CNV resulting bin counts were merged 
and co-segmented with multipcf (gamma = 30) (see ‘Multi-sample seg-
mentation and integer copy number estimation’), followed by Merge-
Levels to join adjacent segments with non-significant differences in 
segmented ratios. Segment ratios were scaled by tumour FACS-inferred 
ploidy and rounded to the nearest integer. Co-clustering of ACT and 
10X genomics single-cell CNV datasets was performed as previously 
described with hdbscan and parameters adjusted to match the original 
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number of subclonal populations from ACT clustering (seed = 55, n 
neighbours = 40, minPts = 35, 80 for TN1 and TN3, respectively)  
(see ‘Clustering of superclones and subclones from single-cell copy 
number data’).

Calculating consensus copy number profiles of superclones and 
subclones
For each tumour sample, the integer copy number consensus profiles 
were calculated by taking the median of the ith segment of all single 
cells assigned to the same superclone or subclone, the ploidy was scaled 
by the average tumour ploidy derived by FACS and rounded to the 
nearest integer value.

Inference of most recent common ancestral profile
The consensus profile of each superclone (see ‘Calculating consensus 
copy number profiles of subclones and superclones’) was used to derive 
the most recent common ancestor (MRCA). For every segment, we 
selected the copy number (CN) value among the consensus CN values 
from each superclone that is closest (L1 norm) to the average tumour 
ploidy as the ancestral segment.

Classification of clonal, subclonal and unique cna segments
cCNA and sCNA segments were identified from the subclonal consensus 
matrices. sCNAs were further classified into uCNAs if one subclone 
presented at least one distinct copy number event compared to all 
others, formally:
Let ni be the frequency of subclones CNAi is in.
Let N be the total number of consensus subclones for the sample.
cCNAs are defined as ni = 1
sCNAs are defined as 1/N < ni < 1
uCNAs are defined as ni = 1/N

Construction of CNA breakpoint spectra
To construct a frequency spectrum of CNAs using breakpoint frequen-
cies across all single cells, we performed segmentation with the R pack-
age ‘Piet’ (GFL) (v0.1.0)42 (rho1 = 0, rho2 = 0, rho3 = 70, obj_c = 10^-10, 
max_iter = 1^5). A matrix of log ratios from the variable binning copy 
number pipeline (see ‘Inference of DNA copy number’) and bin-wise 
variance estimation where: let x(i) be the log ratio bin count at bin i, the 
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, was used  

as input for GFL. GFL returns piecewise constant curves with discon-
tinuities across breakpoints. To account for discontinuities, we built 
interval estimates at intersecting breakpoints and constructed a graph 
to verify overlap across genomic positions over all single cells. Disconti-
nuities higher than 10 bins were discarded and connected components 
were obtained from the resulting graph. Breakpoints that did not reach 
a ratio difference ≥0.6 between the median of two adjacent segments 
were not counted. Accuracy of resultant breakpoint frequency calls 
were assessed by simulation (Supplementary Methods). Resulting 
segments were ploidy scaled by the average FACS-derived ploidy and 
rounded to the nearest integer values. Finally, we counted the frequency 
of each chromosome breakpoint across all cells from the sample result-
ing in a frequency spectrum.

Calculation of subclonal diversity indexes
For each tumour sample we calculated the proportion (p) of cells that 
belong to a distinct subclone. Diversity was calculated as Shannon 
index: D p p= − ∑ ( × ln( ))c i i i , with 95% confidence intervals calculated 
by bootstrapping (B = 3,000).

Phylogenetic reconstruction of single-cell and clonal lineage trees
Pairwise distances of single cells were calculated using Manhattan dis-
tance to obtain a distance matrix for each tumour. Phylogenetic infer-
ence for single-cell trees and consensus trees were performed with the 

balanced minimum evolution algorithm43 from R package ape (v5.3)44. 
Root diploid nodes for phylogenetic inference were constructed from 
simulated variable binning profiles in which bins presented an integer 
copy number equal to 2. Distances were calculated from the diploid 
root to the most recent common ancestral (MRCA) and from the MRCA 
to the terminal aneuploid node. Terminal aneuploid node was defined 
by the largest branch length from the MRCA on the aneuploid subtree. 
Consensus phylogenetic trees were rooted from simulated variable 
binning profiles equal to the integer average tumour ploidy (see Sup-
plementary Table 1, ‘ploidy’). Root nodes from consensus phylogenetic 
trees were removed for visualization purposes. Trees were plotted 
using R package ggtree (v2.0.3)45.

Mathematical modelling of CNA evolution
A branching process model for the accumulation of chromosomal 
breakpoints was used, in which a tumour cell can replicate, die, or rep-
licate such that one of the daughter cells acquires two new breakpoints 
in its copy number profile and its ability to replicate is altered according 
to a fitness distribution. Under a reduced fitness distribution consid-
ering neutral and lethal aberrations only, we derived formulas for the 
expected number of breakpoints present at a given frequency, which 
were used in a likelihood analysis to determine whether an elevated 
breakpoint rate early in tumour growth provided a superior expla-
nation of the data. Full details are given in Supplementary Methods, 
‘Mathematical modelling’.

Estimation of cell doubling rates
The expanded subclones were grown from a single cell (I = 1) to a 90% 
confluent 10-cm cell culture dish. MDA-MB-231 EX1 and EX2 remained 
in culture for 26 days (t), reaching a final number of ~5.86 × 105 cells 
(F). Doubling time (Dt) of the expanded subclones was calculated 
as: Dt = (t log 2)/(log F – log I) and number of generations (G) of cell 
divisions in each expanded population of cells was determined by 
G = t/Dt.

Estimation of the de novo copy number rates
Estimation of de novo copy number rates was carried out with 
intra-arm breakpoints, and do not include arm level events (see 
‘Construction of CNA breakpoint spectra’). We assume exponential 
expansions and no cell death. For expansion i let the number of cells 
sequenced be n(i). Further let the number of CNAs expected in the 
frequency range [2/n(i), 0.5) be nCNA(i). Then an analytic formula, 
which contains the CNA rate as a prefactor, can be obtained for the 
expectation of nCNA(i) (E[nCNA(i)) (Supplementary Methods). 
Assuming each new CNA leads to two new breakpoints, we adopt 
the statistical model that the number of breakpoints at frequencies 
[2/n(i), 0.5) is Poisson distributed with parameter 2E[nCNA(i)]. Fur-
ther, we include that the probability of not observing a breakpoint 
present in y cells, which based on simulated data we approximated 
as 0.57 × exp(−7.5y × 10−4) (the estimated rates decrease by a factor 
of ~2 without this assumption). For each expansion, the observed 
number of breakpoints in the frequency range [2/n(i), 0.5) is called 
with Piet as described in 'Construction of the CNA breakpoint spec-
trum'. The point estimate for the CNA rate in each cell expansion is 
then calculated via maximum likelihood (Supplementary Methods, 
section 7) and the confidence intervals are based on the assumed 
Poisson distribution and obtained numerically.

Somatic mutation variant calling
Sequencing reads from bulk tumour tissue and matched normal tissues 
were demultiplexed into FASTQ files allowing 1 mismatch out of the 
8-bp barcode. FASTQ files were aligned to hg19 (NCBS build 36) using 
bowtie2 (v2.2.6)30, sorted and converted from SAM to BAM files with 
SAMtools (v1.2)31. Duplicates were marked with Picard tools (v2.20.4) 
and BAM files were recalibrated for base quality scores using Genome 



Analysis Toolkit (GATK v4.1.3)46 Base Recalibrator. Somatic variants 
from tumour tissue were identified with MuTect247 and filtered using 
GATK FilterMutectCalls. Bcftools (v1.11-3) was used to retain PASS 
variants. Additionally, variants with allele frequency higher than 0.05 
in matched normal samples were excluded. Variants on bulk tissue 
required a minimum depth of 10×, 5× of the alternative allele and allele 
frequencies >0.1. Variants <1,000 base pairs apart were excluded from 
the analysis. VCF analysis was performed with the help of the R pack-
age ‘vcfR’ (v.1.12.0)48. Variants were annotated with ANNOVAR49 and 
excluded if present in dbsnp129. Mutations were considered to have a 
damaging impact using SIFT50 and PolyPhen-251 prediction algorithms, 
in which mutations with SIFT scores <0.05, and PolyPhen-2 scores >0.85 
were considered to be significant (http://picard.sourceforge.net/).

Allele-specific copy number with ASCAT on exomes
We counted the reads with each genotype at the 1000-genome sin-
gle nucleotide polymorphism (SNP) positions52 in the normal and 
tumour exome sequencing data using alleleCounter (v.4.0.0). SNP 
positions overlapping the genomic ranges defined by {start − 100} and 
end {end + 100} target regions of the exome panel bed file (SeqCap EZ 
Exome v2, Roche, cat. no. 05860482001); SNP positions <20X depth 
in the normal tissue were excluded.

From the read counts at those positions we derived the
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as input to ASCAT. We ran ASCAT (v.2.5.2) on the B-allele frequency 
(BAF) and LogR tracks53. We refitted the profiles by selecting the local 
optima (that is, the minima in the total distance to integer DNA copy 
numbers) corresponding to the tumour ploidy that best matched the 
FACS-derived ploidy.

Estimation of whole-genome doubling timing
The timing of whole-genome duplications in relative mutational time 
was determined by inferring the proportion of clonal single-nucleotide 
variants (SNVs) present on two allelic copies p2. Clonal SNVs were iden-
tified by running DPClust54 on its default settings to produce cluster-
ing estimates. SNVs assigned to clusters with a cancer cell fraction of 
between 0.9 and 1.1 were labelled as clonal.

A mixture model on the observed alternate reads from clonal SNVs 
described13 and was used to calculate the probability distribution on 
p2. The mixture model was composed of two binomial distributions 
with frequencies ρ

ρT ρ( + 2(1 − ))
 and ρ

ρT ρ
2

( + 2(1 − ))
 corresponding to mutations 

on one and two alleles, respectively, where ρ is the purity of the tumour 
and T is the total copy number of the segment under consideration. A 
probability distribution on p2 was calculated for SNVs in segments with 
allele-specific copy number 2+0/2+2 and 2+1 separately. A probability 
distribution on p2 was calculated for SNVs in segments with 
allele-specific copy number 2+0/2+2 and 2+1 separately.

The distributions on p2 were then used to calculate a timing distribu-
tion for the whole-genome doubling (WGD) in relative mutational time. 
In 2+0 and 2+2 copy number regions the whole-genome doubling tim-
ing π is given by: π =

p
p

2
1 +

2

2
 and in 2+1 regions it is given by π =
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combined probability distribution on π was calculated from combin-
ing the estimates derived from the 2+0/2+2 and 2+1 segments.

TP53 mutation timing
The cluster profiles produced by DPClust were used in MutationTimeR13 
to estimate the probability that each SNV was clonal or subclonal and 
whether it occurred before the WGD.

Calculation of CNA ratios from exome data
The fraction of clonal copy number events that occurred before the 
WGD was calculated using the allele-specific-exome copy number. 
Adjacent segments with identical allele-specific copy number were 
first merged and segments smaller than 100 kb were filtered. Clonal 
copy number events were selected by filtering out segments with a total 
copy number different to the ancestral total copy number. Maximum 
parsimony was used to infer the copy number event history that led 
to each segment. Given that a WGD occurred in a tumour, the smallest 
combination of gains and losses of parental alleles that result in the 
final copy number state is assumed to have transpired. The proportion 
of copy number events occurring before and after the WGD across all 
segments in a tumour sample was calculated from these route histories. 
Confidence intervals were calculated by bootstrapping the filtered 
segments.

Allele-specific copy number in superclones and agreement with 
exome bulk
To obtain parental allele-specific copy number in the superclones we 
merged single-cell BAM files according to their superclones (see ‘Clus-
tering of superclones and subclones’) using Sambamba (v0.7.0) and 
then proceed in three steps: 1. phasing of heterozygous SNPs to the 
major allele. First, we define heterozygous SNPs in the exome as those 
having at least 20 reads and a BAF between [0.2, 0.8] in the matched 
normal sample. We then phase the genotype with the maximum of the 
two read counts to the major parental allele. Second, we pool read 
counts per genotype across all single cancer cells at the 1000-genome 
SNP positions. We identify heterozygous SNPs with allele counts for 
genotype A and B, cA and cB, with P(Bin(cA + cB, 0.99) ≤ cA) < 0.01 and 
P(Bin(cA + cB, 0.99) ≤ cB) < 0.01. We then phase the genotypes with the 
maximum of the two read counts to the major allele. Finally, we pool 
the phased SNPs identified from the exome and the single cells. 
Although exome SNPs can in theory also be identified in the super-
clones, including SNPs from the matched normal exome ensures that 
enough SNPs are still covering regions with LOH that would be mistaken 
as homozygous in the single cells. 2. Maximum-likelihood estimate of 
the BAF of each copy number segment. For each copy number segments 
i, we model the read counts of the genotype phased to the major allele 
at each heterozygous SNP positions ki as a Binomial: k n p~ Bin( , )i i i , where 
ni is the total read count and pi is the BAF. We compute the likelihood 
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BAF values p ∈ 0.5 + 0.001 × {0, 1, 2, …, 500}i   and normalize the likeli-
hoods to get a probability distribution over the BAF values. The BAF is 
taken as the maximum-likelihood estimate and we also derive the [5%, 
95%] confidence intervals. 3. Deriving parental-allele-specific copy 
number in superclones. For each copy number segment and its inferred 
total copy number nt, we derive the number of copies of the major allele 
as Nmaj = round(BAF × nt) and the number of copies of the minor allele 
as Nmin = nt − Nmaj.

Analysis of bulk DNA-seq copy number data
Bulk DNA-seq copy number data from the expanded subclones was 
processed with the variable binning copy number pipeline at a genomic 
resolution averaging 200 kb as described in ‘Inference of DNA copy 
number’ and segmented as described in the section ‘Multi-sample 
segmentation and integer copy number estimation’.

http://picard.sourceforge.net/
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Analysis of bulk RNA-seq expression data
Transcript abundances for expanded clones triplicates were quan-
tified using Salmon (v.0.14)55 with GENCODE transcript v3056 and 
options -l A -1 read1 -2 read2 -p 40–validateMappings–seqBias–
gcBias. Quantified transcripts were imported into R with ‘tximport’ 
(v 1.14)57. Expanded clones e7, e39 and e71 had one technical replicate 
excluded due to poor RNA quality. Genes with a read count of <5 in 
3 or more samples were excluded from the analysis. Samples were 
normalized for differences in sequencing depth by computing size 
factors and further variance stabilizing transformation with DESeq2 
(v 1.26.0)58.

Integrated analysis of DNA and RNA in subclonal regions
MDA-MB-231 DNA copy number data from single cells of the paren-
tal cell line and from bulk expanded single daughter cells were 
jointly segmented and co-clustered as described in ‘Multi-sample 
segmentation and integer copy number estimation’ (gamma = 20) 
and ‘Clustering of superclones and subclones’ (minPts = 14, n neigh-
bours = 25, seed = 5, k superclones = 43). In brief, segment ratio copy 
number profiles were embedded into two dimensions using UMAP 
followed by construction of an SNN graph. Matching DNA–RNA pairs 
from the bulk expanded single daughter cells dataset were assigned 
identities according to their subclonal classification from the DNA 
co-clustering results. The group of expanded single daughter cells 
belonging to the same subclone were designated as expanded clus-
ters. Variance stabilized gene counts from RNA triplicates (see ‘Bulk 
DNA-seq and RNA-seq of MDA-MB-231’ and ‘Analysis of bulk RNA-seq 
expression data’) for each expanded single daughter cell were aver-
aged and a gene-wise z-score was calculated. Gene-wise z-scores were 
further averaged according to their assigned expanded clusters. 
Genes were organized by their corresponding genomic positions and 
moving windows of 100 genes were calculated for each chromosome. 
DNA copy number profiles from the expanded clusters are shown by 
taking the mode of the ith segment from their profiles according to 
the co-clustering identities.

Gene set enrichment analysis
Differential expression analysis was performed with DESeq2. Com-
parisons were made by contrasting each subclonal identity against all 
others. Fast Gene Set Enrichment Analysis was performed using R pack-
age ‘fgsea’ (nperm = 2000)59 with the msigdb h.all.v6.2.symbols cancer 
hallmark gene sets19. Gene sets that were not significant (p-value <0.05) 
in at least 6 subclonal identities were excluded from the analysis. Gene 
set pathways and expanded clusters were clustered with hierarchical 
clustering (Euclidean distance, ward.D linkage).

Statistical analysis
Statistical analysis and plotting were performed in the R software 
(v.3.6.2)60 with ‘base’, ‘Rstatix’ 61, ‘ggplot2’ (v.3.2.1)62, SciPy (v.1.4.1)63 
and pandas (v.1.01)64.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data from this study were deposited in the NCBI Sequence Read 
Archive under accession number PRJNA629885.

Code availability
Code used in this study is available at https://github.com/navinlabcode/
ACT_paper.
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Extended Data Fig. 1 | Technical metrics and performance of ACT. a, ACT 
single-cell DNA library size distributions for TN1, TN2 and TN3 after pooling 
384 cell libraries. b, Schematic showing the use of positional barcoding 
information to determine single-molecule information by tagmentation 
during ACT, compared to whole-genome amplification using DOP-PCR, where 
the original DNA fragmentation sites of single molecules cannot be resolved.  
c, Breadth of coverage for sparse depth data from different scDNA-seq 
methods plotted by individual samples, using n = 100 random cells per sample. 
d, Overdispersion of bin counts for sparse depth data from different scDNA-
seq methods plotted by individual samples, using N = 100 random cells per 

sample. e, Distribution of sequencing reads across a diploid region of 
chromosome 4p14 for a single SK-BR-3 cell sequenced by DOP-PCR compared 
to ACT, in which the PCR duplicates were retained or removed to obtain single-
molecule data. f, Distribution of sequencing reads across a diploid region of 
chromosome 4p (top) and 10q (bottom) for a single SK-BR-3 cell sequenced by 
DOP-PCR compared to ACT, with or without duplicate molecules retained.  
g, Lorenz curves of coverage uniformity for ACT, DOP-PCR and one bulk  
DNA-seq data from SK-BR-3 single cells, downsampled to equal coverage depth. 
h, Breadth of coverage as a function of pseudo-bulk reconstruction by 
combining multiple cells for ACT, DOP-PCR and bulk sequencing.
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Extended Data Fig. 2 | Molecular properties of subclonal chromosome 
aberrations. a, FACS profiles of DAPI-stained nuclei flow-sorted for ACT from 
eight patients with TNBC, showing ploidy distributions, with vertical red lines 
showing the sorting gates. b, Shannon diversity indexes calculated from the 
single-cell copy number data from each of the eight individuals with 95% 
confidence intervals indicated. c, Heat map of the genomic regions of cCNAs, 
sCNAs and uCNAs across the eight tumour samples. d, Distributions of the 

genomic segment sizes of clonal, subclonal and unique CNAs across the eight 
tumours. e, Proportion of genome altered relative to the tumour ploidy 
classified as copy number losses in blue, neutral ground state copy number in 
white and gains in red. f, Bootstrapping of subclone clusters showing the mean 
Jaccard similarity for each subclone across the eight tumours. g, Scatter plots 
of number of cells in each subclone cluster by mean Jaccard similarity for each 
of the eight tumours.
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Extended Data Fig. 4 | Validation of clonal substructure using a 
microdroplet approach. a, Co-clustering of ACT and 10X Genomics copy 
number data for samples TN1 (n = 1,976 cells) and TN3 (n = 2,171 cells), showing 
subclones detected in the merged datasets. b, Frequency of subclones 
detected on each platform in the merged datasets from 10X and ACT.  
c, Clustered heat maps of single-cell copy number profiles for TN1 and TN3 with 

left annotation bars representing the scDNA-seq technology platform and the 
different subclones, with annotations for selected breast cancer genes 
indicated below. d, Bar plots of copy number state frequencies of selected 
breast cancer genes for ACT and 10X CNV showing the proportion of copy 
number states for all cells separated by platform.
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Extended Data Fig. 5 | WGD estimates and additional copy number 
lineages. a, Most frequent exonic mutations in genes with significant SIFT 
(<0.05) and PolyPhen-2 (>0.85) scores. b, Exome mutation counts of each 
tumour indicating mutations that were classified as clonal or subclonal based 
on allele-specific copy number frequencies. c, Density plots showing the 
probability of genome doubling as a function of relative mutational time for 7 
out of the 8 patients with TNBC with sufficient number of truncal exome 

mutations. d, Minimum evolution trees of single-cell copy number profiles 
using Manhattan distances for TN3–TN8, indicating the distance from the 
diploid root node to the MRCA and the distance from the MRCA to the terminal 
nodes. Annotations indicate the timing of genome doubling and timing of TP53 
mutations before WGD in all of the tumours. e, Summary of the truncal 
distances from the diploid root node to the MRCA and the branching distances 
from the MRCA to the last terminal node.
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Extended Data Fig. 6 | Evolutionary analysis of clonal lineages in additional 
patients with TNBC. a, Left, minimum evolution trees after the MRCA 
generated using the consensus CNA profiles of subclones for TN3–TN8 rooted 
by a neutral node to the MRCA and coloured by superclones and subclones. 
Right, heat maps of consensus subclones profiles, with annotations for the 
superclones and subclones on left annotation bars and bottom annotation bars 
showing different CNA classes, as well as selected breast cancer genes. The last 
row in the clustered heat maps shows the inferred MRCA copy number profiles. 

b, Genome-wide copy number profiles of TNBC tumours with segments of the 
rounded total copy number (orange) and the rounded number of copies of the 
minor allele (blue). Thick segments are ASCAT profiles from the exome bulk, 
and thinner segments are from the superclones with slight offset relative to 
integer values for visualization. For each superclone, parentheses show the 
percentage of the genomic region in which both the minor and major allele 
copy numbers are the same as in the exome, restricting analysis to the genomic 
region where the total is also the same.
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Extended Data Fig. 7 | Chromosome-breakpoint frequency spectra of 
additional tumours. a, Comparison of the expected CNA frequency spectrum 
obtained from theory and simulation. Simulations include a flexible fitness 
distribution, whereas the theoretical analysis considers neutral and lethal 
changes only. Different colours correspond to varying the increase in CNA rate 
during the transient instability phase, and the tumour size at which the 
instability subsides. Exact parameters are provided in the Supplementary 

Methods. b, Maximum-likelihood fits for the breakpoint frequency spectra 
obtained for TNBC tumours under models of gradual and transient instability 
after PCNE; parameter values for simulations and further details are provided 
in the Supplementary Methods. c, Maximum-likelihood fits for the breakpoint 
frequency spectra obtained from expanded clones of MDA-MB-231 under 
models of gradual and transient instability. Further details are provided in the 
Supplementary Methods.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Clonal substructure of additional TNBC cell lines and 
single-cell expansions. a, b, Clustered heat maps of single-cell copy number 
data from the BT-20 (n = 1,231 cells) and MDA-MB-157 (n = 1,210 cells) cell lines, in 
which left annotation bars represent superclones and subclones, and the 
bottom annotation bar represents different classes of CNA types. c, Number of 
superclones and subclones identified in the TNBC cell lines. d, Number of 
clonal, subclonal and unique CNAs detected in the four TNBC cell lines, as well 
as the two MDA-MB-231 expanded daughter cells. e, Distributions of the 
genomic sizes of clonal, subclonal and unique CNAs across the four TNBC cell 
lines and the two MDA-MB-231 expanded daughter cell lines. f, Shannon indexes 

calculated from the single-cell copy number profiles from the four TNBC cell 
lines and the two expanded MDA-MB-231 daughter cells with 95% confidence 
intervals. g, Microscopic field of DNA-FISH experiments of MDA-MB-231 using 
AKT3 and BCAS2 probes at 60× original magnification. h, Bar plots showing the 
results of DNA-FISH copy number states counted across 1,000 cells for each of 
the probes compared to the ACT data. i, Clustered heat map of single-cell copy 
number data for MDA-MB-231 EX2 cell line expansion (n = 897 cells), in which 
left annotation bars represent superclones and subclones, and the bottom 
annotation bar represents different classes of CNA types.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | DNA and RNA analysis of expanded clones from MDA-
MB-231. a, Schematic of physical single-cell subcloning experiments of 
daughter cells to generate 78 expansions from the MDA-MB-231 parental cell 
line. b, Co-clustering of the single-cell copy number data from the parental 
MDA-MB-231 cell line (n = 820 cells) with the 78 expanded clone bulk DNA-seq 
copy number profiles. c, Principal component analysis of bulk RNA-seq profiles 
of the 78 expanded daughter cell lines triplicates, with contour colour 
representing superclones and point colour representing the subclone clusters 
from the genotypes of the single-cell and bulk DNA-seq co-clustering.  
d, Clustered heat map of bulk DNA copy number profiles from the 78 expanded 
clones, with left annotation bars representing superclones and subclones, as 
determined by co-clustering with the parental single-cell copy number data.  
e, Mean gene expression levels of different copy number states for 78 

expansions from the MDA-MB-231 parental cell line. f, Cumulative number of 
subclonal segments as a function of Kruskal–Wallis test P-value, in which the 
red line denotes a P-value of 0.05. g, Mean gene expression as a function of copy 
number segments with points representing expanded clusters for two 
subclonal CNAs on chr11 and chr19. h, i, Consensus integer copy number 
profiles of the 10 expanded clone clusters on chromosome 11 (h) and 
chromosome 19 (i) (top) with matched RNA-seq expression (bottom) using 
moving windows of 100 genes. Right, selected breast cancer genes in subclonal 
CNA regions and their corresponding box plots of RNA expression for each 
expanded cluster. Box plots show the median, box edges represent the first and 
third quartiles, and the whiskers extend to 1.5× interquartile range. j, Cancer 
hallmark signatures with significant variability of normalized enrichment 
scores (NES) across the expanded clone clusters.
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Extended Data Fig. 10 | Models of chromosome evolution during primary 
tumour expansion. a–c, Three models of chromosome evolution dynamics 
during the expansion of primary TNBC tumours, with schematic plots of 
chromosome accumulation over time (left) and Muller plots of clonal 
frequencies (right). a, Gradual model of copy number evolution, in which CNAs 
are acquired sequentially throughout tumour progression leading to the 
expansion of successive subclones over time. b, Punctuated copy number 
evolution model, in which an initial burst of instability generates a large 
number of CNAs and subclones that undergo stable expansions to form the 

primary tumour mass, with no (or few) new CNAs acquired after the initial 
burst. c, Model of punctuated evolution and transient instability, in which the 
early acquisition of TP53 mutations and genome doubling lead to a burst of 
genomic instability in which a large number of CNA events are acquired and 
subclones are generated. These events are followed by a period of transient 
instability and ongoing copy number evolution during the expansion of the 
primary tumour mass, which leads to the generation of additional subclones 
and genomic diversity.
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