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Our knowledge of copy number evolution during the expansion of primary breast
tumoursis limited?. Here, to investigate this process, we developed a single-cell,
single-molecule DNA-sequencing method and performed copy number analysis of
16,178 single cells from 8 human triple-negative breast cancers and 4 cell lines. The
results show that breast tumours and cell lines comprise a large milieu of subclones
(7-22) that are organized into a few (3-5) major superclones. Evolutionary analysis
suggests that after clonal TP53 mutations, multiple loss-of-heterozygosity events and
genome doubling, there was a period of transient genomic instability followed by
ongoing copy number evolution during the primary tumour expansion. By
subcloning single daughter cells in culture, we show that tumour cells rediversify their
genomes and do not retainisogenic properties. These data show that triple-negative
breast cancers continue to evolve chromosome aberrations and maintain a reservoir

of subclonal diversity during primary tumour growth.

Aneuploidyis asalient feature of human breast cancers andis particu-
larly prevalent in patients with triple-negative breast cancer (TNBC)
harbouring TP53 mutations>*. Although the underlying molecular
mechanisms of aneuploidy have been elucidated in model systems®,
our knowledge of when and how chromosomal rearrangements emerge
and are maintained during the growth of primary tumoursin humans
remains limited. A long-standing paradigm for tumour progressionis
that mutations and chromosomal aberrations accumulate gradually
andsequentially over time, leading to more malignant stages of cancer®.
However, an alternative model is punctuated copy number evolution
(PCNE), in which many chromosomal rearrangements are acquired
together in short bursts of genomic instability early in tumour evolu-
tion’ 2. Evidence for this model has beenreported in breast tumours™,
colon cancers’ and prostate cancers' and may be common in many
types of human cancer®.

Whether there is also ongoing copy number evolution after the
initial burst of genome instability remains unresolved"”*. In our pre-
vious work, we found that PCNE is common in patients with TNBC?,
but were unable to ascertain whether copy number profiles contin-
ued to evolve after the initial catastrophic event, when tumour cells
undergo clonal expansions. Resolving these models has been diffi-
cult owing to the limited number of cells that could be sequenced, as

well as extensive technical noise in first-generation single-cell DNA
sequencing (scDNA-seq) technologies®. Here we report on a key tech-
nical advance that enabled us to sequence thousands of single cells
and address fundamental questions regarding the natural history of
chromosome evolution in patients with TNBC.

Single-molecule single-cell sequencing

We developed amethod called acoustic cell tagmentation (ACT), which
combines fluorescence-activated cell sorting (FACS) of single nuclei,
tagmentationand acousticliquid transfer (ALT) technology to perform
high-throughput scDNA-seq at single-molecule resolution (Fig. 1a).
To perform ACT, nuclear suspensions are prepared from fresh or fro-
zen tissues and stained with DAPI for flow-sorting into high-density
(N=384) plates. Theisolated nuclei undergo a three-step amplification
chemistry, whichinvolves: (1) nuclear lysis, (2) direct tagmentation of
genomic DNA using a Tn5 transposase to add universal adapters, and
(3) PCRtoincorporate dual barcodes for cell library multiplexing. The
chemistry steps arerobotically automated and the Tn5enzymeis scaled
down (1:20) to nanolitre volumes using ALT®. This approach generates
barcoded single-cell DNA libraries with amean size of 312 base pairs (bp)
that are pooled together for next-generation sequencing (Extended
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Fig.1|The ACT method and technical performance. a, Schematic of the ACT
protocol, including the dissociation of nuclei from tissues, isolation of single
nucleiinto high-density 384-well plates by FACS, ALT of tagmentation
reagents, PCR addition of dual barcodes and pooling of single-cell libraries for
multiplexed sequencing. dsDNA, double-stranded DNA. b, Breadth of coverage

Data Fig. 1a). ACT has several advantages over first-generation
scDNA-seq methods® that rely on whole-genome amplification steps,
including fewer experimental steps and ashorter time frame (reduced
from 3 days to around 3 h), increased cell throughput and the ability
to measure single-molecule DNA information by positional barcoding
(Extended DataFig. 1b).

Technical properties of single-cell data

The technical performance of ACT was evaluated by comparing
sparse data (about 1 million reads per cell) with those from three
other scDNA-seq methods, including a microdroplet platform (10X
Genomics CNV), two datasets previously generated using the direct
library preparation (DLP) method' and data from a first-generation
scDNA-seq method (DOP-PCR)”8. We evaluated the coverage breadth
and technical noise by overdispersion, which showed that ACT achieved
asignificantimprovement (P<0.05, Kruskal-Wallis test) over the other
three methods (Fig. 1b, ¢, Extended Data Fig. 1c, d, Supplementary
Methods). To further evaluate the coverage performance of ACT data,
we sequenced two SK-BR-3 breast cancer cells at high depth (8.28%x and
7.72x). To avoid the influence of copy number changes on coverage,
we restricted our analysis to two diploid regions on chr4p and chr10q
(Extended Data Fig. 1e, f). We compared the read counts of genomic
bins, in which the duplicate molecules were retained or removed
by positional barcoding, revealing an increase in uniformity in the
single-molecule data and at most one or two reads for most genomic
regions, whereas the duplicate-retained data had higher (8x) mean
coverage depths (Extended Data Fig. If). From these data, we estimated
that 97% of the reads were resolved to a single-molecule depth of
lor2.Lorenz curves showed that the coverage uniformity of the ACT
single cells (Gini coefficient, G=0.728 and 0.678) is similar to that of
bulk DNA sequencing (DNA-seq) data (G=0.678) and is more uniform
than DOP-PCR data (G = 0.957) (Extended Data Fig. 1g). The physical
coverage of the two SK-BR-3 cell libraries showed saturation on nearly
50% of the genome (Extended Data Fig. 1h). Finally, we observed that
the genomic bin count data (220-kb resolution) are distributed close
to those of the integer copy number segments, as exemplified ina
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for sparse scDNA-seq data from four different methods, including ACT, 10X
Genomics CNV, DLP and DOP-PCR using 100 sampled cells. ¢, Overdispersion
ofbincountsinsparse scDNA-seq datafrom ACT, 10X Genomics CNV, DLP and
DOP-PCRusing100 sampled cells.d, Copy number ratio (dots) and
segmentation plots (line) for asingle cell from sample TNL.

representative aneuploid cell from a ductal carcinoma in situ (DCIS)
tumour (TN1) (Fig. 1d). These findings led us to conclude that ACT
represents atechnicalimprovement over existing scDNA-seq methods.

Copy number substructure of tumours

We applied ACT to sequence 9,765 cells from 8 TNBC tumours, including
the TN1DCIS sample, three untreated invasive ductal carcinoma (IDC)
tumours (TN2, TN6 and TN7), and four untreated synchronous DCIS-
IDCsamples (TN3-TN5and TN8) (Supplementary Table1). Nuclear sus-
pensions were generated from frozen tissues and flow-sorted by ploidy
distributions ranging from 2.65-3.95N, suggesting that whole-genome
duplication (WGD) events had probably occurred in all of the tumours
(Extended Data Fig. 2a, Supplementary Table 1). Clustering of the ACT
dataidentified 7-22 subclones that were organized into 3-5 super-
clones across the 8 tumours (Fig. 2a, b). We define ‘subclones’ as clusters
of cells that share highly similar copy number profiles, representing
a clonal expansion from a single genotype, and ‘superclones’ as a
higher-order organization of subclone groups that share a subset of
copy number aberration (CNA) events. TN3 and TN5 showed the low-
est number of subclones, whereas the remaining tumours had higher
subclone numbers and genomic diversity indices (Fig. 2b, Extended
DataFig. 2b).

We define CNAs as segments of the genome in which two sets of chro-
mosome breakpoints haveincreased or decreased integer copy number
valuesrelative to the ground state or ‘neutral’ copy number that corre-
sponds to the mean DNA ploidy of the tumour (Methods). CNA analysis
identified three major classes on the basis of the frequency of the sub-
clones in the population of tumour cells: (1) clonal CNAs (cCNAs) that
were shared by all subclones; (2) subclonal CNAs (sCNAs) that occurred
in asubset of the tumour cells and were present in two or more sub-
clones; and (3) unique CNAs (uCNAs) that had exclusive copy number
states or breakpoints in one subclone (Methods). Of note, the uCNAs
represent a subclass of sSCNAs with a unique copy number state ata
givensegmentidentified in only one subclone. The CNA classes varied
across the tumours, with TN5 having the highest number of cCNA events
and TN4 having the highest uCNA count (Fig. 2c). Most of the genomic
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Fig.2|Clonal substructure ofeight triple-negative breast tumours.

a, High-dimensional uniform manifold approximation and projection (UMAP)
clustering of single-cell copy number data from eight triple-negative breast
tumours, inwhich contour colours represent superclones and coloured points
representsubclones. b, Number of superclones and subclones detectedin

regions of subclonal CNAs were not shared across individuals and the
three CNA classes had similar genomic size distributions, with the excep-
tion of TN2 (Extended DataFig. 2¢c, d). Furthermore, the fraction of cells
with CNA gains, losses and copy-neutral (ground state) events showed
variationacross the subclonesin each tumour (Extended DataFig. 2e).

In sample TN1, the single-cell data revealed 17 subclones that were
organized into 4 superclones (Fig. 2d). The superclones were distin-
guished by 29 sCNAs, whereas the subclones were distinguished by
34 uCNAs, of which many events intersected breast cancer genes
(Fig. 2f). In sample TN2, the ACT data identified 15 subclones that

each tumour. ¢, Number of clonal, subclonal and unique CNAs detected ineach
tumour.d, e, Clustered heat maps of single-cell copy number profiles for TN1
(d; n=1,100 cells) and TN2 (e; n=1,024 cells).f, g, Integer copy number states of
selected breast cancer genes for TN1(f) and TN2 (g) accordingto clonal,
subclonal and unique CNA classes.

were organized into 4 superclones (Fig. 2e). The superclones were
distinguished by 65sCNAs, whereas the subclones were distinguished
by 26 uCNAs and intersected several breast cancer genes (Fig. 2g).
Similarly, the 6 other TNBC tumours harboured alarge number (7-22)
of subclones that were organized into a few (3-5) major superclones
(Extended DataFig. 3).

To assess the robustness of subclone clustering, we performed boot-
strapping, which showed that most clusters were stable (0.702 + 0.15
(mean ts.d.),Jaccard similarity) (Extended Data Fig. 2f). These data
further revealed arelationship between the stability of a cluster and
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the number of cells (Extended Data Fig. 2g). To orthogonally validate
the clonal substructure, we performed scDNA-seq of 1,946 cells from
two tumours using adifferent platform (10X Genomics CNV; Methods).
The 10X data validated our ACT copy number state distributions and
showed that all subclones were composed of a mixture of cells from
both platforms, suggesting a high concordance across the orthogo-
nal technologies, despite some variation in the clonal frequencies
(Extended Data Fig. 4; Methods).

Clonal lineages during evolution
We next reconstructed the evolution of CNAs before the expansion
of the primary tumour mass. Exome sequencing was performed on 8
tumours (107x mean depth) and matched normal tissues (76.3x mean
depth), which showed a median of 102 somatic mutations, including
TP53 driver mutations in all tumours (Extended Data Fig. 5a, b, Sup-
plementary Table 2; Methods). Toinfer the evolutionary history of the
tumours up to the most recent common ancestor (MRCA), we classified
mutations as either clonal or non-clonal (Extended Data Fig. 5b; Meth-
ods). Wethen selected clonal mutations and copy number changes to
reconstruct which events occurred before versus after WGD in seven
tumours (Methods). The resulting data showed that TP53 mutations
occurred consistently before WGD in seven tumours and that WGD
occurred latein mutational time in most (five out of seven) individuals
(Extended DataFig. 5¢).

To investigate tumour evolution after the MRCA, we used the ACT
datatoinfer phylogenetictrees (Fig.3a, b, Extended DataFig. 5d). While,
as expected, a large number of CNAs were clonal’, the resulting trees
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further revealed branching lineages with large distances after the
MRCA. Notably, the branching distances from the MRCA to the extant
node (11,193 £4,106 (mean + s.d.)) were similar to the truncal distances
fromtheroot diploid node tothe MRCA (10,063 +2,504 (mean +s.d.);
P=0.52,two-sided t-test), suggesting ongoing copy number evolution
after the MRCA in all eight tumours (Extended Data Fig. 5e).

We then performed a more detailed analysis of the branching phy-
logenies after the MRCA by computing consensus CNA profiles of the
subclones to construct balanced minimum evolution trees (Fig. 3¢, d,
Extended DataFig. 6a).In TN1, the MRCA underwent aninitial lineage
splitleadingto2 ancestral clones (A, and A,) that further divergedinto
4 clades corresponding to the 4 superclones that splitinto 17 distinct
subclones (Fig. 3¢). Similar branching phylogenies were observed
after the MRCA in the seven other individuals (Fig. 3d, Extended
Data Fig. 6a). In addition, we merged single-cell data by superclone
groups and computed allele-specific copy numbers, which showed
that most loss-of-heterozygosity (LOH) regions were consistent with
the bulk exome data (median 96.1% region overlap), suggesting that
they occurred before the MRCA (Extended DataFig. 6b; Methods).On
average, 41.21% of the genome (range 18.1-59.8%) showed LOH eventsin
the 8individuals. Collectively, these datashow alarge number of sSCNA
and uCNAs that were acquired after the MRCA, continuing to diversify
the clonal genotypes during the expansion of the primary tumour mass.

Mathematical modelling of evolution

We next aimed to quantitatively investigate two alternative models of
genomicevolution: amodelin whichthe PCNE event is followed by the
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gradual accumulation of CNAs at a constant baseline rate; and amodel
inwhichthe PCNE eventleadstoatransient period of elevated genomic
instability, followed by areturnto gradual evolution at aconstant baseline
rate (Fig. 4a, b). To describe the accumulation of chromosomal break-
points, we used astochastic branching-process model (Fig. 4¢; Supple-
mentary Methods). To model transient instability, we considered the
CNArateto beelevated until the tumour exceeds athreshold size, after
whichthe rate decreasesto abaseline value (Fig. 4d, e). The alternative,
gradual model assumes that the CNA rate remains at the baseline value.
Allelse being equal, transientinstability would lead to an enrichment of
high-frequency breakpoints (thatis, in many cells). Toinvestigate these
scenarios, we derived formulas for the number of breakpoints expected
tobe presentatagivenfrequency for both cases (Extended DataFig. 7a;
Methods, Supplementary Methods). We thenembedded these formulae
intoalikelihood frameworkincorporating breakpoint-detectionerrors,
which enabled a quantitative assessment of which scenario provides a
superior fit to the ACT data. We used the Akaike information criterion
(AIC) obtained under each scenario as a summary statistic, which we
validated on simulated data and was observed to be conservative for
calling transient instability. Applying our method to the eight TNBC
tumours, we obtained alower AIC for the transient instability model for
all eight cases, suggesting that an early elevated CNA rate is more likely
(Fig.4f,g, Extended DataFig. 7b). Theseresultsindicate that atransient
period of elevated genomic instability early in tumorigenesis explains
the patient databetter than a gradual evolution model.

Copy number substructure of cell lines

We next investigated whether the extensive copy number diversity
observed in human TNBC tumours also exists in TNBC cell lines. We
selected four TNBC cell lines with TP53 mutations and aneuploid karyo-
types?” (MDA-MB-231, BT-20, MDA-MB-157 and MDA-MB-453) and applied
ACTtosequenceatotal of 6,413 cells, after which clustering was used to
delineate their clonal substructure (Fig. 5a, Extended Data Fig. 8a, b).
Similar to the primary tumours, the four cell lines showed 11-20 sub-
clones, organized into 3-5 superclones (Fig. 5b, c, Extended Data
Fig.8a-c).Furthermore, the Shannon diversity indices and frequencies

of cCCNA (47.3%), sSCNA (27.4%) and uCNA (25.3%) events were in a similar
range to the TNBC tumours, as were the segment size distributions
(Extended Data Fig. 8d-f). To validate the subclonal copy number states,
we designed probestotarget 9 breast cancer genesin MDA-MB-231and
performed DNA-FISH to quantify the copy number values for a similar
number of cells (N=1,000) that were sequenced by ACT, confirming the
clonality of all CNA events detected (Extended DataFig. 8g, h; Methods).
Collectively, our datasuggest that these cell lines are representative of
the copy number substructure of human TNBC tumours.

Estimating copy number evolution rates

To estimate the rate of CNA evolution, we physically subcloned and
expanded 2 single daughter cells (MDA231-EX1and MDA231-EX2) from
the MDA-MB-231 parental cell line for 19 cell doublings and measured the
number of de novo CNA events that were acquired (Fig. 5d; Methods).
These data showed that the 2 expanded daughter cells rediversified
their genomesinto 7-12 subclonesin the time it took a single cell tofill
a10-cm culture plate (Fig. 5e, f). During the two expansions, 7 SCNAs
and 9 uCNAswere acquiredin MDA231-EX1, while 5sCNAs and 10 uCNAs
wereacquired in MDA231-EX2 (Fig. 5g, Extended Data Fig. 8d, i). In con-
trast to the parental TNBC cell lines, the new expansions showed fewer
sCNA events compared with cCNAs and uCNAs (Extended Data Fig. 8d).
We used the chromosome-breakpoint datafrom the expanded cells to
estimate the de novo CNA rate per cell division', and obtained an aver-
agerate 0f 0.242 CNAs per cell division (0.235, 95% confidence interval
(0.189,0.288) for EX1and 0.249,95% confidence interval (0.204, 0.3) for
EX2) (Methods). Our mathematical modelling framework showed that,
incontrast to the primary tumours, agradual model was more likely to
explainthe datafromboth cell-line expansions (Extended Data Fig. 7c).
These datashow that single cancer cells do not maintainastable clonal
genotype after expansion, even during arelatively short time frame.

Effect of subclonal CNAs on gene dosage

We further investigated whether the subclonal CNAs resulted in gene
dosage effects that influenced gene expression levels by expanding
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b, ¢, Clustered heat maps of ACT data from the MDA-MB-231 (b) and

78 single daughter cells (e1-e78) from MDA-MB-231 for 19 genera-
tions and performing matched bulk DNA-seq and RNA sequencing
(RNA-seq) (Extended Data Fig. 9a; Methods). By co-clustering the bulk
DNA-seq datawith the ACT data (820 cells), we found that 10 out of 13
of the subclones in the parental MDA-MB-231 cell line were reflected
inthe expansions, which we refer to as expanded clusters (Extended
DataFig.9b-d). Principal component analysis of the expanded clone
bulk RNA-seq data alone revealed groups of expansions that corre-
sponded tothe superclone genotypes (Extended DataFig.9c). Aglobal
analysis of CNA events across the entire genome showed that copy
number statesin MDA-MB-231 were significantly correlated (R*= 0.45,
P<2.2x107') with gene expression levels (Extended Data Fig. 9e;
Methods). Similarly, when this analysis was restricted to subclonal
regions, we found that 68% of chromosome segments were signifi-
cantly associated with expression changes (P < 0.05, Kruskal-Wallis
test), as exemplified in selected CNA regions (Extended Data Fig. 9f,
g). We further investigated the effects of subclonal CNAs across larger
chromosomalregions, which showed that 100-gene expression win-
dows tracked well with subclonal copy number changes and affected
the expression of many cancer genes (Extended Data Fig. 9h, i; Meth-
ods). Beyond thelocalized effects of gene dosage, the subclonal CNA
events also had a broader effect on the expression of many genes in
pathways and cancer hallmark signatures® across the entire genome
(Extended Data Fig. 9j).
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two expanded daughter cell populations after 20 cell doublings. g, Clustered
heat maps of ACT data from the EX1expanded cells from MDA-MB-231, with
CNAclassesindicated below.

Discussion

Our data show that the copy number substructure of human TNBC
tumours consists of a large milieu of subclones (7-22) that are organ-
izedinto afew major superclones (3-5) and shareacommon evolution-
ary lineage. Although the number of superclones is consistent with
previous studies of breast cancer’”®?°, the number of subclones vastly
exceeds previous estimates. Our study extends previous findings of
TNBC evolution’ by showing that TP53mutations, genome doubling and
extensive LOH areimportant early evolutionary events that occurred
before the MRCA. Our datafurther show that after the MRCA, a period
of transient instability generates a large number of subclones before
transitioning to a basal rate of ongoing copy number evolution that
persists during the expansion of the primary tumour mass. These data
suggest that while there may be some stabilizing selection®, the tumour
cells continue to explore the fitness landscape during the growth and
expansion of the primary tumour. On the basis of these results, we
propose arevised model for TNBC evolution after PCNE (Extended
DataFig.10).

By sequencing DNA and RNA from the same expanded subclones,
we showed that the subclonal CNAs can influence gene expression,
consistent with bulk CNA and RNA data across many human cancers®.
By expanding single daughter cells in vitro, we showed that cancer
cells can quickly rediversify their genomes at a rate of approximately



one new CNA per four cell divisions. Our results are consistent with a
previous study that reported extensive copy number and mutational
evolution during the passaging and subcloning of cancer cell lines®.
These dataserve asanimportant warning for the research community,
namely thatisogenic subcloning, awidely used procedure in molecular
biology*, canstill result in heterogeneous cell populations when used
in downstream functional assays.

ACTrepresents amajor technicalimprovement over first-generation
scDNA-seq methods®?. A few other studies have also implemented
tagmentation-based approaches to perform scDNA-seq, including
two lower-throughput methods using microfluidic chips (around 100
cells)!*?, and one high-throughput method that was scaled up using a
nanowell system?. Another study developed a combinatorial-indexing
approach that uses tagmentation and is highly scalable but has
limited genomic resolution?. Other work has developed a whole-
genome amplification-based approach onamicrodroplet platform (10X
Genomics CNV) that is scalable but does not achieve single-molecule
resolution. Compared with these methods, ACT represents animprove-
mentin technical performance and is cost-efficient.

A notable limitation to our study is that the number of subclones
that we detected is an ‘operational definition” and is dependent on
the total number of cells that are sequenced, and therefore probably
represents an underestimate of clonal diversity. Finally, we postulate
that PCNE and subclonal reservoirs may not be unique to patients with
TNBC and may exist in other solid tumours, particularly in aneuploid
cancers that harbour TP53 mutations. Beyond cancer, we expect that
ACT will have broad applications for investigating aneuploidy in diverse
fields of biology and biomedicine.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized. The investigators were not blinded
to allocation during experiments and outcome assessment.

Humansamples

The 8 breast tumour samples were obtained as frozen de-identified sam-
ples from the MD Anderson Breast Tissue Bank under an Institutional
Review Board (IRB)-approved protocol. All individuals consented to
have their tissue used for research studies. The triple-negative status of
the tumour samples was determined by immunohistochemistry for oes-
trogen receptor (<1%) and progesterone receptor (<1%), and FISH analy-
sis of HER2 (also known as ERBB2) amplification using the centromere
control probe CEP-17 (ratio of HER2/CEP17 <2.2). TN1was classified as
DCIS by histopathology, while all other samples were invasive ductal
carcinomas or synchronous DCIS-IDC (Supplementary Table 1). Most
ofthetumour samples were untreated, with the exception of TN1which
was treated with adriamycin cyclophosphamide before the collection
of the tissue sample. Approximately 0.5 x 0.5 x 0.5 cm of total tissue
was used in each experiment, combining macrodissected pieces from
multiple sectorsineach tumour. More information on the tumour sizes,
grades and histopathology are provided in Supplementary Table 1.

Cancer cell line samples

The TNBC breast cancer cell lines were obtained from the Charac-
terized Cell Line Core (CCLC) Facility at the University of Texas MD
Anderson Cancer Center. The cell line identities were confirmed
by restriction fragment length polymorphism analysis and sparse
whole-genome sequencing to determine copy number profiles. All
celllines tested negative for mycoplasma contamination before run-
ning the experiments.

Generation of expanded subclonal cell lines

Expanded clones from a parental MDA-MB-231 (80% confluency) were
isolated by FACS (BD Melody) into 96-well flat-bottom culture plates
containing 100 pl of cell culture medium, followed by visual confirma-
tion by light microscopy after 0 and 24 h. Wells with multiple cells or
doublets were eliminated, while wells with confirmed single cells were
used for subsequent expansions. The single cells were propagated
until ~80% confluency in a10-cm dish, after which the cells were used
for scDNA-seq or bulk DNA and RNA sequencing.

Isolation of single nuclei by FACS

Nuclear suspensions from frozen tumour tissue were prepared using
anNST-DAPI lysis buffer as previously described®”. Suspensions were
filtered through a40-pm mesh and single nuclei were flow-sorted (BD
FACSMelody, BD FACS Ariall or Beckman MoFlo Astrios). The DAPI
intensity was used to set gates on aneuploid cells populations for all
tumours. Single nuclei from TN5 were sorted from the aneuploid G2M
peak. Single nuclei were then deposited into individual wells of 384-well
plates (Eppendorf951020702). The sorting instrument alignment was
assessed under amicroscope before each experiment to ensure single
nuclei were accurately deposited into the centre of each well using a
film-bottom 384-well plate (Greiner 781091). After flow sorting, plates
were spunat1,500g for 4 min, sealed and stored at —20 °C until ready for
ACT processing. Bulk nuclei were FACS sorted into LoBind tubes (Eppen-
dorf 022431021) for 10X Genomics CNV or exome-capture reactions.

ACT procedure

FACS-sorted 384-well plates were spunat1,500gfor >4 min. The Echo525
system (Labcyte) was used to dispense tagmentation reagents (Illumina
FC-131-1096) at nanolitre scale, with plate and liquid types detailed in
the following steps. Thorough mixing and spinning of each plate after
every dispense and incubation period is crucial to maximizing assay

performance. Nucleiwere lysed in 200 nl (384PP_SPHigh) of freshly pre-
pared Tx Lysis buffer (Protease (1.36 AUmI™) diluted 1:9 in 5% Tween 20,
0.5% Triton X-100 and 30 mM Tris pH 8.0). Lysis thermocycler settings
were programmed as: 55 °C for 10 min, 75°C for 15min, and holdat4°C,
lid temperature 80 °C and volume 1 pl. After lysis, 600 nl of tagmenta-
tion reaction mixture (TD:ATM 2:1,384PP-Plus_GPSA) was dispensed.
The ACT reaction settings on the Thermocycler were: 55 °C for 5 min,
hold at 4 °C, lid temperature 60 °C and volume 1 pl. The ACT reaction
was neutralized with 200 nl (384PP_SPHigh) of NT buffer for 5 min
atroom temperature. The final PCR reaction included 1.11uM N7XX
(5’-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCT
CGG-3’) and S5XX (5’-AATGATACGGCGACCACCGAGATCTACAC
XXXXXXXXTCGTCGGCAGCGTC-3’) primers (384PP_AQBP) in 2X HiFi
HotStart Ready Mix (Roche#KK2602, 6RES_GPSA). XXXXXXXX denotes
dual barcode sequences in primers. Unique dual barcode combina-
tions for each well in the 384-well plate were achieved by dispensing
16 unique N7XX barcodes across each row and 24 unique S5XX bar-
codesacross each column (Supplementary Table 3). The PCRreaction
was performed using the following conditions: 72 °C for 3 min, 98 °C
for30s, (98°Cfor10s, 63°Cfor30s,72°Cfor30s) for15-18 cycles,
72°C for 5min, hold at 4 °C, lid temperature 105 °C and volume 6 pl.
ACT performance was evaluated by Qubit fluorometer and TapeSta-
tion (Agilent) from selected cell libraries. Final libraries were pooled
together and purified with 1.8X AMPURE XP beads. The final libraries
were sequenced at 50 or 76 single-read cycles with dual barcodes on
the lllumina HiSeq4000 system.

10X Genomics CNV single-cell sequencing

Nuclear suspensions were stained with NST-DAPI and sorted by FACS.
The DAPlintensity was used to set gates on aneuploid cell populations
(see ‘Isolation of single nuclei by FACS’). The resulting aneuploid nuclei
suspensions were used as input material for the Chromium (10X Genom-
ics CNV) single-cell DNA cell bead kit (cat. no. 1000056) as described
inthe user guide with a target capture of 1,000 cells using chromium
single-cell chips Cand D (cat.nos 1000022 and 1000042, respectively).
DNA libraries were prepared using chromium single-cell DNA library
and gel bead kit (cat. no.1000040) and were sequenced at 200 cycles
on the NovaSeq6000 S1 flowcell (Illumina).

Fluorescence insitu hybridization

MDA-MB-231 cells were cultured until 80% confluency ina10-cm dish
and transferred to15-ml conical tubes and centrifuged at1,500 rpm for
7 min. Cells were subjected to hypotonic treatment (0.075 M KCI) for
20 minatroom temperature and fixed in methanol and acetic acid mix-
ture (3:1v/v)for15min, washed threetimeswith thefixativeandair-dried.
DNA fluorescenceinsitu (DNA-FISH) hybridization was performed on
the above cytological preparations using SHC1-20-GR, EGFR-20-GR,
VEGFC-20-GR, PIK3CA-20-GR, AKT3-20-GR, FGFR3-20-GR, MET-20-OR,
PDGFRA-20-OR and BCAS2-20-OR probes (Empire Genomics).
Slides were hybridized with the FISH probes according to the manu-
facturer’s instructions (Empire Genomics) with slight modifications.
Inbrief, 2 pl of each of the two probes were mixed with 6 pl of the in situ
hybridization buffer. The probe was applied on the slide and covered
with a glass coverslip (22 x 22 mm) and sealed with rubber cement.
Theslides were then denatured at 72-73 °C using Thermobrite system
(Abbott Laboratories) and incubated at 37 °C overnight. The slides
were then washed using 2x SSC at 45-70 °C for 1-2 min, counterstained
with DAPland analysed using a Nikon 80i microscope onthe greenand
orange fluorescent channels. The copy number states of each probe
were counted across 1,000 cells and multiple imaging fields for each
experiment.

Bulk DNA-seq and RNA-seq of MDA-MB-231
Expanded subclones from MDA-MB-231 were cultured until ~-80% con-
fluency ina10-cm dish and splitinto triplicates. From each triplicate,



aportion of cells was separated for DNA copy number analysis and
asecond portion was used for RNA extraction using TRIzol (Fisher,
cat. no.15596-018) from the same plates. Genomic DNA was isolated
from each expanded subclone with the QIAamp DNA Blood Mini Kit
(Qiagen, cat.no.51106). Recovered DNA was sonicated to 250 bp using
the S220 acoustic sonicator (Covaris) and libraries for each sample
were prepared with the Kapa HyperPrep Kit (Roche, cat. no. KK8504)
and NEXTflex-96 barcodes (Bioo Scientific). The NEBNext Ultra RNA
library prep kit for [llumina with poly(A) mRNA magneticisolation mod-
ule (NEB, cat. nos E7530 and 7490) was used for the bulk RNA libraries
accordingto the manufacturer’sinstructions. The protocol was modi-
fied toinclude the NEXTflex-96 barcodes with 14 PCR cycles. DNA-seq
and RNA-seq libraries were sequenced on 76 paired-end cycles on the
Illumina HiSeq4000 platform.

Bulk DNA exome capture

Genomic DNA from aneuploid tumour nucleisorted by FACS (see ‘Iso-
lation of single nuclei by FACS’) was isolated using Qiagen DNA blood
mini kit (cat. no. 51106) and matched normal tissue genomic DNA was
isolated using Qiagen DNA micro kit (cat. no. 56304). Recovered DNA
was sonicated to 250 bp using a S220 acoustic sonicator (Covaris) and
libraries for each sample were prepared with the Kapa HyperPrep Kit
(Roche cat. no. KK8504) and NEXTflex-96 barcodes (Bioo Scientific),
purified with 0.8X AMPure XP beads and amplified by PCR following
the manufacturer instructions. Exome libraries were captured with
SeqCap EZ Exome V2 kit following the manufacturer’s instructions
(Roche cat.no.05860482001) and sequenced with100 paired-end kits
on HiSeq4000 or NextSeq2000 300 cycles kit (Illumina).

Inference of DNA copy number

Sequencing reads were demultiplexed into single-cell FASTQfiles allow-
ing 1 mismatch of the 8-bp barcode. FASTQ files were aligned to hgl9
(NCBS build 36) using bowtie2 (v2.2.6)* and converted from SAM to
BAM files with SAMtools (v1.2)*. Positional barcoding was performed
by marking fragments with equal start position as PCR duplicates and
removed from subsequent analysis to obtain single-molecule data.
Copy number profiles were inferred with the variable binning pipeline
aspreviously described’. In brief, aligned reads were counted in variable
bins averaging 220 kb. Bin counts were normalized for GC content with
lowess regressionand bin-wise ratios were calculated by computing the
ratio of bin counts to the sample mean bin count. Segmentation was
performed withcircular binary segmentation (alpha=0.0001and undo.
prune=0.05) from R Bioconductor DNACopy package®. MergeLevels
was applied tojoin adjacent segments with non-significant differences
insegmented ratios. Cells with excessive noise were excluded according
to the following criteria: (1) removal of cells with bin counts that were
2xs.d.below the mean, (2) removal of cells with large breakpoint counts
that were 2x s.d. above the mean, and (3) removal of outliers using
density-based spatial clustering R package dbscan (v1.1-5)** (minPts =5,
bucketSize =10, k =5, eps parameter was determined by the elbow
method from the k-nearest neighbours distance matrix).

Calculation of technical metrics

The Gini coefficient for high-depth sequencing of single-cells from
SK-BR-3 for ACT, DOP-PCR and bulk sample was calculated as follows.
Let x; be the set of depths observed and let n; be the number of sites
with depthx;,

n n; .
zi=1(—zi,;,i,) X(Sg-p*S) i
, where Y nx;.
n i'=1

Gini=1-

Single-cell coverage breadth was calculated from BAM files with
duplicates removed. We sampled 100-sparse-single-cell sequencing
data from BAM files from each scDNA-seq method, ACT (TN1-TN4),

10X-CNA, DOP-PCR** and DLP* and downsampled the data to 800k
reads trimmed to 50 bases to match the lowest read length and depth
across allsamples. Coverage fromall sites was calculated using bedtools
(v2.26.0) genomeCoverageBed®. Overdispersion was calculated by
the index of dispersion of bin counts, that is, the variance over mean,
normalized by the mean bin counts for each single cell. Let ¢ be the
overdispersion parameter, b be the mean bin counts and iod the index
of dispersion, ¢ = (iod - 1)/mean(b).

Multi-sample segmentation and integer copy number
estimation

We used the R bioconductor package with the ‘copynumber’ (v1.26)
function ‘multipcf’ (gamma=30)** to performjoint segmentation and
determine common break points for all single cells on the bin count
matrices withanadded pseudocount of 5, followed by ‘MergeLevels’ to
joinadjacent segments with non-significant differences in segmented
ratios. Average tumour ploidy was calculated with DAPI fluorescence
values from FACS data. The first peak from the DAPIfluorescence histo-
gram was assumed to be normal (2N) diploid stromal cells. The ratio of
the mean DAPI fluorescence from the gated aneuploid population over
the mean DAPI fluorescence of the 2N population was multiplied by 2,
resultingin the average tumour ploidy, thatis, ground state. Segment
ratios from joint segmentation were multiplied by the FACS-derived
average tumour ploidy and rounded to the nearest integer value.

Clustering of superclones and subclones

Integer single-cell copy number data from multi-sample segmentation
was embedded in two dimensions using UMAP?* with R package ‘uwot’
(v.0.1.8, min dist = 0, n neighbours = 40, seed = 55 for TNBC tumours
and n neighbours =25, seed = 206 for cell-lines, distance = “manhat-
tan”). To identify superclones, the resulting embedding was used to
create a shared nearest neighbour (SNN) graph with R Bioconductor
package ‘scran’ (v1.14.6)*. For each superclone SNN graph, different k
values were used (TN1, 45; TN2, 63; TN3, 65; TN4, 75; TNS, 41; TN6, 51;
TN7,35; TNS, 43; MDA-MB-231, 93; MDA-EX1, 55; MDA-EX2,17; BT-20, 55;
MDA-MB-453, 65; MDA-MB-157,75), the connected components of the
SNN graph were identified using the R package ‘igraph’ (v1.2.5)* and
classified as superclones. Toidentify subclones the UMAP embedding
was used as input for the clustering algorithm hdbscan (minPts =17
for TNBC tumours and 15 for cell lines) from R package ‘dbscan’
(v1.1-5)*7*%, Hdbscan is an outlier aware clustering algorithm, since
extensive filtering of the dataset was applied before clustering (see
‘Inference of DNA copy number’), any cell classified as an outlier was
inferred to the same cluster group as its closest, non-outlier, nearest
neighbour according to Euclidean distance. Subclones were further
organized with hierarchical clustering (Manhattan distance, ward.
D2 linkage), further substructures identified by hierarchical cluster-
ing were not considered additional subclones. Jaccard similarity for
clusters was computed by bootstrap with R package ‘fpc’ (v2.2-7) with
meanJaccard similarities being reported. Heat maps were plotted with
R package ComplexHeatmap (v2.2.0)*. Clonal structure on heat maps
was organized accordingto the clonal lineage from the subclonal con-
sensus copy number profiles (see ‘Calculating consensus copy number
profiles of subclones’ and ‘Phylogenetic reconstruction of single-cell
and clonal lineage trees’).

Co-clustering of ACT and 10X Genomics CNV single-cell data

ACT and 10X genomics single-cell CNV resulting bin counts were merged
and co-segmented with multipcf (gamma=30) (see ‘Multi-sample seg-
mentation and integer copy number estimation’), followed by Merge-
Levels to join adjacent segments with non-significant differences in
segmented ratios. Segment ratios were scaled by tumour FACS-inferred
ploidy and rounded to the nearest integer. Co-clustering of ACT and
10X genomics single-cell CNV datasets was performed as previously
described with hdbscan and parameters adjusted to match the original
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number of subclonal populations from ACT clustering (seed =55, n
neighbours = 40, minPts = 35, 80 for TN1 and TN3, respectively)
(see ‘Clustering of superclones and subclones from single-cell copy
number data’).

Calculating consensus copy number profiles of superclones and
subclones

For eachtumour sample, the integer copy number consensus profiles
were calculated by taking the median of the ith segment of all single
cellsassigned to the same superclone or subclone, the ploidy was scaled
by the average tumour ploidy derived by FACS and rounded to the
nearest integer value.

Inference of most recent common ancestral profile

The consensus profile of each superclone (see ‘Calculating consensus
copy number profiles of subclones and superclones’) was used to derive
the most recent common ancestor (MRCA). For every segment, we
selected the copy number (CN) value among the consensus CN values
from each superclone thatis closest (L1 norm) to the average tumour
ploidy as the ancestral segment.

Classification of clonal, subclonal and unique cna segments
cCNA and sCNA segments were identified from the subclonal consensus
matrices. SCNAs were further classified into uCNAs if one subclone
presented at least one distinct copy number event compared to all
others, formally:

Let n;be the frequency of subclones CNA;is in.

Let Nbe the total number of consensus subclones for the sample.
cCNAsaredefinedasn;=1

sCNAs aredefinedas1/N<n;<1

uCNAs are defined as n;=1/N

Construction of CNA breakpoint spectra

To constructafrequency spectrum of CNAs using breakpoint frequen-
ciesacross all single cells, we performed segmentation with the R pack-
age ‘Piet’ (GFL) (v0.1.0)** (rhol=0, rho2 =0, rho3 =70, obj_c =10"-10,
max_iter =1*5). A matrix of log ratios from the variable binning copy
number pipeline (see ‘Inference of DNA copy number’) and bin-wise
variance estimation where:letx(i) be thelog ratio bin count atbini, the

variance estimate is median ((x(i + 1) —x(i))2)/[2 X (1 - %)3} was used

as input for GFL. GFL returns piecewise constant curves with discon-
tinuities across breakpoints. To account for discontinuities, we built
interval estimates atintersecting breakpoints and constructed agraph
to verify overlap across genomic positions over all single cells. Disconti-
nuities higher than 10 bins were discarded and connected components
were obtained from the resulting graph. Breakpoints that did notreach
aratio difference >0.6 between the median of two adjacent segments
were not counted. Accuracy of resultant breakpoint frequency calls
were assessed by simulation (Supplementary Methods). Resulting
segments were ploidy scaled by the average FACS-derived ploidy and
rounded tothe nearestinteger values. Finally, we counted the frequency
of each chromosome breakpoint across all cells from the sample result-
inginafrequency spectrum.

Calculation of subclonal diversity indexes

For eachtumour sample we calculated the proportion (p) of cells that
belong to a distinct subclone. Diversity was calculated as Shannon
index:D,=-3,(p, x In(p)), with 95% confidence intervals calculated
by bootstrapping (B=3,000).

Phylogeneticreconstruction of single-cell and clonal lineage trees
Pairwise distances of single cells were calculated using Manhattan dis-
tance to obtain adistance matrix for each tumour. Phylogeneticinfer-
enceforsingle-cell trees and consensus trees were performed with the

balanced minimum evolution algorithm* from R package ape (v5.3)*.
Rootdiploid nodes for phylogenetic inference were constructed from
simulated variable binning profiles in which bins presented aninteger
copy number equal to 2. Distances were calculated from the diploid
root to the most recent common ancestral (MRCA) and from the MRCA
to the terminalaneuploid node. Terminal aneuploid node was defined
by the largest branchlength from the MRCA on the aneuploid subtree.
Consensus phylogenetic trees were rooted from simulated variable
binning profiles equal to the integer average tumour ploidy (see Sup-
plementary Table1, ‘ploidy’). Root nodes from consensus phylogenetic
trees were removed for visualization purposes. Trees were plotted
using R package ggtree (v2.0.3)%.

Mathematical modelling of CNA evolution

A branching process model for the accumulation of chromosomal
breakpoints was used, inwhichatumour cell canreplicate, die, or rep-
licate such that one of the daughter cells acquires two new breakpoints
inits copy number profile andits ability toreplicateis altered according
to afitness distribution. Under areduced fitness distribution consid-
ering neutral and lethal aberrations only, we derived formulas for the
expected number of breakpoints present at a given frequency, which
were used in a likelihood analysis to determine whether an elevated
breakpoint rate early in tumour growth provided a superior expla-
nation of the data. Full details are given in Supplementary Methods,
‘Mathematical modelling’.

Estimation of cell doubling rates

The expanded subclones were grown from asingle cell (/=1) toa90%
confluent10-cm cell culture dish. MDA-MB-231 EX1and EX2 remained
in culture for 26 days (¢), reaching a final number of -5.86 x 10° cells
(F). Doubling time (Dt) of the expanded subclones was calculated
as:Dt=(tlog2)/(log F-logl) and number of generations (G) of cell
divisions in each expanded population of cells was determined by
G=t/Dt.

Estimation of the de novo copy number rates

Estimation of de novo copy number rates was carried out with
intra-arm breakpoints, and do not include arm level events (see
‘Construction of CNA breakpoint spectra’). We assume exponential
expansions and no cell death. For expansion ilet the number of cells
sequenced be n(i). Further let the number of CNAs expected in the
frequency range [2/n(i), 0.5) be nCNA(i). Then an analytic formula,
which contains the CNA rate as a prefactor, can be obtained for the
expectation of nCNA(i) (E[nCNAC(i)) (Supplementary Methods).
Assuming each new CNA leads to two new breakpoints, we adopt
the statistical model that the number of breakpoints at frequencies
[2/n(i), 0.5) is Poisson distributed with parameter 2E[nCNA(i)]. Fur-
ther, we include that the probability of not observing a breakpoint
presentiny cells, which based on simulated data we approximated
as 0.57 x exp(-7.5y x 107*) (the estimated rates decrease by a factor
of ~2 without this assumption). For each expansion, the observed
number of breakpoints in the frequency range [2/n(i), 0.5) is called
with Piet as described in 'Construction of the CNA breakpoint spec-
trum'. The point estimate for the CNA rate in each cell expansion is
then calculated via maximum likelihood (Supplementary Methods,
section 7) and the confidence intervals are based on the assumed
Poisson distribution and obtained numerically.

Somatic mutation variant calling

Sequencing reads from bulk tumour tissue and matched normal tissues
were demultiplexed into FASTQ files allowing 1 mismatch out of the
8-bp barcode. FASTQ files were aligned to hg19 (NCBS build 36) using
bowtie2 (v2.2.6)*, sorted and converted from SAM to BAM files with
SAMtools (v1.2)*. Duplicates were marked with Picard tools (v2.20.4)
and BAMfiles wererecalibrated for base quality scores using Genome



Analysis Toolkit (GATK v4.1.3)*¢ Base Recalibrator. Somatic variants
from tumour tissue were identified with MuTect2* and filtered using
GATK FilterMutectCalls. Bcftools (v1.11-3) was used to retain PASS
variants. Additionally, variants with allele frequency higher than 0.05
in matched normal samples were excluded. Variants on bulk tissue
required aminimum depth of10x, 5x of the alternative allele and allele
frequencies >0.1. Variants <1,000 base pairs apart were excluded from
the analysis. VCF analysis was performed with the help of the R pack-
age ‘vcfR’ (v.1.12.0)*8, Variants were annotated with ANNOVAR* and
excludedif presentin dbsnp129. Mutations were considered to have a
damaging impact using SIFT*° and PolyPhen-2% prediction algorithms,
inwhich mutations with SIFT scores <0.05, and PolyPhen-2 scores >0.85
were considered to be significant (http://picard.sourceforge.net/).

Allele-specific copy number with ASCAT on exomes

We counted the reads with each genotype at the 1000-genome sin-
gle nucleotide polymorphism (SNP) positions®? in the normal and
tumour exome sequencing data using alleleCounter (v.4.0.0). SNP
positions overlapping the genomic ranges defined by {start-100} and
end {end +100} target regions of the exome panel bed file (SeqCap EZ
Exome v2, Roche, cat. no. 05860482001); SNP positions <20X depth
in the normal tissue were excluded.

From the read counts at those positions we derived the

No. of reads allele B

BAF =
No. of reads allele A + No. of reads allele B
and
logR=1o No. of reads in tumour o
g &2 Average depth of coverage in tumor &2

No. of reads in normal tissue
Average depth of coverage in normal

as input to ASCAT. We ran ASCAT (v.2.5.2) on the B-allele frequency
(BAF) and LogR tracks™®. We refitted the profiles by selecting the local
optima (thatis, the minima in the total distance to integer DNA copy
numbers) corresponding to the tumour ploidy that best matched the
FACS-derived ploidy.

Estimation of whole-genome doubling timing
The timing of whole-genome duplicationsin relative mutational time
was determined by inferring the proportion of clonal single-nucleotide
variants (SNVs) present on two allelic copies p,. Clonal SNVs wereiden-
tified by running DPClust® on its default settings to produce cluster-
ing estimates. SNVs assigned to clusters with a cancer cell fraction of
between 0.9 and 1.1 were labelled as clonal.

A mixture model on the observed alternate reads from clonal SNVs
described” and was used to calculate the probability distribution on
p,. The mixture model was composed of two binomial distributions

withfrequencies p and 2p corresponding to mutations
q (PT+2(1-p)) (PT+2(1-p)) p g

ononeandtwo alleles, respectively, where pis the purity of the tumour
and Tis the total copy number of the segment under consideration. A
probability distribution on p, was calculated for SNVsin segments with
allele-specific copy number 2+0/2+2 and 2+1 separately. A probability
distribution on p, was calculated for SNVs in segments with
allele-specific copy number 2+0/2+2 and 2+1 separately.

Thedistributions on p, were then used to calculate a timing distribu-
tion for the whole-genome doubling (WGD) in relative mutational time.
In2+0 and 2+2 copy number regions the whole-genome doubling tim-
ingmis givenby: = 12+ppzz andin 2+1regionsitis givenby = liplfz A
combined probability distribution on 1t was calculated from combin-
ing the estimates derived from the 2+0/2+2 and 2+1 segments.

TP53 mutation timing

Thecluster profiles produced by DPClust were used in MutationTimeR"
to estimate the probability that each SNV was clonal or subclonal and
whether it occurred before the WGD.

Calculation of CNA ratios from exome data

The fraction of clonal copy number events that occurred before the
WGD was calculated using the allele-specific-exome copy number.
Adjacent segments with identical allele-specific copy number were
first merged and segments smaller than 100 kb were filtered. Clonal
copy number events were selected by filtering out segments with atotal
copy number different to the ancestral total copy number. Maximum
parsimony was used to infer the copy number event history that led
toeachsegment. GiventhataWGD occurredinatumour, the smallest
combination of gains and losses of parental alleles that resultin the
final copy number state is assumed to have transpired. The proportion
of copy number events occurring before and after the WGD across all
segmentsinatumour sample was calculated from these route histories.
Confidence intervals were calculated by bootstrapping the filtered
segments.

Allele-specific copy number insuperclones and agreement with
exome bulk

To obtain parental allele-specific copy number in the superclones we
merged single-cell BAM files according to their superclones (see ‘Clus-
tering of superclones and subclones’) using Sambamba (v0.7.0) and
then proceed in three steps: 1. phasing of heterozygous SNPs to the
major allele. First, we define heterozygous SNPs in the exome as those
having at least 20 reads and a BAF between [0.2, 0.8] in the matched
normalsample. We then phase the genotype with the maximum of the
two read counts to the major parental allele. Second, we pool read
counts per genotype across all single cancer cellsat the 1000-genome
SNP positions. We identify heterozygous SNPs with allele counts for
genotype A and B, ¢, and ¢, with P(Bin(c, + ¢z, 0.99) <c,) <0.01and
P(Bin(c, + cg, 0.99) < ¢;) < 0.01. We then phase the genotypes with the
maximum of the two read counts to the major allele. Finally, we pool
the phased SNPs identified from the exome and the single cells.
Although exome SNPs can in theory also be identified in the super-
clones, including SNPs from the matched normal exome ensures that
enough SNPs are still covering regions with LOH that would be mistaken
ashomozygousinthesingle cells. 2. Maximum-likelihood estimate of
the BAF of each copy number segment. For each copy number segments
i,wemodeltheread counts of the genotype phased to the major allele
ateachheterozygous SNP positions k;as a Binomial: k; - Bin(n;, p) where
n;is the total read count and p; is the BAF. We compute the likelihood

across all N heterozygous SNP positions £ = ni/\il (ki]pik[(l _ pi)nrk,- for
G

BAFvalues p, € 0.5+0.001x{0,1,2, ..., 500}and normalize thelikeli-
hoodsto get aprobability distribution over the BAF values. The BAF is
taken as the maximum-likelihood estimate and we also derive the [5%,
95%] confidence intervals. 3. Deriving parental-allele-specific copy
number insuperclones. For each copy number segment andits inferred
total copy number n,, we derive the number of copies of the major allele
as N,,; = round(BAF x n,) and the number of copies of the minor allele
as Npyin == Npyyje

Analysis of bulk DNA-seq copy number data

Bulk DNA-seq copy number data from the expanded subclones was
processed with the variable binning copy number pipeline at agenomic
resolution averaging 200 kb as described in ‘Inference of DNA copy
number’ and segmented as described in the section ‘Multi-sample
segmentation and integer copy number estimation’.


http://picard.sourceforge.net/
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Analysis of bulk RNA-seq expression data

Transcript abundances for expanded clones triplicates were quan-
tified using Salmon (v.0.14)* with GENCODE transcript v30°® and
options -l A -1readl -2 read2 -p 40-validateMappings-seqBias-
gcBias. Quantified transcripts were imported into R with ‘tximport’
(v1.14)%.Expanded clones €7, €39 and e71 had one technical replicate
excluded due to poor RNA quality. Genes with aread count of <5in
3 or more samples were excluded from the analysis. Samples were
normalized for differences in sequencing depth by computing size
factors and further variance stabilizing transformation with DESeq2
(v1.26.0)%.

Integrated analysis of DNA and RNA in subclonal regions
MDA-MB-231 DNA copy number data from single cells of the paren-
tal cell line and from bulk expanded single daughter cells were
jointly segmented and co-clustered as described in ‘Multi-sample
segmentation and integer copy number estimation’ (gamma = 20)
and ‘Clustering of superclones and subclones’ (minPts =14, n neigh-
bours=25,seed =5, ksuperclones=43).Inbrief, segment ratio copy
number profiles were embedded into two dimensions using UMAP
followed by construction of an SNN graph. Matching DNA-RNA pairs
fromthe bulk expanded single daughter cells dataset were assigned
identities according to their subclonal classification from the DNA
co-clustering results. The group of expanded single daughter cells
belonging to the same subclone were designated as expanded clus-
ters. Variance stabilized gene counts from RNA triplicates (see ‘Bulk
DNA-seqand RNA-seq of MDA-MB-231" and ‘Analysis of bulk RNA-seq
expression data’) for each expanded single daughter cell were aver-
aged and agene-wise z-score was calculated. Gene-wise z-scores were
further averaged according to their assigned expanded clusters.
Genes were organized by their corresponding genomic positions and
moving windows of 100 genes were calculated for each chromosome.
DNA copy number profiles from the expanded clusters are shown by
taking the mode of the ith segment from their profiles according to
the co-clustering identities.

Gene set enrichment analysis

Differential expression analysis was performed with DESeq2. Com-
parisons were made by contrasting each subclonal identity against all
others. Fast Gene Set Enrichment Analysis was performed using R pack-
age ‘fgsea’ (nperm=2000)*° with the msigdb h.all.v6.2.symbols cancer
hallmark gene sets'. Gene sets that were not significant (p-value <0.05)
inatleast 6 subclonalidentities were excluded from the analysis. Gene
set pathways and expanded clusters were clustered with hierarchical
clustering (Euclidean distance, ward.D linkage).

Statistical analysis

Statistical analysis and plotting were performed in the R software
(v.3.6.2)°° with ‘base’, ‘Rstatix’®, ‘ggplot2’ (v.3.2.1)%, SciPy (v.1.4.1)*
and pandas (v.1.01)*,

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The data from this study were deposited in the NCBI Sequence Read
Archive under accession number PRJNA629885.

Code availability

Codeused inthis study is available at https://github.com/navinlabcode/
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Extended DataFig.1| Technical metrics and performance of ACT.a, ACT
single-cell DNAlibrary size distributions for TN1, TN2 and TN3 after pooling
384 celllibraries. b, Schematic showing the use of positional barcoding
information to determine single-molecule information by tagmentation
during ACT, compared to whole-genome amplification using DOP-PCR, where
the original DNA fragmentation sites of single molecules cannot be resolved.
¢, Breadth of coverage for sparse depth data from different scDNA-seq

methods plotted by individual samples, using n=100 random cells per sample.

d, Overdispersion of bin counts for sparse depth data from different scDNA-
seqmethods plotted by individual samples, using N=100 random cells per

sample.e, Distribution of sequencing reads across adiploid region of
chromosome 4pl14 for asingle SK-BR-3 cell sequenced by DOP-PCR compared
to ACT, inwhich the PCR duplicates were retained or removed to obtain single-
moleculedata. f, Distribution of sequencing reads across a diploid region of
chromosome 4p (top) and10q (bottom) for asingle SK-BR-3 cell sequenced by
DOP-PCR compared to ACT, with or without duplicate molecules retained.

g, Lorenz curves of coverage uniformity for ACT, DOP-PCR and one bulk
DNA-seq data from SK-BR-3 single cells, downsampled to equal coverage depth.
h, Breadth of coverage as afunction of pseudo-bulk reconstruction by
combining multiple cells for ACT, DOP-PCR and bulk sequencing.
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Extended DataFig.4 | Validation of clonal substructure usinga
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detected on each platformin the merged datasets from10X and ACT.
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Extended DataFig. 8|See next page for caption.




Extended DataFig. 8| Clonal substructure of additional TNBC cell lines and
single-cell expansions. a, b, Clustered heat maps of single-cell copy number
datafromthe BT-20 (n=1,231cells) and MDA-MB-157 (n=1,210 cells) cell lines, in
whichleftannotation barsrepresent superclones and subclones, and the
bottom annotation bar represents different classes of CNA types. c, Number of
superclonesandsubclonesidentified inthe TNBCcelllines. d, Number of
clonal, subclonaland unique CNAs detected in the four TNBC celllines, as well
as the two MDA-MB-231 expanded daughter cells. e, Distributions of the
genomicsizes of clonal, subclonaland unique CNAs across the four TNBC cell
linesand the two MDA-MB-231 expanded daughter cell lines. f, Shannon indexes

calculated from the single-cell copy number profiles from the four TNBC cell
lines and the two expanded MDA-MB-231 daughter cells with 95% confidence
intervals. g, Microscopic field of DNA-FISH experiments of MDA-MB-231 using
AKT3and BCAS2 probes at 60x original magnification. h, Bar plots showing the
results of DNA-FISH copy number states counted across 1,000 cells for each of
the probes compared tothe ACT data. i, Clustered heat map of single-cell copy
number datafor MDA-MB-231EX2 cell line expansion (n=897 cells), in which
leftannotationbarsrepresent superclones and subclones, and the bottom
annotationbarrepresents different classes of CNA types.
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Extended DataFig. 9| DNA and RNA analysis of expanded clones from MDA-
MB-231. a, Schematic of physical single-cell subcloning experiments of
daughter cellsto generate 78 expansions from the MDA-MB-231 parental cell
line. b, Co-clustering of the single-cell copy number data from the parental
MDA-MB-231cellline (n =820 cells) with the 78 expanded clone bulk DNA-seq
copy number profiles. ¢, Principal component analysis of bulk RNA-seq profiles
ofthe 78 expanded daughter cell lines triplicates, with contour colour
representing superclones and point colour representing the subclone clusters
fromthe genotypes of the single-cell and bulk DNA-seq co-clustering.

d, Clustered heat map of bulk DNA copy number profiles from the 78 expanded
clones, with left annotation bars representing superclones and subclones, as
determined by co-clustering with the parental single-cell copy number data.

e, Meangene expression levels of different copy number states for 78

expansions from the MDA-MB-231 parental cell line. f, Cumulative number of
subclonal segments as a function of Kruskal-Wallis test P-value, in which the
redline denotes a P-value of 0.05. g, Mean gene expression as a function of copy
number segments with points representing expanded clusters for two
subclonal CNAsonchrlland chrl9.h, i, Consensus integer copy number
profiles of the 10 expanded clone clusters on chromosome 11 (h) and
chromosome19 (i) (top) with matched RNA-seq expression (bottom) using
moving windows of100 genes. Right, selected breast cancer genes insubclonal
CNAregionsand their corresponding box plots of RNA expression for each
expanded cluster. Box plots show the median, box edges represent the firstand
third quartiles, and the whiskers extend to1.5x interquartile range.j, Cancer
hallmark signatures with significant variability of normalized enrichment
scores (NES) across the expanded clone clusters.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data was collected by sequencing on Illumina HiSeq4000 and NextSeq500 systems

Data analysis The data analyzed in this study was performed using custom python and R code, as well as open-source software and R packages. All of the
code used to analyze the data is available upon request from the authors.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The data from this study was deposited in NCBI Sequence Read Archive under accession number
PRINA629885.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size This is an exploratory study that is does not involved samples sizes estimated by power calculation for specific statistical tests.
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Data exclusions  Some single cell data with poor sequencing metrics were excluded from the study in filtering steps, as described in the methods section
Replication Single cells serve as replicates for detecting clonal subpopulations in each TNBC patient.
Randomization  n/a

Blinding n/a

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) TNBC cell lines in this study were obtained from the Characterized Cell Line Core (CCLC) Facility at the University of Texas MD
Anderson Cancer Center, Houston, TX.

Authentication The cell line identities were confirmed by RFLP analysis and sparse WGS sequencing to determine copy number profiles
Mycoplasma contamination All cell lines tested negative for mycoplasm contamination prior to running the experiments.

Commonly misidentified lines  gme any commonly misidentified cell lines used in the study and provide a rationale for their use.
(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics All 8 patients are female and range in age from 37-79 years old. Detailed clinical information on the patients is provided in
supplementary table 1.

Recruitment Samples were collected as retrospective frozen samples from our institutional tissue bank

Ethics oversight IRB

Note that full information on the approval of the study protocol must also be provided in the manuscript.




Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

g The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

|Z A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology
Sample preparation Nuclear suspensions were isolated from frozen tissue samples or cell lines using a DAPI/NST buffer prior to FACS
Instrument FACS Melody System, Illumina HiSeg4000 system, Illumina NextSeq500 system, Echo550 Labcyte
Software FlowJoe
Cell population abundance NA
Gating strategy Nuclei stained with DAPI were gated from Aneuploid distributions during FACS

& Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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