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Somatic copy-number alterations (SCNA) are a hallmark of 
many cancer types, but the mechanistic basis underlying 
their genome-wide patterns remains incompletely understood. 
Here we integrate data on DNA replication timing, long-
range interactions between genomic material, and 331,724 
SCNAs from 2,792 cancer samples classified into 26 cancer 
types. We report that genomic regions of similar replication 
timing are clustered spatially in the nucleus, that the two 
boundaries of SCNAs tend to be found in such regions, 
and that regions replicated early and late display distinct 
patterns of frequencies of SCNA boundaries, SCNA size and 
a preference for deletions over insertions. We show that long-
range interaction and replication timing data alone can identify 
a significant proportion of SCNAs in an independent test data 
set. We propose a model for the generation of SCNAs in cancer, 
suggesting that data on spatial proximity of regions replicating 
at the same time can be used to predict the mutational 
landscapes of cancer genomes.

Cancer genomes display complex mutational landscapes including 
amplification, deletion and rearrangement of genetic material1. Many 
genomic alterations arise as a result of DNA damage or erroneous 
replication, whereas others occur because of replication-independent  
events (e.g., exchange reactions between sister chromatids). 
Eukaryotic DNA replication is spatiotemporally segregated: some 
regions are replicated early, whereas others are replicated late during 
S phase2–5. The proposed fractal organization of the genome6 brings 
together distant genomic regions of similar replication timing to form 
replication factories (Fig. 1a), where DNA synthesis takes place in 
multiple DNA regions simultaneously7,8. During replication, single-
stranded DNA and DNA double-stranded ends can arise9,10, and 
interaction between physically proximal segments increases the risk 
of genetic alterations11 through mechanisms such as microhomology-
mediated break-induced replication12. Therefore, patterns of 
nuclear organization and co-localization of replicating DNA strands  
may contribute to a mechanistic explanation of the genome-wide  
frequency and size distribution of genomic alterations in cancer. 

Indeed, the nuclear proximity of BCR and ABL13, which are also 
replicated at the same time during S phase, is causally linked to the 
formation of the BCR-ABL fusion oncogene driving leukemiagenesis. 
Although nuclear co-localization of chromosomal domains has been 
proposed to play a key role in generating translocation events14,15, 
the contributions of nuclear organization and replication timing to 
the genome-wide patterns of genomic alterations in cancer have not 
been systematically addressed. Here we propose that DNA replication  
timing, together with the long-range interaction patterns of the genome, 
is a predictor of the mutational landscapes of cancer genomes.

RESULTS
Data sets analyzed
We integrated three data sets on the boundaries of 331,724 SCNAs 
from 2,792 cancer samples classified into 26 cancer types1, genome-
wide DNA replication timing4 and long-range DNA interactions6 
(Online Methods). In brief, we used data1 on SCNAs in cancer 
genomes identified using Affymetrix single-nucleotide polymor-
phism (SNP)-arrays, which yielded copy number ratios derived from 
tumor samples and matched normal samples. We used replication 
timing data4 measured using a massively parallel sequencing-based 
technique across multiple human cell types. In this data set, the rep-
lication timing of genomic regions was categorized as ‘constant early’, 
‘constant mid’, ‘constant late’ and ‘variable’. Finally, we used intra- and 
interchromosomal DNA interaction patterns6 in the human genome 
obtained using HiC, a method that probes the three-dimensional (3D) 
architecture of whole genomes by coupling proximity-based ligation 
with massively parallel sequencing. In HiC, two genomic regions rep-
resented by one or more sequence reads are likely proximal within 
the nucleus.

An initial analysis revealed that, in general, regions of similar rep-
lication timing cluster together spatially (Supplementary Module 1), 
supporting the concept of replication factories7,8. We focused on 
genomic regions that exhibited the same replication timing (constant 
early, mid or late) across several human cell types4, and we excluded 
SCNAs that had boundaries close to centromeres, telomeres or on 
sex chromosomes (Online Methods). We confirmed our results using 
multiple independent data sets and analyses; a summary of all data 
sets used1,4–6,16–18 is shown in Table 1. Our analyses revealed three 
key observations.

Determinants of cancer SCNAs
Our first observation was that cancer SCNAs arise preferentially in 
genomic regions that both have the same replication timing and share 
long-range interactions in the nucleus. We first determined that the 
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two boundaries of SCNAs are significantly more likely to reside in 
genomic regions with the same replication timing than expected 
by chance (Fisher’s exact test, P = 1.21 × 10−5; Fig. 1b). This pat-
tern is consistent when considering only amplifications (Fig. 1c), 
deletions (Fig. 1d), SCNAs involving cancer genes (Fig. 1e and 
Supplementary Module 2) and also when using an alternative data set 
for genomic alterations in glioblastoma17 and for replication timing5 
(Supplementary Module 2). We also obtained consistent results after 
adjusting for local GC content, chromatin status and lamin-associated 
domains (Supplementary Module 3). In general, SCNAs in our data 
set are large (median size 4.5 Mb) and can cover multiple replica-
tion timing zones each; therefore, most SCNAs likely arise owing to 
interactions between single-stranded DNAs or double-stranded ends 
from two replication timing zones that are far apart on linear DNA. 
Next, we integrated HiC data and found that for a majority of cases, 
the two boundaries of SCNAs were in close spatial proximity within 
the nucleus. This pattern was significantly unlikely to occur by chance 
(permutation test, P < 1 × 10−3; Supplementary Module 3).

About 32% of SCNAs have boundaries residing in genomic regions 
with different replication timing (SCNAdRT), and the mechanism 
of their generation may be different from that above. At ribosomal 
gene loci, for instance, transcription causes a local disruption of 
cohesin binding, leading to copy number changes19. We found that 
three-quarters of SCNAdRT overlapped at least at one boundary with 
expressed genes, and many shared long-range interactions between 
the genomic regions in which the boundaries reside (Supplementary 
Module 4). For those cases, transcription-coupled DNA damage and 
strand break may play a mutagenic role11,12,20.

SCNA distribution depends on replication timing of boundaries
Our second observation was that the prevalence of SCNA bounda-
ries varied between early-, mid- and late- replication timing zones 
(Fig. 2a). Early-replicating regions were significantly depleted of 
SCNA boundaries, whereas late-replicating regions were enriched 
(Cochran-Armitage test, P < 2.2 × 10−16). This finding is consistent 
with recent observations that the germ line mutation rate is higher 
in late-replicating regions21. When we examined amplifications and 
deletions separately, we found that the above trend holds for deletion 
boundaries (Fig. 2b; Cochran-Armitage test, P < 2.2 × 10−16), whereas 

amplification boundaries were slightly enriched in early-replicating 
regions (Fig. 2c; Cochran-Armitage test, P = 1.59 × 10−4). In gen-
eral, there is a preference for deletions over amplifications within late 
replicated regions as compared with early replicated regions (Fig. 2d; 
Mann Whitney test, P < 2.2 × 10−16). We obtained similar results after 
binning log2 ratios of cancer samples into amplifications, deletions 
and normal DNA copy number (Supplementary Module 5), and also 
using alternative data sets for genomic alterations in glioblastoma17 and 
replication timing5 (Supplementary Module 5). As genome-wide pat-
terns of both replication timing and SCNAs are correlated with other 
genomic features, we tested for associations of these patterns with exon 
density, conserved elements, fragile sites, repeat elements, GC con-
tent, chromatin status and lamin-associated domains. We identified 
a significant association between the number of SCNA boundaries 
and replication timing zones even after controlling for these factors  
(P < 0.05 in all cases, Supplementary Module 6), indicating that our 
findings were probably not due to these covariates. In the absence of the 
availability of appropriate data sets to test for associations with other 
hidden covariates, we cannot exclude the possibility that the generation 
of SCNAs may be causally related to other factors.

When analyzing a set of 18 well-characterized, cancer-associated 
genes such as MYC, APC and TP53, we found that a majority resides 
in early replicated regions, and that SCNAs that overlap with these 
genes often have boundaries in early replicated regions (Table 2); this 
finding is consistent with previous observations that gene-rich regions 
are generally replicated early2,4. We then investigated SCNAs overlap-
ping with all cancer genes as classified by the Cancer Gene Census16.  

Figure 1  Long-range DNA interactions and 
the distribution of SNCAs with regard to 
replication timing zones. (a) Organization of 
genomic DNA with long-range interactions 
between distant replication timing zones can 
increase the risk of interference between 
adjacent replication forks, leading to genomic 
alterations. (b–e) The two boundaries of 
SCNAs are significantly more likely to reside 
in genomic regions with the same replication 
timing than that expected by chance 
for all SCNAs (b), somatic copy number 
amplifications (SCNA-Amplifications) (c),  
somatic copy number deletions (SCNA-
Deletions) (d) and SCNAs that overlap with 
known cancer genes listed in the Cancer 
Gene Census (SCNACGC) (e). Supplementary 
Module 3 provides separate analyses of SCNA 
amplifications and deletions as identified by 
GISTIC. The absolute number (n) of observed 
and expected cases is provided below each 
bar. *, P = 1.21 × 10−5; **, P = 1.98 × 10−5; 
***, P = 3.76 × 10−6.
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We found that, indeed, early replicated regions are enriched for 
boundaries of these SCNAs, which is notable because these SCNAs are 
often large (median size 4.5 Mb) and each cover multiple replication  
timing zones. Again, late replicated regions display a significant enrich-
ment for deletions over amplifications (Fig. 2e; Mann-Whitney test,  
P = 1.42 × 10−8). We obtained similar results using SCNAs that overlap 
with peak regions as identified by the GISTIC algorithm1, which are 
enriched in oncogenes and tumor suppressor genes (Supplementary 
Module 5). Thus, boundaries of genomic alterations associated with 
cancer genes have different replication tim-
ing as compared to other genomic alterations. 
Note that although the trends we observed in 
Figure 2a–e have small effect sizes, they were 
statistically significant, were reconfirmed using 
alternative data sets and were consistent with 
findings observed in germ-line evolution21.

It was recently reported22 that genomic 
instability is increased near replication tim-
ing transition zones at chr11q and chr21q; 
these regions harbor several cancer genes. 
To investigate whether this observation rep-
resents a genome-wide phenomenon, we 
analyzed the patterns of SCNA boundaries 
near early-, mid- and late-replication timing 
transition regions. When focusing on 200-kb  
windows centering on the mid-replicating 
regions that are flanked by early- and late-
replicating regions, we found that the number 
of SCNA boundaries indeed displays a spike 
in the vicinity of mid-replicating regions 
(Fig. 2f), suggesting that replication transi-
tion zones harbor many SCNA boundaries. 
Analyzing the set of SCNAs that overlap with 
cancer genes from the Cancer Gene Census, 
we observed that many cancer genes occur 
near replication timing transition zones and 
that the frequency of their SCNA boundaries 

increases near replication transition zones (Fig. 2g). Our findings sug-
gest that increased DNA damage occurring near replication transition 
regions22 is a genome-wide phenomenon.

In contrast to the boundaries of SCNAs, the genetic material 
within SCNAs is significantly enriched for early-replicating regions 
instead of late-replicating regions (Cochran-Armitage test, P < 2.2 ×  
10−16); this pattern is consistent for amplifications, deletions and 
regions harboring cancer genes. Although mutagenic processes pre-
dominantly operate on DNA breakpoints, cellular fitness depends on 

Table 2  Replication timing for a list of curated cancer genes that are frequently amplified 
or deleted in many cancer types (as listed in the Cancer Gene Census)

 
Gene Type Locus Replication

timing
Common SCNA
event

Replication timing of the SCNA
boundaries

Frequencies (early:
late replication timing)

MYC Oncogene 8q24.21 Constant early Amplification (23:1)
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In the pie charts, dark and light gray indicates the proportion of SCNA boundaries in early- and late-replication  
timing regions.
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Figure 2  SCNA frequencies vary between different replication timing zones. 
(a–c) Observed (black) and expected (gray) proportions of SCNA boundaries 
in early-, mid- and late-replication timing zones. The absolute number (n) 
of observed and expected cases is shown inside each bar. Similar graphs are 
shown for somatic copy number amplifications (SCNA-Amplifications) (b)  
and somatic copy number deletions (SCNA-Deletions) (c). The triangle 
reflects the direction of enrichment. (d) SNP-chip log2 ratios indicating SCNAs with boundaries in genomic regions within early- and late-replication timing 
zones. The dashed line, drawn along the median of late-replication timing data points, serves to highlight the difference with early-replication timing data 
points. (e) SNP-chip log2 ratios indicating SCNAs with boundaries in genomic regions within early- and late-replication timing zones, which overlap with 
known cancer genes listed in the Cancer Gene Census (SCNACGC). Supplementary Module 6 provides the contingency tables for SCNA amplifications  
and deletions as identified by GISTIC. The dashed line serves the same purpose as in d. (f) Distribution frequencies of SCNA boundaries near early-,  
mid- and late-replication transition zones, after dividing the transition zones into 10-kb nonoverlapping windows. (g) Distribution of frequencies of 
SCNACGC boundaries near early-, mid- and late-replication transition zones, after dividing the transition zones into 10-kb nonoverlapping windows. 
Replication transition is continuous. *, P < 2.21 × 10−16; **, P = 1.59 × 10−4; ***, P < 2.2 × 10−16; ****, P = 1.42 × 10−8.
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the functional implications of SCNAs during tumorigenesis; given 
that early-replicating regions are gene-dense and many of them also 
harbor cancer genes (Table 2), functional consequences and natural 
selection during cancer progression may also play a role in establish-
ing this trend.

Replication timing and spatial proximity predict cancer SCNAs
Our third observation was that a significant proportion of SCNAs 
in cancer genomes can be identified using replication timing and 
long-range interaction data alone. We first determined that the prob-
ability of two genomic regions harboring SCNA boundaries depends 
on the extent of long-range interactions between them. Briefly, we 
divided the genome into nonoverlapping windows of 1 Mb size, and 
for pairs of regions that were at least 5 Mb apart on linear DNA, we 
investigated the numbers of HiC reads and SCNA boundaries between 
them. We found that noninteracting pairs of regions are substantially 
less likely to harbor SCNA boundaries than those pairs of regions 
that share at least one HiC read (Fig. 3a). Furthermore, the propor-
tion of interacting pairs of regions that harbor one or more SCNAs 
increases with an increasing number of HiC reads connecting them. 
We obtained consistent results when focusing on the SCNAs that 
overlap with known cancer genes as listed in the Cancer Gene Census 
(Fig. 3b) and when analyzing amplifications and deletions separately 
(Supplementary Module 7). In a complementary analysis, we found 
that over >37% of large SCNAs (>5 Mb) have >10 HiC reads con-
necting the two boundary regions, whereas only 1.9% have no HiC 
reads between them (Fig. 3c). Furthermore, we determined that the 
length distributions of SCNAs depend on the replication timing of 
their boundaries and can be predicted from long-range interaction 
data between those regions (Supplementary Module 7). Using BCL6 
as an example, we showed that (i) the majority of SCNAs spanning 
BCL6 have HiC reads between the pairs of boundaries, and (ii) pairs 
of regions not connected by HiC data are unlikely to harbor pairs of 
SCNA boundaries (Fig. 3d). Thus, using a learning data set of 331,724 
SCNAs from 2,792 cancer samples, we established that replication 
timing and long-range interactions were associated with the location 
and size distribution of SCNAs in cancer.

We then used a test data set of ovarian cancer copy number altera-
tions from The Cancer Genome Atlas to test whether the pairs of 

boundaries of a proportion of genomic alterations can be identified 
using long-range interaction between regions of similar replica-
tion timing (Supplementary Module 8). Using this approach, we 
identified 78,412 pairs of genomic blocks of size 500 kb that were 
at least 5 Mb apart on linear DNA, had the same replication timing 
and shared at least one HiC read supporting long-range interactions 
between them. Overlaying ovarian cancer copy number data onto 
these blocks, we correctly identified the boundaries of 47% (317/675) 
of all large (>5 Mb) ovarian SCNAs with a resolution of 500 kb at the 
two boundaries (Fig. 3e). This finding was significantly higher than 
that expected by chance (Fisher’s test, P < 1 × 10−20, Supplementary 
Module 8). Both the false-negative rate23 (1 – 317/675) and false-
positive rate23 (1 – 317/78,412) were large; false negatives are partly 
attributed to the fact that not all genomic alterations arise from  
replication-coupled mechanisms (e.g., interaction between two repli-
cating DNA segments). False positives, in contrast, can arise because 
the generation of SCNAs in cancer genomes is a stochastic event 
and not all theoretically possible SCNAs arise in any given tumor 
(the cancer genome is not saturated with genomic alterations). Such 
situations have been dubbed the false-positive paradox24—that is, 
false-positive results are more probable than true-positive results 
when the overall population has a low incidence of events (e.g., copy 
number alterations). Moreover, some genomic alterations may confer 
a fitness disadvantage to the cell so that these alterations may be lost 
from the population. Thus, any individual tumor contains a random 
set of SCNAs whose number and identity are determined by muta-
tion and selection (Supplementary Module 8). The proportion of 
ovarian SCNAs detected using replication timing and HiC data alone 
depended on the choice of spatial resolution and the number of HiC 
reads (Supplementary Module 8), but for any parameter choice, 
the proportion remained significantly higher than that expected by 
chance (Fisher’s test, P < 1 × 10−20). Finally, we found that pairs of 
genomic regions not connected by HiC reads and with different rep-
lication timing were significantly unlikely to form SCNAs. We also 
obtained similar results by cross-validation analyses using alternative 
data sets1,4,6 (Supplementary Module 8). These findings suggest that 
data on long-range interactions between distant genomic regions 
replicating at the same time can be used to predict the mutational 
landscapes of cancer genomes.
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In summary, we report that (i) SCNA boundaries in cancer genomes 
predominantly resided in genomic regions with the same replication 
timing that share long-range interactions in the nucleus; (ii) the fre-
quencies of SCNA boundaries differed between replication timing 
zones; and (iii) the patterns of replication timing and long-range 
interactions between distant genomic regions can help predict the 
landscape of SCNAs. We obtained consistent results using a filtered 
list of SCNAs excluding complex SCNAs that involve multiple altera-
tions (Supplementary Module 9) and using permutation analyses to 
complement our statistical approaches (Supplementary Module 10). 
Moreover, even though epigenetic states, GC content and other fac-
tors affect DNA replication timing2,3,15 and long-range interactions6, 
our control calculations suggest that our conclusions hold true even 
after controlling for these factors (Supplementary Modules 2,6,9). 
Note, however, that these findings are not based on data of genomic 
alterations, replication timing and long-range interactions obtained 
from the same samples.

DISCUSSION
Our findings offer insights into a possible mechanism underlying 
genome-wide mutational landscapes in cancer. The 3D organiza-
tion of the genome6 brings together distant genomic regions of 
similar replication timing to form replication factories, where DNA 
is replicated in multiple regions simultaneously7,8. Single-stranded 
DNA (ssDNA) and spontaneous DNA breaks frequently arise dur-
ing replication9,10, which often lead to single-strand ends initiating 
processes such as fork stalling and template switching (FosTes)25 
or erroneous microhomology-mediated break-induced recombi-
nation12. Such recombination can repair double-strand ends when 
stretches of single-stranded DNA are available in proximity in 3D 
and share microhomology with the 3′ single-stranded end from the 
collapsed replication fork. Single-stranded DNA occurs in replication 
forks, stalled transcription complexes, at DNA secondary structures 
and in other situations such as in promoter regions and replication 
origins12. In fact, DNA secondary structures such as G-quadruplexes 
were shown to promote genomic instability in cancer26,27. The preva-
lence of these mechanisms during different stages of S phase may play 
a role in the occurrence of amplifications and deletions. In addition, 
these mechanisms may work in concert with other processes to drive 
the generation of alterations involving genomic regions that reside in 
close proximity within the 3D structure of the nucleus11,20. Finally, 
the number of SCNA boundaries varies between different replication 
timing zones; the effect sizes are small but are statistically significant, 
reconfirmed using alternative data sets and consistent with find-
ings observed in germ-line evolution21. The preference for deletions 
over amplifications in late replication timing zones may be, at least 
partly, due to a depletion of the total dNTP pool toward late replica-
tion, which was demonstrated to affect DNA excision repair28, trig-
ger deletions29 and potentially escape S phase checkpoints30. These 
features may work alongside other genomic and epigenomic factors 
as well as natural selection operating on cancer cells to establish the 
observed trend.

Because replication timing and nuclear organization are, to some 
extent, epigenetically regulated2,3,15 and may thus vary between  
tissue types4,6, our proposed model has the potential to help explain 
tissue- and cancer type-specific mutational landscapes. Although we 
focused on solid tumors, our findings may also be applicable to other 
cancer types such as leukemias. The knowledge that genomic altera-
tions can occur between pairs of interacting genomic regions may 
help design cancer genome profiling studies toward the identifica-
tion of novel low-frequency translocation, amplification and deletion 

events from primary samples, which remains a challenge using cur-
rent techniques31. In summary, our findings elucidate the roles of 
DNA replication timing and higher order genomic organization in 
shaping the mutational landscapes of cancer genomes, and suggest a 
model for genomic instability in cancer.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturebiotechnology/.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METHODS
We obtained data on boundaries of 331,724 somatic copy number altera-
tions (SCNAs) from 2,792 cancer samples classified into 26 cancer subtypes1.  
We obtained genome-wide DNA replication timing data from reference 4, 
which was generated using a massively parallel sequencing-based technique 
(Repli-seq). Integrating replication timing information from multiple cell 
types, the authors categorized genomic regions as constant early, constant 
mid, constant late and variable across these cell types. We focused on those 
genomic regions that have constant replication timing across all cell types, 
that is, that are constant early, constant mid or constant late. We also obtained 
long-range DNA interaction data from reference 6; these authors employed a 
massively parallel sequencing technique (HiC) to investigate intra- and inter-
chromosomal DNA interaction patterns in the human genome by coupling 
proximity-based ligation with sequencing. They designated two genomic 
regions that are represented by one or more HiC sequence reads to be likely in 
proximity of each other within the nucleus; the number of HiC reads between 
genomic regions reflects the extent or strength of interaction. The strength of 
long-range interactions, measured by the number of HiC reads between two 
genomic regions at a resolution of 1 Mb, was very similar between GM06990 
and K562 cell lines (Pearson correlation coefficient: 0.803). This association 
was even stronger when we focused on interactions between constant replicat-
ing regions (Pearson correlation coefficient: >0.82).

Our analyses were done by overlaying SCNA, DNA replication timing and 
long-range DNA interaction data on the human genome build hg18. Only auto-
somes were analyzed for technical reasons such as the gender of the patients 
from whom the cancer samples were obtained. Furthermore, we excluded 
SCNAs with boundaries residing within 1 Mb regions from the telomeres and 
centromeres. This choice was made as many SCNAs arise due to gain or loss 
of chromosomal arms and telomeric instability. These alterations are driven 
by distinct molecular mechanisms such as the breakage-fusion-bridge cycle11; 

moreover, telomeric and centromeric regions are rich in repeats and hence  
difficult to sequence and assemble, and often have low coverage in high-
throughput sequencing data32. The median length of the SCNAs in the filtered 
data set was ~4.5 Mb (deletions, 5.5 Mb; amplifications, 3.8 Mb). Because 
some genomic regions display complex patterns of genomic alterations,  
that is, multiple insertions, deletions or rearrangements in the same locus  
in a sample, we repeated our analyses excluding complex SCNAs and also  
those with a low signal to noise ratio, and obtained consistent results 
(Supplementary Module 9). We also found that mapability of short read 
sequences is unlikely a concern when using replication timing and HiC data 
sets (Supplementary Module 9).

We obtained a curated list of cancer genes frequently amplified or deleted 
in different cancer types from the Cancer Gene Census (December 2010 
release)16. We also obtained a list of genomic regions significantly amplified 
or deleted in the cancer samples as detected by GISTIC (termed “GISTIC peak 
regions”) from reference 1. Many of these regions overlap with known cancer 
genes based on the Cancer Gene Census.

All key analyses were repeated using alternative data sets for DNA replica-
tion timing5 and SCNAs in glioblastoma (TCGA batch 1)17. We also performed 
cross-validation analyses by overlaying SCNA data sets from reference 1, rep-
lication timing data sets from reference 4, and HiC data from reference 6, as 
described in Supplementary Module 8, and permutation analyses as described 
in Supplementary Module 10. Moreover, we performed a detailed analysis 
using newly published TCGA ovarian cancer data (http://www.cancergenome.
nih.gov/), as shown in Figure 3 and Supplementary Module 8. We obtained 
consistent results when using those alternative data sets and analysis strategies. 
Statistical analyses were performed using R.

32.	Koboldt, D.C., Ding, L., Mardis, E.R. & Wilson, R.K. Challenges of sequencing 
human genomes. Brief. Bioinform. 11, 484–498 (2010).
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