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BET inhibitors are promising therapeutic agents for the treatment of triple-negative breast

cancer (TNBC), but the rapid emergence of resistance necessitates investigation of combi-

nation therapies and their effects on tumor evolution. Here, we show that palbociclib, a

CDK4/6 inhibitor, and paclitaxel, a microtubule inhibitor, synergize with the BET inhibitor JQ1

in TNBC lines. High-complexity DNA barcoding and mathematical modeling indicate a high

rate of de novo acquired resistance to these drugs relative to pre-existing resistance. We

demonstrate that the combination of JQ1 and palbociclib induces cell division errors, which

can increase the chance of developing aneuploidy. Characterizing acquired resistance to

combination treatment at a single cell level shows heterogeneous mechanisms including

activation of G1-S and senescence pathways. Our results establish a rationale for further

investigation of combined BET and CDK4/6 inhibition in TNBC and suggest novel mechan-

isms of action for these drugs and new vulnerabilities in cells after emergence of resistance.
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Bromodomain and extra-terminal domain (BET) family
proteins (BRD2, BRD3, BRD4, and BRDT) are epigenetic
readers that regulate transcription, cell cycle, and cellular

differentiation1. Specifically, BET proteins recognize acetylated
lysines on histone tails and transcription factors, which are
associated with open chromatin and transcriptional activation,
and recruit various regulatory complexes, including other tran-
scription factors, transcriptional coactivators, and chromatin
modifiers1,2. In several cancer types, including multiple myeloma,
leukemia, and lymphoma, BRD4 has been shown to drive tran-
scription of key oncogenes such as MYC and BCL2 by localizing
to super-enhancers2–5. In the rare cancer NUT midline carci-
noma, BRD4 is even mutated itself to form a proto-oncogene6.
Hence, BET proteins are critical to the function of oncogenic
drivers in a variety of cancers. Recently, several small molecule
inhibitors have been developed, including the prototypical JQ1,
iBET151, and OTX015, that block the binding of BET proteins to
acetylated histones, thereby inhibiting the expression of these
oncogenes and subsequently cell proliferation7–10. BET inhibitors
have thus received much interest as a new strategy to selectively
target oncogenes that have otherwise been regarded as
undruggable.

Previously, we and others have demonstrated the efficacy of
BET inhibitors in triple-negative breast cancer (TNBC), an
aggressive subtype of breast cancer that lacks targeted
therapies11,12. However, cells can rapidly develop resistance to
these drugs via multiple mechanisms, including bromodomain-
independent chromatin binding of BRD4 through MED1 in
TNBC11 and transcriptional activation via β-catenin in acute
myeloid leukemia13,14. Therefore, effective combination therapies
must be explored that can extend the efficacy of BET inhibitors
and prevent or delay resistance.

A major obstacle to successfully treating cancer is the high
degree of intratumor heterogeneity15,16, which can fuel tumor
evolution and disease progression through selection for resistant
subclones17,18. However, few studies have investigated the effects
of treatment on tumor diversity and whether resistance is derived
from subclones that existed prior to treatment or emerged during
the course of therapy. It is critical to understand how the selective
pressures of various therapies act on tumor cell populations, in
order to better understand treatment outcome and manage pro-
gressive disease. Specifically, tumor evolution in the context of
BET inhibition has never been studied.

Based on our previous work utilizing genetic screens, we
identified two promising candidates for combination therapies
with BET inhibition: palbociclib, a CDK4/6 inhibitor, and pacli-
taxel, a microtubule-inhibiting chemotherapy19. Here, we use
high-complexity DNA barcoding and mathematical modeling to
investigate the population dynamics of resistance to these drugs
in combination with JQ1. Finally, we present genomic analyses to
explore the mechanisms of cellular response and resistance.

Results
Palbociclib and paclitaxel synergize with JQ1. To begin to
characterize the response of TNBC cells, we first tested JQ1,
palbociclib, and paclitaxel, alone and in combinations in vitro.
We found that both JQ1+ palbociclib and JQ1+ paclitaxel
inhibited growth of SUM159 cells significantly more than any of
the three drugs alone (Fig. 1a). We next tested each combination
over a range of concentrations to determine whether the drug
interactions were additive, synergistic, or antagonistic. JQ1+
palbociclib was strongly synergistic in two TNBC lines, SUM159
and SUM149, and even more so in their JQ1-resistant derivatives,
SUM159R and SUM149R (Fig. 1b). On the other hand, JQ1+
paclitaxel was additive or antagonistic in the parental lines but

likewise was more synergistic in the JQ1-resistant lines (Fig. 1b).
Flow-cytometry analysis of cell cycle revealed that both JQ1 and
palbociclib arrested cells in G1 phase, with a higher G1 fraction
following treatment with both drugs combined than with either
alone (Fig. 1c and Supplementary Fig. 1a, b). Apoptosis levels
were also increased in both combination treatments, particularly
with JQ1+ paclitaxel, while each single treatment only had a
minimal effect (Fig. 1d and Supplementary Fig. 1c). In addition,
cell morphology was noticeably altered, with cells becoming
enlarged following treatment with JQ1 and palbociclib, especially
the combination, as compared with DMSO treatment; there were
also more apoptotic cells following treatment with JQ1+ pacli-
taxel (Fig. 1e). Thus, both palbociclib and paclitaxel combined
with JQ1 induce significant cell-cycle arrest with moderate
increases in apoptosis.

To investigate how intratumor heterogeneity is affected by
these treatments, we labeled cells with the ClonTracer library20,
where each cell is lentivirally infected with a unique DNA
barcode, allowing us to follow the population’s clonality over
time. We chose to focus our further studies on the SUM159 line
due to its rapid growth rate and near-diploid genome with limited
copy-number alterations, and its origin as an invasive ductal
carcinoma, as compared with SUM149 which was derived from a
BRCA1-mutant inflammatory breast cancer. Barcoded SUM159
cells were injected orthotopically into immunodeficient NOG
mice, which were then treated for up to two weeks with JQ1,
palbociclib, and paclitaxel, alone or in combinations. We found
that JQ1+ palbociclib halted tumor growth, with significantly
smaller tumor sizes than either of the single agents (Fig. 1f), thus
confirming the efficacy of JQ1+ palbociclib in vivo. JQ1+
paclitaxel tended to inhibit tumor growth more than either drug
alone, although the difference was not statistically significant
(Fig. 1f).

We then performed barcode sequencing on the pre- and post-
treatment tumors. We found that tumor diversity as measured by
the Shannon index was higher in tumors treated with the
combination therapies compared to those treated with either drug
alone, which in turn was higher than those treated with vehicle
(Fig. 1g). Indeed, tumors that were untreated or treated with
single agents had a shift in their barcode frequency distributions,
indicating that there were fewer barcodes making up a larger
proportion of the population (Supplementary Fig. 2a). This
observation suggests that these drugs had a primarily cytostatic
effect in vivo, where the combination treatments inhibited the
growth of all cells in the population and thus maintained the
initial tumor diversity. Indeed, immunofluorescence staining for
cyclin D1, phospho-histone H3, and cleaved caspase 3 showed
that palbociclib and paclitaxel arrested cells in G1 and M phase,
respectively, without inducing a significant amount of apoptosis
(Fig. 1h). Moreover, the Shannon index was negatively correlated
with tumor weights in untreated animals, which is consistent with
selection for the fittest clones (Supplementary Fig. 2b). In
addition, we again observed that tumor cells had strikingly
altered morphology following treatment. In response to palboci-
clib, JQ1+ palbociclib, and to some extent JQ1+ paclitaxel, cells
became enlarged, with decreased nuclear-cytoplasmic ratio and
multiple irregular hypochromatic nuclei (Fig. 1i). These changes
might indicate cellular senescence with chromatin reorganization
or perturbed cell division. Together, these results indicate that the
antitumor effects of JQ1+ paclitaxel and JQ1+ palbociclib are
primarily from inhibition of growth, with modest effects on
apoptosis.

Barcode selection with long-term JQ1 combination treatments.
Next, we asked how the barcodes selected by the treatments
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compared across multiple replicates. However, we did not observe
resistance in vivo within a 2-week treatment period. In addition,
we were not able to compare the shared barcodes between
xenografts because the tumors that developed had mostly unique
barcodes (Supplementary Fig. 2c), indicating that there was
already selection for different clones that would graft in

individual mice prior to treatment and thus they were not com-
parable. Therefore, we passaged the barcoded SUM159 cells
in vitro with JQ1, palbociclib, paclitaxel, JQ1+ paclitaxel, or JQ1
+ palbociclib for up to 18 passages. This approach allowed us to
examine how clonality changes over a longer-term treatment with
the development of resistance.
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We observed that the growth rate of treated cells initially
slowed, particularly in combination-treated groups, but then
increased again after several passages, suggesting a population
bottleneck due to treatment selection (Fig. 2a, b). Interestingly,
one replicate treated with JQ1+ palbociclib died out at passage 9.
Barcode sequencing revealed that the diversity decreased in all
groups over time but more in single treatments compared to
DMSO and even more in combination-treated samples (Fig. 2c,
d). Cell populations treated with JQ1+ palbociclib and JQ1+
paclitaxel also had the fastest shifts in their barcode distributions
(Supplementary Fig. 2d, e). By the last passage, only 2 and 13
barcodes on average made up the top 50% of the populations,
respectively (Fig. 2e, f). In particular, the Shannon index for
JQ1+ palbociclib-treated samples had the sharpest drop, indicat-
ing that this treatment generated the strongest selective pressure
(Fig. 2c).

We then compared the barcodes that were selected between
replicates to see whether resistance was likely to be pre-existing or
acquired de novo. We expected that clones with pre-existing
resistance would be shared among multiple replicates, whereas
those that acquired resistance during treatment would be unique
to individual replicates. We found that following selection in JQ1
or palbociclib, most of the barcodes were unique to individual
replicates, although a few were shared amongst the top barcodes
(Fig. 2g, h and Supplementary Fig. 3a), suggesting that treatment
selects for both clones with pre-existing and acquired resistance.
However, in the JQ1+ palbociclib- and JQ1+ paclitaxel-selected
populations, there were more barcodes that were unique rather
than shared, particularly among the top barcodes (Fig. 2g, h and
Supplementary Fig. 2f and 3a, b). The fact that the same barcodes
were not selected for between replicates suggests that resistance to
the combination treatments is rare in the initial population and is
more likely to be acquired. Interestingly, the JQ1+ palbociclib
replicate that died out had a very similar barcode composition to
one of the replicates that continued to proliferate (Fig. 2g), which
we hypothesized was due to an acquired phenotype.

Mathematical modeling is consistent with acquired resistance.
To computationally infer the extent of pre-existing vs. acquired
resistance, we designed a mathematical model that simulates
barcode selection in order to test various rates of resistance. We
used a birth-death process model comprising sensitive and
resistant cells, with an initial proportion of barcodes ρ being
resistant prior to therapy (Fig. 3a). Sensitive and resistant cells
have individual birth (bs and br) and death rates (ds and dr), and
at each division, a sensitive cell can acquire resistance by giving
rise to a resistant daughter cell at a transition rate μ. The growth
rates for each cell type were experimentally measured using
resistant lines derived from the post-selection pools, while death

rates were estimated from previous flow cytometry data (Fig. 3b
and Fig. 1d). We used the barcode distributions of the pre-
treatment samples to estimate the initial barcode frequencies.
Replicate plates were sampled from this initial pool, and pro-
liferation was simulated for 18 passages, as in the in vitro
experiments, for a range of parameters for ρ and μ. We evaluated
the simulation results by comparing them with the experimental
data using their Shannon indices of diversity and proportions of
shared barcodes between replicates (see Methods for details).

We performed simulations with ρ ranging from 1 × 10−1 to
1 × 10−6 and μ ranging from 1 × 10−2 to 1 × 10−6, focusing on
JQ1 and palbociclib. We found that several parameter combina-
tions fit the Shannon indices of the experimental data, including
high rates of ρ and/or high rates of μ (Supplementary Fig. 3c, d).
However, a comparison of the proportion of shared barcodes in
the simulations vs. data narrowed down the parameter search
space (Supplementary Fig. 4a, b). Notably, only a high transition
rate could match the proportion of unique barcodes observed
experimentally. Using a likelihood score that compared the
distributions over five independent simulation runs to the
experimental data, we found that the best-fit parameters for
JQ1 were ρ= 1 × 10−5 and μ= 5 × 10−2 (Fig. 3c–e and
Supplementary Fig. 5a), while the best fit for palbociclib was
ρ= 2.5 × 10−3 and μ= 5 × 10−2 (Fig. 3f–h and Supplementary
Fig. 5b). In other words, 1 in 100,000 and 1 in 400 cells have pre-
existing resistance to JQ1 and palbociclib, respectively, while a cell
acquires resistance to either drug in 1 in 20 divisions. Although
5 × 10−2 was the highest value tested for μ and the best-fit rate
might be higher, these results are still consistent with a higher
level of acquired resistance to both JQ1 and palbociclib relative to
pre-existing resistance.

Rb loss is one mechanism of resistance to JQ1+ palbociclib.
Next, we investigated mechanisms of resistance by performing
exome sequencing on pre- and post-selection cells. Loss of
function of Rb, a key inhibitor of G1-S progression, is known to
cause resistance to palbociclib in ER-positive breast cancer21,22.
Consistent with these previous findings, we detected a nonsense
mutation in RB1 (E864*) in JQ1+ palbociclib-selected cells, at a
frequency of 27%, which was not detected in any of the other cell
populations (Supplementary Data 1). We then used droplet
digital PCR (ddPCR) to look for the mutation in rare pre-existing
clones in the pre-treatment population and in rare cells in the
other post-selection groups. We found that indeed this RB1
mutation was present in the pre-treatment pool, at a frequency of
1 in 100,000 (Fig. 4a). We also found the mutation in some
replicates selected with JQ1 or palbociclib alone, but it either
remained at the same frequency or expanded to at most 0.05% in
one palbociclib replicate (Fig. 4a). Interestingly, the E864*

Fig. 1 Palbociclib and paclitaxel synergize with JQ1 to induce cell-cycle arrest. a Growth curves of SUM159 cells treated in vitro with JQ1, palbociclib
(PAL), and paclitaxel (TAX), alone and in combinations. Data are represented as mean ± SD, n= 3, one-way ANOVA followed by Sidak’s multiple
comparisons test. Source data are provided as a Source Data file. b Levels of synergism between JQ1 and palbociclib (left) and paclitaxel (right) at various
doses in parental lines (SUM159 and SUM149) and derived JQ1-resistant lines (SUM159R and SUM149R). Each point represents the combination index
(CI) for one pair of concentrations, averaged over eight replicates. Mean ± SD are shown, CI= 1 additive, CI < 1 synergistic, and CI > 1 antagonistic. Source
data are provided as a Source Data file. c Proportion of SUM159 cells in each cell-cycle phase following 24 h of treatment, determined by the Watson
cell cycle model using flow cytometry on PI-stained SUM159 cells. n= 2. d Proportion of early apoptotic (annexin V+/PI−) and late apoptotic (annexin V+/
PI+) SUM159 cells using flow cytometry following 3 days of treatment. n= 1. e Brightfield images of treated SUM159 cells. Images are representative of
three independent experiments performed in triplicates. Scale bars represent 100 µm. f Tumor weights of SUM159 xenografts following 1 or 2 weeks of
treatment. Mean ± SD are shown, n= 10, two-tailed Student’s t-test. Source data are provided as a Source Data file. g Shannon indices of barcode diversity
of SUM159 xenografts before treatment and following 1 or 2 weeks of treatment. Mean ± SD are shown, n= 4, one-way ANOVA followed by Sidak’s
multiple comparisons test. h Immunofluorescence staining for cleaved caspase 3, pHistone H3, and cyclin D1 in xenografts following 2 weeks of treatment.
Images are representative of one experiment performed with five mice per group each with bilateral tumors. Scale bars represent 50 µm. i Hematoxylin and
eosin staining of SUM159 xenografts. Scale bars represent 50 µm.
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mutation appeared at different frequencies in the two JQ1+
palbociclib replicates (24.1% and 0.7%, Fig. 4a). Thus, we con-
cluded that Rb loss is not necessary for resistance to JQ1+ pal-
bociclib but represents one possible mechanism.

To validate that Rb is functionally relevant, we deleted RB1 in
SUM159 cells using CRISPR (Fig. 4b) and treated them with the
drug combination. We found that RB1-deleted cells gained
resistance to JQ1+ palbociclib and that the two drugs were no

longer synergistic but merely additive (Fig. 4c, d). Thus, loss of Rb
can confer resistance to the JQ1+ palbociclib combination and
increases cellular fitness during treatment.

JQ1 and palbociclib induce increased ploidy. We then investi-
gated whether our post-selection cells had any alterations in
genome copy number. Flow cytometry analysis revealed that JQ1,
palbociclib, and JQ1+ palbociclib-selected cells had an increased
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fraction that was approximately 4n, as well as gain of a small 8n
peak (Fig. 5a). This change was most significant in JQ1+ pal-
bociclib, which had no cells at 2n (Fig. 5a). Interestingly the peaks
in the resistant populations were centered at slightly less than 4n
and were broader than the peaks in the DMSO-selected samples
(Fig. 5a), suggesting that these genomes had likely arisen through
tetraploidization followed by chromosomal losses, leading to
heterogeneity in chromosomal copy numbers. We confirmed the
ploidy findings with karyotyping, which showed that JQ1, pal-
bociclib, and JQ1+ palbociclib-selected cells had four copies of
nearly all chromosomes, with some chromosomes undergoing
further losses or gains to 2–6 copies (Fig. 5b and Supplementary
Fig. 6a). On the other hand, cells passaged in DMSO were pri-
marily near-diploid (Fig. 5b), although three out of 20 cells
counted were also found to be tetraploid (Supplementary Fig. 6a).

We thus asked whether this tetraploidy was induced by the
treatments or by clonal expansion of pre-existing tetraploid
clones. In order to distinguish tetraploids cells from diploids in
G2/M, we labeled SUM159 cells with a fluorescence ubiquitina-
tion cell cycle indicator (FUCCI) and used flow cytometry to
assess only the G1 fraction (Supplementary Fig. 6b). We found
that within 7 days, almost all cells treated with JQ1+ palbociclib
had a DNA content of more than 2n with nearly one-third being
tetraploid (Fig. 5c). We also observed a significant increase in
DNA content after JQ1 and palbociclib treatment in other TNBC
cell lines, SUM149 and CAL-51, and in non-tumorigenic
immortalized breast epithelial cells MCF10A labeled with the
FUCCI reporter (Supplementary Fig. 6c). Of note, while there
were smaller percentages of SUM149 and CAL-51 cells within the
tetraploid gate, there were actually more cells that exceeded 4n.
We further tested a panel of 9 unlabeled cell lines of different
TNBC subtypes (i.e., luminal, basal, and mesenchymal) and
ploidy and observed an increase in DNA content in a majority of
them following JQ1 and palbociclib treatment; cell lines that were
already hyperdiploid appeared to acquire even higher levels of
ploidy (Supplementary Fig. 6d, e). This increase in chromosome
numbers was confirmed in metaphase spreads of treated SUM159
cells (Supplementary Fig. 7a). Likewise, there was an increase in
ploidy in cells treated with other CDK4/6 inhibitors, abemaciclib
and ribociclib, combined with JQ1 (Supplementary Fig. 7b).
However, ploidy was not affected by siRNA knockdown of CDK4,
CDK6, or both (Supplementary Fig. 7c, d). Therefore, the
induction of polyploidy was not specific to SUM159 cells or to
palbociclib but may depend on inhibition of the whole cyclin D-
CDK4/6 complex.

We ruled out cell fusion as a major mechanism of this
increased ploidy by co-culturing GFP- and RFP-labeled SUM159
cells and looking for yellow (GFP+RFP+) cells, which could only

have arisen through fusions of red and green cells (Supplemen-
tary Fig. 7e–g). We did find double-positive cells at a low rate
(<1%), but the fraction remained relatively unchanged after
7 days of treatment (Supplementary Fig. 7g).

To investigate whether polyploid cells are inherently more
drug-resistant, we used fluorescence-activated cell sorting (FACS)
to enrich for spontaneously occurring tetraploids by sorting for
SUM159-FUCCI G1 4n cells and GFP+RFP+ cells. However, they
did not have any differences in sensitivity to JQ1 or palbociclib
compared with parental FUCCI-labeled or unlabeled lines
(Supplementary Fig. 7h), nor did they have any decreased
synergy over a range of concentrations (Supplementary Fig. 7i).
Furthermore, we previously generated and described homofu-
sions of SUM159 cells that are tetraploid23. When these cells were
treated with JQ1 and palbociclib, octaploid cells were produced
(Supplementary Fig. 7j). Therefore, we concluded that genome
doubling is induced directly by JQ1 and palbociclib and
hypothesized that it was arising through cell division failure.
Indeed, many of the cells became multinucleated following
combination treatment, suggesting that they complete mitosis
without cytokinesis (Fig. 5d).

To further investigate the mechanism of this whole-genome
doubling, we performed time-lapse live cell imaging for 2 days on
treated SUM159 cells with fluorescently labeled histone H2B and
plasma membrane. We observed that, in addition to a decreased
division rate, there were a variety of errors in cell division, which
began within a few hours of adding the drugs. Compared with
untreated cells that mostly divided normally (Fig. 5e and
Supplementary Video 1), JQ1 and palbociclib both caused
chromosomal segregation errors, where cells further divided their
chromosomes following anaphase, forming bi- or multinucleated
cells (Fig. 5e and Supplementary Videos 2–3). More cells also
exhibited mitotic delays, which were often coupled with failure to
complete mitosis, absence of cytokinesis, and appearance of
micronuclei (Fig. 5f and Supplementary Video 4). This was most
significant in the JQ1+ palbociclib combination, where most of
the cells that experienced mitotic delay did not initiate anaphase
even after many hours in prometaphase/metaphase and even-
tually reverted to interphase without karyokinesis (Fig. 5e, f and
Supplementary Videos 5–6). Furthermore, there was a modest
increase in cell death and infrequent cell fusion events, consistent
with our other data (Fig. 5f). Thus, we concluded that JQ1 and
palbociclib can induce increased ploidy and aneuploidy through
chromosomal missegregation or cytokinesis failure, but their
combination disrupts cells even earlier in the cell cycle, blocking
them from initiating anaphase. While we observed these ploidy
changes in multiple TNBC cell lines, the physiologic relevance of
this finding requires further analyses in TNBC patients.

Fig. 2 Long-term treatment with JQ1 combinations selects for both clones with pre-existing and acquired resistance. a Number of days between
passages of barcoded SUM159 cells in DMSO, JQ1, palbociclib (PAL), and JQ1+ palbociclib. n= 3, except JQ1+ palbociclib in which n= 2 after passage 7.
b Number of days between passages of barcoded SUM159 cells in DMSO, JQ1, paclitaxel (TAX), and JQ1+ paclitaxel. n= 3. c Shannon indices of diversity
of barcodes in SUM159 cells passaged in JQ1 and palbociclib alone and in combination. Data are represented as mean ± SD, n= 3 except JQ1+ palbociclib
in which n= 2 after passage 7, one-way ANOVA followed by Sidak’s multiple comparisons test. d Shannon indices of diversity of barcodes in SUM159 cells
passaged in JQ1 and paclitaxel alone and in combination. Data are represented as mean ± SD, n= 3, one-way ANOVA followed by Sidak’s multiple
comparisons test. e Number of barcodes making up the top 50% of the cell population before treatment and at the last passage of JQ1 and palbociclib. Data
are represented as mean ± SD, n= 3 except JQ1+ palbociclib in which n= 2, one-way ANOVA followed by Sidak’s multiple comparisons test. f Number of
barcodes making up the top 50% of the cell population before treatment and at the last passage of JQ1 and paclitaxel. Data are represented as mean ± SD,
n= 3, one-way ANOVA followed by Sidak’s multiple comparisons test. g Frequencies of top barcodes (those representing at least 0.5% of the population
at any passage) in cell populations selected with JQ1 and palbociclib, alone and in combination. Colors represent unique barcodes, gray background
represents all other barcodes in the population, and each plot represents one replicate. Frequencies of all barcodes (y-axis) add up to 100%.
h Representative plots of proportions of top barcodes ranked by frequency (x-axis) in one replicate at the last passage that are unique to that replicate,
shared between two replicates, or shared between all three replicates in each treatment group.
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G1-S genes are upregulated in JQ1+ palbociclib resistance.
Since BET proteins function as transcriptional regulators, we
examined the gene expression using RNA-seq for changes asso-
ciated with drug resistance in the post-selection cells. We found
that G1-S pathways were upregulated in JQ1 and JQ1+ palbo-
ciclib-selected cells compared to DMSO-treated cells (Fig. 6a). In
particular, CCND1 and CCNE expression were increased in JQ1
+ palbociclib compared with JQ1 and in JQ1 compared with

DMSO, while CDKN1A (p21) and RB1 were also decreased in the
combination compared with JQ1 (Supplementary Fig. 8a and
Supplementary Data 2). This observation suggests that genes
involved in the G1-S transition are important for escaping JQ1+
palbociclib-induced growth arrest. In addition, MYC and BCL2L1
were more highly expressed in the combination compared to JQ1
alone and to DMSO (Supplementary Fig. 8a and Supplementary
Data 2), consistent with our previous work that identified them as
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gained super-enhancers in the derived JQ1-resistant line
SUM159R11. Furthermore, a set of DNA replication (ORC2,
ORC5, MCM8, TOP1, and WRN) and chromosomal segregation
(ANAPC13, ANAPC2, and ZWILCH) genes was upregulated in
combination-selected cells, which was not observed in cells
selected by either agent alone (Supplementary Fig. 8a and Sup-
plementary Data 2). These results suggest that escape from G1
arrest and DNA stabilization mediate the adaptation to tetra-
ploidy induced by JQ1+ palbociclib.

To determine if some of the gene expression changes were due
to increased ploidy, we also analyzed SUM159 somatic cell
fusions that were tetraploid23 but not treated with drugs. We
found limited overlap of the differentially expressed genes
between the two populations (Supplementary Fig. 8a). Thus, the
gene expression pattern of cells resistant to JQ1+ palbociclib is
not simply caused by increased ploidy.

Since BRD4 is known to be involved in the transcription of
genes necessary for mitotic exit24, we hypothesized that JQ1
generates errors in mitosis by dysregulating the relative levels of
cell cycle genes. Thus, we compared the rank correlations of gene
expression with cell cycle-related gene lists, between and within
treatment groups. We found that there was a decrease in
Spearman’s rho for G0-G1, G1-S, and spindle microtubule genes
after treatment with JQ1, palbociclib, or both compared with
DMSO, indicating that their relative levels of gene expression
became disproportionate (Fig. 6b). This observation suggests that
JQ1 and palbociclib have effects on multiple steps of the cell cycle,
including chromosomal segregation, which could lead to
chromosomal instability during cell division. Furthermore, we
performed single-cell RNA-seq to examine whether there was
heterogeneity in the response to any of the treatments. Using
t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis, we
found that most cells clustered by treatment (Fig. 6c), but JQ1+
palbociclib-resistant cells formed four distinct clusters, whereas
the other post-selection populations had less heterogeneity
(Fig. 6d and Supplementary Fig. 8b). Clusters 1 and 4 had
increased activity of pathways related to protein translation and
regulation of the microenvironment, including extracellular
matrix and cytokine genes (e.g., COL1A1, FN1, TIMP3, IL6,
and IL18) as well as histone variant H2A.J (H2AFJ), which is
associated with cellular senescence (Fig. 6e, f and Supplementary
Data 3). Thus, this gene expression pattern may be consistent
with a senescence-associated secretory phenotype (SASP). Con-
versely, the other two clusters exhibited upregulation of cell cycle-
related genes, including CCND1 and CDK4 in cluster 3 and
CCND3 in cluster 2 (Fig. 6e, f and Supplementary Data 3). In
addition, the IL-6 signaling pathway was enriched in cluster 2,
which may be in response to secreted IL-6 by cluster 1 (Fig. 6e, f
and Supplementary Data 3). These distinct phenotypes indicate
that cells can respond differently to the JQ1+ palbociclib

Fig. 3 Mathematical modeling of resistance to JQ1 and palbociclib. a Design of the two-type birth-death process to model barcode evolution during
treatment with JQ1 or palbociclib. See Methods for model details. b Experimentally determined growth and death rates used in the model. Source data are
provided as a Source Data file. c Heatmap of likelihood scores for each pair of parameters tested to simulate cell populations passaged in JQ1.
d Comparison between simulated data and experimental data of Shannon indices for cells passaged in JQ1, for the best-fit value of ρ and various values of
μ. Data are represented as mean ± SD, n= 3. e Comparison between simulated data and experimental data of proportions of top barcodes (x-axis) that are
unique, shared between two replicates, or shared between all three replicates at the last passage, with the best-fit parameters for JQ1. Simulated
distributions are represented as mean ± SD, n= 5 independent simulations with three replicates each. f Heatmap of likelihood scores for each pair of
parameters tested to simulate cell populations passaged in palbociclib. g Comparison between simulated data and experimental data of Shannon indices for
cells passaged in palbociclib, for the best-fit value of ρ and various values of μ. Data are represented as mean ± SD, n= 3. h Comparison between simulated
data and experimental data of proportions of top barcodes (x-axis) that are unique, shared between two replicates, or shared between all three replicates at
the last passage, with the best-fit parameters for palbociclib. Simulated distributions are represented as mean ± SD, n= 5 independent simulations with
three replicates each.
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Fig. 4 Rb loss is one possible mechanism of resistance to JQ1+
palbociclib. a Frequency of RB1 E864* mutation detected by ddPCR in pre-
treatment cell populations and after selection with JQ1, palbociclib, and
paclitaxel, alone and in combinations. Source data are provided as a Source
Data file. b Western blots show pRB levels in wild-type and RB1-deleted
SUM159 cells. c Levels of synergism between JQ1 and palbociclib in wild-
type and RB1-deleted cells at various doses. Each point represents the
combination index (CI) for one pair of concentrations, averaged over eight
replicates. CI= 1 additive, CI < 1 synergistic, and CI > 1 antagonistic. Source
data are provided as a Source Data file. d Growth curves of wild-type and
RB1-deleted cells treated with DMSO or 77 nM JQ1+ 611 nM palbociclib.
Data are represented as mean ± SD, n= 68 for DMSO and n= 8 for JQ1+
palbociclib, one-way ANOVA followed by Sidak’s multiple comparisons
test. Source data are provided as a Source Data file.
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combination and that there may be multiple mechanisms of
resistance or clonal cooperation driving resistance.

Drug schedule affects treatment outcome. Lastly, we investi-
gated whether the order of drug administration would affect

treatment outcomes. Thus, we treated SUM159 and SUM149
parental cells and SUM159R and SUM149R JQ1-resistant deri-
vatives sequentially with JQ1 for 1 week followed by palbociclib
or paclitaxel for 1 week or the reverse order, or concurrently for
1 week followed by vehicle for 1 week. We found in all cell lines
that JQ1 followed by palbociclib was superior to the reverse;
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however, upfront combination was best in SUM159 and
SUM149R (Fig. 7a). With JQ1 and paclitaxel, we found that JQ1
followed by paclitaxel was superior in the parental cells, but the
reverse was true in the resistant lines; however, in all cases,
upfront combination of JQ1+ paclitaxel was equally or more
effective than the better of the two sequential treatments (Fig. 7b).
We observed the same result when treating NOG mice harboring
SUM159 and SUM159R xenografts with JQ1 and paclitaxel
(Fig. 7c). These data may reflect selection for or modulation of
sensitivity to the second drug, as well as an increased cytotoxic
effect of JQ1+ paclitaxel, where giving the most effective therapy
upfront is best, compared with JQ1+ palbociclib, where pro-
longed inhibition of proliferation is beneficial.

Discussion
In this study, we investigated the response of TNBC cells to BET
combined with CDK4/6 inhibition using palbociclib and with
microtubule inhibition using paclitaxel. We found that the
combination treatments more effectively induced cell cycle arrest
compared with single agents. Using DNA barcoding and math-
ematical modeling, we discovered that there is a high rate of
acquired resistance to JQ1 and palbociclib relative to pre-existing
resistance. Much to our surprise, we found that all of the JQ1+
palbociclib double resistant cells were near-tetraploid and that
this drug combination is capable of inducing aneuploidy via
errors in cell division. Using genomic and transcriptomic profil-
ing, we found that resistant cells upregulated G1-S and
senescence-associated genes, while downregulating genes
involved in cell cycle inhibition, which may mediate the escape
from growth arrest. One potential mechanism was selection for
loss of Rb, but this was not found in a majority of the cells, which
suggests that resistance is more likely to be acquired through
alterations of gene expression.

To our knowledge, this is the first study examining the evo-
lution of cell populations during treatment with JQ1 or palboci-
clib. The selection for RB1-mutant clones was due to a nonsense
mutation, E864*, which has previously been reported in human
tumors25,26. Rb loss is a well-known mechanism of resistance to
palbociclib in ER-positive breast cancer21,22 and in our previous
CRISPR knockout screens conferred resistance to JQ119. We
found that Rb loss could also confer resistance to the JQ1+
palbociclib combination, but the E864* mutation was not clonal,
and thus loss of Rb is not necessary for resistance. We did not
find exome mutations in other cell cycle genes, and the other
mutations that arose are of unknown significance.

This is the first report of mathematical modeling of evolution
of resistance to BET and CDK4/6 inhibitor treatments. The high
rate of acquired resistance that we inferred compared with pre-
existing resistance suggests epigenetic rather than genetic chan-
ges, which would be expected to be similar to the mutation rate of
DNA replication. Indeed, we found that post-selection SUM159

cells had upregulation of G1-S pathways, including increased
expression of cyclin E, which has previously been found to confer
resistance to palbociclib21. However, the increased phenotypic
heterogeneity we saw with single-cell RNA-seq suggests that there
are multiple mechanisms of resistance to JQ1+ palbociclib,
which is also consistent with an acquired mode of resistance,
since each clone would have to develop resistance independently.
The gene expression pattern seen in two of the clusters was
consistent with SASP, while another cluster exhibited increased
cytokine signaling response. Thus, clonal cooperation through
these secreted factors may promote growth of the whole popu-
lation. Indeed, minor subpopulations have been shown to be
capable of driving tumor growth through such non-cell-
autonomous mechanisms27. Polyclonal resistance could pose a
challenge to treatment, but these drivers, potentially senescent
cells, could be targeted to trigger tumor collapse.

We observed that ploidy increases upon treatment with JQ1+
palbociclib through errors in mitosis and cytokinesis. We also
determined that both drugs alone could disrupt expression of
mitosis genes and induce tetraploidy, albeit at a lower rate
compared with their combination. Multinucleation has previously
been observed with JQ1 through direct suppression of Aurora
kinase12. While induction of tetraploidy by palbociclib has not
been reported, activity of the cyclin D-CDK4/6 complex is known
to be involved in programmed polyploidy in megakaryocytes and
duplication of centrosomes28,29. Furthermore, chemotherapeutic
treatment of colorectal cancer cells with homozygous deletion of
CDKN1A encoding the p21 CDK inhibitor leads to increased
ploidy30. Thus, we propose that aneuploidy-induced arrest
resulting from cell division failure contributes to the anti-
proliferative effects of BET and CDK4/6 inhibition.

Further investigation will be needed to elucidate this unex-
pected mechanism of action. Evidence suggests that tetraploidy is
more prone to arise in p53-null cells and that subsequent arrest
can be due to damage to the spindle, cytoskeleton, or DNA,
dependent on p5331–34. However, we have also found JQ1 and
palbociclib to increase ploidy in CAL-51 and MCF10A, which
have wild-type TP53; thus, this effect is not exclusive to p53 loss.
In patient tumor samples, tetraploidy has been associated with
not only TP53 mutations but also CCNE1 amplification and RB1
loss35, suggesting that it is propagated by defects in G1 arrest,
consistent with our model. Besides its canonical role as a cell cycle
suppressor, Rb is also thought to preserve genomic stability
through regulation of spindle assembly, chromosome segregation,
and DNA replication36,37. Similarly, regulation of cyclin E is
required for proper centrosome duplication, and overexpression
has been shown to result in accumulation of aneuploid cells38,39.
Cyclin D1 and D2 have also been reported to mediate tolerance to
genome doubling40,41. Therefore, the genomic and transcriptional
changes found in our resistant cells may have led not only to
increased proliferation but also to a state permissive to

Fig. 5 JQ1 and palbociclib induce increased ploidy through cell division failure. a Histograms of DNA content by flow cytometry in PI-stained post-
selection SUM159 cells. b Representative karyotypes of post-selection SUM159 cells after passaging in DMSO (top) and in JQ1+ palbociclib (bottom).
Ranges of chromosome numbers and numbers of metaphase spreads counted are shown. Arrows indicate chromosomal abnormalities. c Histogram of
DNA content by flow cytometry in Hoechst-stained FUCCI-labeled G1 SUM159 cells following 7 days of treatment. Dihydrocytochalasin B (DCB)-induced
tetraploid cells were used as a positive control. Table indicates proportions of cells in the tetraploid gate. d Immunofluorescence staining of α-tubulin and
phospho-histone H3 with DAPI in SUM159, SUM149, CAL-51, and MCF10A cells following 7 days of treatment. Images are representative of three
independent experiments. Scale bars represent 25 µm. e Time-lapse live cell imaging of SUM159 cells with fluorescently labeled H2B and plasma
membrane undergoing mitosis during treatment with DMSO, JQ1, palbociclib, and JQ1+ palbociclib. Numbers indicate hours following start of treatment.
Arrows indicate failed cytokinesis. Images are representative of three independent experiments. f Cell cycle phase lengths for individual cells during time-
lapse imaging period. Each bar represents one single cell. Line indicates onset of cytokinesis. Chromosomal missegregation (closed circle), apoptosis (plus
sign), and fusion (open circle) events are marked. Time indicates hours following start of treatment. M mitotic delay (prometaphase/metaphase > 1 h),
C cytokinesis failure, A arrested.
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aneuploidy. The decision of cells to arrest, continue cycling, or
undergo apoptosis following JQ1+ palbociclib-induced genomic
alterations requires further study. Interestingly, MYC, a known
target of BRD4, was upregulated in our post-selection cells but
has been found to influence mitotic cell fate in the direction of
death in mitosis over slippage42. The low rate of apoptosis in our

cells may be due to upregulation of Bcl-xL (BCL2L1), tipping the
scale in favor of survival. Additional work will be needed to
understand how cells adapt to the increased copy number and
avoid further genome doublings.

Whole-genome doubling is observed in one-third of human
cancers, and tetraploidy has been associated with tumorigenesis
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and poor prognosis34,35,43. It has been proposed that tetraploidy
leads to increased tolerance of DNA damage and chromosomal
instability and thus accelerates the rate of tumor evolution31,43.
Thus, aneuploidy induced by JQ1+ palbociclib may have
important implications for tumor progression, which will need to
be addressed in future studies. It is possible that the adaptations
to increased ploidy required for resistance may result in increased
heterogeneity, posing a challenge to subsequent clinical man-
agement. However, the increased cellular stress imposed by tet-
raploidy may sensitize those tumors to unique vulnerabilities,
such as centrosome and genomic instability or proteotoxic and
metabolic stress44–47. Whole-genome doubling has been directly
linked to tumor initiation, resulting from genomic rearrange-
ments and malignant transformation32–34 but has also been
shown to have a tumor-suppressive role in hepatocytes48. Thus,
its effects are likely to be cell type- and context-dependent,
making tetraploidy a double-edged sword that could either trigger
growth arrest or tumorigenesis. The consequences of tetraploidy
in normal tissues induced by JQ1+ palbociclib as well as by other
therapeutics require further study.

Our findings have direct translational impact and clinical sig-
nificance. TNBC is an aggressive disease, associated with younger
age and worse prognosis than other subtypes of breast cancer, and
novel targeted therapies for this disease are still lacking. CDK4/6
inhibitors have been approved for advanced ER-positive breast
cancer but are thought to be ineffective in basal-like disease49.
Nevertheless, we have found that palbociclib greatly improved the
sensitivity to JQ1 and thus may be useful in TNBC. The effect of
the drugs’ induction of aneuploidy in promoting further tumor-
igenesis is unknown; however, the current median survival for
metastatic TNBC is 13 months50, so the risk for an eventual
secondary malignancy may not be relevant for these patients. Our
study provides rationale for further preclinical and clinical
investigation of this combination.

Methods
Cell lines. SUM159 and SUM149 breast cancer cells were obtained from Steve
Ethier (University of Michigan) and cultured in 50% DMEM/F12, 45% Human
Mammary Epithelial Cell Growth Medium, and 5% FBS, with 1% Pen Strep
(Thermo Fisher Scientific). JQ1-resistant SUM159R and SUM149R lines were
previously described11 and also cultured in the presence of 20 µM and 10 µM JQ1,
respectively. SUM159 homofusions were previously described23. SUM229 and
SUM185 cells were obtained from Steve Ethier (University of Michigan) and
cultured in DMEM/F12 with 5% FBS, 1 µg/mL hydrocortisone, 5 µg/mL insulin,
and 1% Pen Strep. CAL-51 cells were obtained from DSMZ and cultured in DMEM
with 20% FBS and 1% Pen Strep. MCF10A cells were obtained from ATCC and
cultured in DMEM/F12 with 5% horse serum, 10 µg/mL insulin, 20 ng/mL EGF,
0.5 µg/mL hydrocortisone, 0.1 µg/mL cholera toxin, and 1% Pen Strep. EMG3 cells
were obtained from Eva Matouskova (Academy of Sciences of the Czech Republic)
and cultured in DMEM/F12 with 10% FBS, 10 µg/mL insulin, 20 ng/mL EGF,
0.5 µg/mL hydrocortisone, 0.1 µg/mL cholera toxin, and 1% Pen Strep. Hs578T
cells were obtained from ATCC and cultured in DMEM with 10% FBS, 10 µg/mL
insulin, and 1% Pen Strep. MDA-MB-157 cells were obtained from ATCC and
cultured in McCoy’s Media with 10% FBS and 1% Pen Strep. MDA-MB-436
cells were obtained from ATCC and cultured in McCoy’s Media with 10% FBS,
10 µg/mL insulin, and 1% Pen Strep. UACC3199 cells were obtained from Uni-
versity of Arizona, HCC1143 from ATCC, and HCC2185 from Adi Gazdar (UT
Southwestern) and were cultured in RPMI with 10% FBS and 1% Pen Strep.

The identity of the cell lines was confirmed based on STR and exome-seq analyses.
Cells were regularly tested for mycoplasma.

Animals. In vivo studies were conducted using 6-week-old female immunodefi-
cient NOD.Cg-PrkdcscidIl2rgtm1Sug/JicTac (NOG) mice (Taconic) or NOD.Cg-
PrkdcscidIl2rgtmWjl/SzJ (NSG) mice (Jackson Laboratory). Animal studies were
performed according to protocol 11-023 or by the Lurie Family Imaging Center
according to protocol 04-111, approved by the Dana-Farber Cancer Institute
Animal Care and Use Committee.

Inhibitor treatments. For proliferation, cell cycle, apoptosis, barcode selection,
and ploidy experiments, SUM159 cells were treated with 100 nM JQ1, 160 nM
palbociclib, and 0.6 nM paclitaxel. For flow cytometry studies of ploidy, all cells
were treated with 250 nM JQ1 and 500 nM palbociclib for 7 days and 5 µM
dihydrocytochalasin B (DCB) overnight. SUM159 cells were also treated with
500 nM ribociclib or abemaciclib.

Proliferation and synergy assays. For proliferation assays, cells were plated in
6-well plates (Corning), and growth was measured using daily or twice daily
brightfield imaging and cell counting with the Celigo Imaging Cytometer (Nex-
celom). Media was exchanged for fresh media with drugs every 3–4 days. Cell
nuclei were also counted at the endpoint using fluorescence imaging of cells stained
with 5 µg/mL Hoechst 33342 (Sigma–Aldrich) in PBS. Statistical analyses were
performed using GraphPad Prism. For synergy studies, experiments were per-
formed in 384-well plates (Corning). SUM159 cells were seeded at a density of
200 cells/well, SUM159R and SUM149 at a density of 500 cells/well, and SUM149R
at a density of 1000 cells/well, in 50 µL of media. The following day, drugs were
pin-transferred into the wells using the JANUS Automated Workstation (Perkin
Elmer), from a 500X concentrated drug plate made in a 384-well plate (Greiner
Bio-One). Five concentrations for each drug were chosen to achieve between 20%
and 80% inhibition, with four replicate wells per concentration of each drug alone,
and half doses were used for combination treatments, with eight replicate wells per
concentration pair. After 3 days, cells were stained with 5 µg/mL Hoechst 33342 in
PBS, and nuclei were imaged and counted using the Celigo Imaging Cytometer.
Statistical analyses were performed using R. Combination indices were calculated
using the Chou-Talalay method51.

Lentiviral infection of barcodes and reporter constructs. The high-complexity
ClonTracer barcode library was a gift from Frank Stegmeier (Novartis). 100 million
SUM159 cells were barcoded by lentiviral infection using 8 µg/mL Polybrene
(Millipore) as described20. After 24 h of incubation with virus, infected cells were
selected with 2 μg/mL puromycin. To ensure that the majority of cells were labeled
with a single barcode per cell, we used a target m.o.i. of approximately 0.1, cor-
responding to 10% infectivity after puromycin selection. Infected cell populations
were expanded in culture for the minimal amount of time to obtain a sufficient
number of cells to set up replicate experiments.

For ploidy studies, SUM159, SUM149, CAL-51, and MCF10A cells were labeled
with the FastFUCCI reporter (pBOB-EF1-FastFUCCI-Puro, AddGene). SUM159
cells were also labeled with GFP (pEGFP-N1, Clontech) and RFP (pDsRed-
Monomer-C1, Clontech) for fusion assays. For all virus production, 293FT cells
were transfected with plasmid, TransIT-293 Reagent Transfection Reagent (Mirus
Bio), and Ready-to-Use Packaging Plasmid Mix (Cellecta). Transfection media was
changed the next day. Media with virus particles was collected 2–3 days later and
passed through a 0.45 µm syringe filter followed by virus concentration using
Lenti-X Concentrator (Takara) as directed. Concentrated virus was added to a
10 cm dish of 70% confluent cells with 8 µg/mL Polybrene (Millipore). FastFUCCI-
labeled cells were selected with 1 µg/mL puromycin and expanded for 6–9 days and
then sorted by FACS for GFP+ or mCherry+ cells. SUM159-GFP and RFP cells
were sorted for positive cells. Tetraploid-enriched lines were generated by staining
SUM159-FUCCI cells with 10 µg/mL Hoechst 33342 (Sigma–Aldrich) and sorting
for GFP+/mCherry−/Hoechsthigh cells, and by staining co-cultured SUM159-GFP
and RFP cells with Hoechst 33342 and sorting for GFP+/RFP+ cells.

For time-lapse live cell imaging, SUM159 cells were first infected with
H2B-GFP (H2B-GFP, Addgene, subcloned into pLenti5/V5, Invitrogen) and

Fig. 6 G1-S pathways are upregulated in JQ1+ palbociclib-resistant cells. a Enriched process networks in differentially expressed genes by bulk RNA-seq
of post-JQ1, palbociclib, JQ1+ palbociclib, and JQ1+ paclitaxel-selected cells compared with post-DMSO-selected cells. b Spearman’s rank correlation
coefficient (rho) for bulk expression of genes in cell cycle related process networks. Black indicates comparison between replicates in post-DMSO, JQ1,
palbociclib, and JQ1+ palbociclib-selected groups. Red, blue, and purple indicate all pairwise comparisons between post JQ1, palbociclib, and JQ1+
palbociclib-selected cells with post-DMSO-selected cells. c t-SNE plots of cells from the pre-selection and each post-selection population by single-cell
RNA-seq, colored by cluster (left) and by treatment (right). Each point represents one single cell. d t-SNE plot of cells from only the JQ1+ palbociclib-
selected population by single-cell RNA-seq colored by cluster. Each point represents one single cell. e Enriched process networks in differentially expressed
genes in each cluster of the JQ1+ palbociclib-selected population by single-cell RNA-seq. f Heatmap of differentially expressed genes in each cluster in the
JQ1+ palbociclib-selected population by single-cell RNA-seq. Each column represents one single cell.
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sorted for GFPhigh cells. These cells were then expanded and infected with
membrane-TdTomato (pQC membrane TdTomato-IX, Addgene, subcloned
into pLenti5/V5, Invitrogen). GFP+/TdTomatolow cells were sorted, expanded,
and then sorted again for GFP+/TdTomato+ cells.

CRISPR knockout. CRISPR guides targeting RB1 were designed using CRISPOR52:
(1) TCCTGAGGAGGACCCAGAGC, (2) CGGTGGCGGCCGTTTTTCGG, (3)
GGACAGGGTTGTGTCGAAAT. Guides were cloned in lentiCRISPRv2 as pre-
viously described53. For virus production HEK293T cells were transfected with the

a

b

c

Fig. 7 Drug schedule affects treatment outcome and varies between cell lines. a Growth curves of parental (SUM159 and SUM149) and derived JQ1-
resistant (SUM159R and SUM149R) cell lines treated with JQ1 and palbociclib sequentially in either order or concomitantly followed by vehicle. Data are
represented as mean ± SD, n= 3, one-way ANOVA followed by Tukey’s multiple comparisons test. b Growth curves of parental (SUM159 and SUM149)
and derived JQ1-resistant (SUM159R and SUM149R) cell lines treated with JQ1 and paclitaxel sequentially in either order or concomitantly followed by
vehicle. Data are represented as mean ± SD, n= 3, one-way ANOVA followed by Tukey’s multiple comparisons test. ns not significant. c Tumor weights of
SUM159 and SUM159R xenografts following 2 weeks of treatment with JQ1 and paclitaxel sequentially in either order or concomitantly followed by vehicle.
Mean ± SD are shown, n= 10, two-tailed Student’s t-test. Source data are provided as a Source Data file.
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respective lentiCRISPRv2-plasmid (empty vector served as control) and lentiviral
envelope (pCMV-VSV-G) and packaging (pCMV-Δ8.9) plasmids using PolyFect
(Qiagen). Transfection media was changed the next day. Media with virus par-
ticles was collected 48 hours later and passed through a 0.45 µm syringe filter
followed by virus concentration using Amicon Ultra-15 100kDa centrifugal
columns. Concentrated virus was added to 8 × 104 SUM159 cells together with
10 µg/mL Polybrene (Millipore). To achieve efficient RB1 knockout, virus from
all three guides was used on the same cells. The same amount of virus carrying
empty lentiCRISPRv2 was used for control cells. 48 hours post-infection, media
was changed, and cells were placed under puromycin selection (3 µg/mL) for
6 days.

siRNA knockdown. SUM159 and CAL-51 were transfected with CDK4 (Assay ID
s2822), CDK6 (Assay ID s51), or scramble (Silencer Select, Negative Control #1)
siRNA (Thermo Fisher Scientific) using Lipofectamine RNAiMAX (Life Tech-
nologies) following the manufacturer’s instructions with a final siRNA con-
centration of 10 nM.

Flow cytometry analysis. For cell cycle analysis, cells were fixed overnight in 70%
ethanol and then stained in 20 µg/mL propidium iodide (Thermo Fisher Scientific)
with 0.2 mg/mL PureLink RNase A (Thermo Fisher Scientific) in 0.1% Triton X-
100 (Sigma–Aldrich) for 30 min. For analysis of apoptosis, cells were stained using
the Alexa Fluor 488 Annexin V/Dead Cell Apoptosis Kit as directed (Thermo
Fisher Scientific). For ploidy studies, cells were stained with PBS with 10 µg/mL
Hoechst 33342 (Sigma–Aldrich), 0.5% NP-40, and 3.7% paraformaldehyde over-
night at 4 °C or with 7-AAD according to manufacturer’s instructions. Fluores-
cence intensities were acquired on an LSRFortessa cytometer (BD Biosciences).
Data were analyzed using FlowJo or Cytobank.

Xenograft studies. Barcoded SUM159 cells and SUM159R cells were injected
orthotopically into the mammary fat pads of 6-week-old female NOG (Taconic) or
NSG mice (Jackson Laboratory). Two million cells were injected into each fat pad
in 25 µL of DMEM/F12 and 25 µL of Matrigel (Corning). Once tumors became
palpable, mice were randomized with five mice per group and treated for up to
2 weeks. 1:9 DMSO in hydroxypropyl-β-cyclodextrin (Sigma–Aldrich) was used as
vehicle and administered daily by intraperitoneal (i.p.) injection. JQ1 was dosed at
30–50 mg/kg daily i.p., palbociclib at 75 mg/kg daily by gavage, and paclitaxel at
10 mg/kg twice weekly i.p. For drug schedule studies, mice were treated with
vehicle for 2 weeks, JQ1 for 1 week followed by paclitaxel for 1 week, paclitaxel for
1 week followed by JQ1 for 1 week, or JQ1+ paclitaxel for 1 week followed by
vehicle for 1 week.

Mouse body weights and caliper measurements of tumor size were recorded
every 3 days. After completion of treatment, mice were euthanized, and tumors
were dissected and fixed in formalin and submitted to the Brigham and Women’s
Pathology Core for paraffin embedding or flash frozen for further study. Statistical
analyses were performed using GraphPad Prism.

Histology, immunofluorescence, and immunoblotting. FFPE xenografts chunks
were cut into slides and stained with hematoxylin and eosin (H&E) by the Brigham
and Women’s Hospital Pathology Core Facility. For immunofluorescence,
unstained slides were deparaffinized, and antigen retrieval was performed in Dako
Target Retrieval Solution pH 9 (Agilent) for 30 min in a steamer. Slides were
blocked for 10 min with 10% goat serum and then stained with anti-cyclin D1
primary antibody (1:50, Abcam, ab134175) at 4 °C overnight, followed by staining
with anti-rabbit secondary antibody (1:100, Thermo Fisher Scientific, A21245) for
30 min at room temperature. Slides were then incubated with primary antibodies
against cleaved caspase 3 (1:100, Cell Signaling Technology, 9661) and phospho-
histone H3 (1:400, Abcam, ab5176), labeled with Zenon Alexa Fluor 488 and 555
Rabbit IgG Labeling Kits, respectively (Thermo Fisher Scientific, Z25302 and
Z25305), for 1 h at room temperature.

For immunofluorescence on in vitro experiments, cells were grown on glass
cover slips. After treatment with experimental compounds, cells were fixed in
methanol for 5 min, then washed with PBS and blocked with 10% goat serum for
1 h. Cells were stained with primary antibodies against phospho-histone H3 (1:400,
Abcam, ab5176) and α-tubulin (1:100, Sigma–Aldrich, T9026) at 4 °C overnight,
followed by staining with anti-rabbit (1:100, Thermo Fisher Scientific, A11008) and
anti-mouse IgG1 (1:100, Thermo Fisher Scientific, A21125) secondary antibodies
for 1 h at room temperature. All slides were imaged on a Leica SP5X laser scanning
confocal microscope.

For immunoblotting, cells were lysed in RIPA buffer with protease and
phosphatase inhibitors and sonicated in a Covaris sonicator for 5 min. Lysates were
then denatured in NuPAGE LDS Sample Buffer 4X (Thermo Fisher Scientific) and
DTT at 70 °C for 10 min. Proteins were resolved with NuPAGE 4–12% Bis-Tris
gels (Thermo Fisher Scientific) in NuPAGE MOPS SDS Running Buffer (Thermo
Fisher Scientific) and transferred to PVDF membranes in NuPAGE Transfer Buffer
(Thermo Fisher Scientific). Membranes were blocked in 5% milk in TBST for 1 h at
room temperature and incubated with primary antibodies at 4 °C overnight: pRb
S780 (Cell Signaling Technology, 8180), CDK4 (Thermo Fisher Scientific,
MS616P1), CDK6 (Abcam, ab54576), β-actin (Sigma–Aldrich, A2228), GAPDH

(Cell Signaling Technology, 5174). Membranes were then incubated with HRP
anti-rabbit (Fisher Scientific, 656120) and anti-mouse (Thermo Fisher Scientific,
32430) secondary antibodies for 1 h at room temperature. Chemiluminescence
detection was performed using Pierce ECL Western Blotting Substrate (Thermo
Fisher Scientific).

Clonal selection with JQ1 combinations in vitro. Barcoded SUM159 cells were
grown in DMSO, JQ1 (100 nM), paclitaxel (0.6 nM), palbociclib (160 nM), JQ1+
paclitaxel, or JQ1+ palbociclib, in triplicates. Cells were initially plated in 10 cm
plates (Falcon) with 2 million cells per plate and then split 1:4 when approximately
80% confluent. The remaining cells at each passage were frozen viably for further
analysis. Cells were grown for up to 18 passages.

Mathematical modeling of barcode selection. We used a birth-death process to
model the selection of clones, comprising two cell types: sensitive cells, with an
initial proportion of 1-ρ, and resistant cells, with an initial proportion ρ. Untreated
and treated sensitive and resistant cells have individual birth rates (bjs and bjr) and
death rates (djs and djr), which are log normally distributed and where j=DMSO or

drug (JQ1 or palbociclib). For instance, bdrugs is the birth rate of sensitive cells under
drug treatment. The means of the growth rates (λji ¼ bji � dji , where i= s or r) were
measured from proliferation assays of pre-treatment cells and resistant lines under
DMSO, JQ1, or palbociclib treatment. Resistant lines comprised mixtures of 10
single-cell clones from the last passage of each of the three post-drug selection
replicates, derived from growing sparsely plated cells in the presence of JQ1 or
palbociclib. The growth rates of the pre-treatment cells was considered to be a
combination of the growth rates of both sensitive and pre-existing resistant cells.
Assuming a small enough growth rate such that the contribution of de novo
resistant cells to the population at the end of the growth assay is negligible, the
number of cells can be approximated as the sum of the individual growth rates,

Xj tð Þ � ρXj 0ð Þeλjr t þ 1� ρð ÞXj 0ð Þeλjs t , where Xj(t) is the expected number of cells
in condition j at time t. Thus, the growth rates of sensitive cells are estimated as

λjs �
1
t
log

Xj tð Þ � ρXj 0ð Þeλjrt
1� ρð ÞXj 0ð Þ ð1Þ

using the duration of the proliferation assays as t. Death rates were estimated from
flow cytometry data of percentages of apoptotic cells after treatment of pre-
treatment cells with DMSO, JQ1, or palbociclib as follows. Assuming a small
proportion of resistant cells and a small death rate, the expected number of cells in

condition j at time t was estimated to be Xj tð Þ � Xjð0Þeλjs t . Thus, the number of
cells that will die in the next infinitesimal time step, τ, is

djsX
j τð Þ � djsX

jð0Þeλjsτ ð2Þ
so the expected number of cells in condition j that have died up to time t is

Dj tð Þ �
Z t
0

djsX
jð0Þeλjsτdτ ¼ djsXjð0Þ

λjs
ðeλjsτ � 1Þ ð3Þ

Therefore, the fraction of dead cells by flow cytometry at time t is estimated as

DjðtÞ
Xj tð Þ þ DjðtÞ �

djsðeλjs t � 1Þ
eλ

j
st λjs þ djs
� �

� djs
ð4Þ

from which we then calculated the death rate of sensitive cells, djs. The death rates

of resistant cells under treatment, ddrugr , were assumed to be equivalent to that of
untreated sensitive cells, dDMSO

s . Birth rates were thus calculated as bji ¼ λji þ dji .
The initial barcode distribution was determined from the sequencing results.

Across all libraries sequenced, we observed 903,900 unique barcodes. Thus, we
estimated the complexity of the entire library to be ~1 million. We used the
combined barcode frequency observed in three pre-treatment sequencing libraries
to estimate the initial barcode distribution. In these three libraries, we observed a
total of 294,844 unique barcodes, whose frequencies were used to estimate the
distribution of those top barcodes. The frequencies of each of the remaining
705,156 barcodes were assumed be less than the minimum barcode frequency
observed in the three pre-treatment libraries and were drawn from an exponential
distribution. For each barcode, we sampled a birth and death rate from a log
normal distribution centered around the experimentally derived parameters and
with a variance of 10% of the means. These birth and death rates were heritable to
all daughter cells. To simulate plating, we sampled three replicate plates of 2
million cells each from a starting pool of 700 million cells with this estimated pre-
treatment distribution.

To simulate growth and mutation during passaging in drug, we used the
Binomial-Negative Binomial (BNB) algorithm54. For resistant cells, which do not
undergo further mutation, expansion is simulated for one time step Δt as the sum
of m ~ B(n0, 1 − α) and n ~ NB(m, 1 − β), where

αðΔtÞ ¼ ddrugr eðb
drug
r �ddrugr ÞΔt � ddrugr

bdrugr eðb
drug
r �ddrugr ÞΔt � ddrugr

and βðΔtÞ ¼ bdrugr eðb
drug
r �ddrugr ÞΔt � bdrugr

bdrugr eðb
drug
r �ddrugr ÞΔt � ddrugr

ð5Þ
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according to55. The binomially distributed variable m simulates the number of
starting cells that do not go extinct within Δt, while the negative binomially
distributed variable n simulates the proliferation of those m cells.

For sensitive cells, the birth rate is adjusted for mutation, which occurs at rate μ,

so that the adjusted birth rate is bdrug*s ¼ bdrugs ð1� μÞ and the mutation rate is

μ* ¼ μbdrugs . Following the BNB algorithm, in each time step, we sampled r ~
U(0, 1) for each sensitive barcode to sample the next mutation time

tm ¼ 1
R
log

r1=n0 R�W þ 2bdrug*s

� �
�W � Rþ 2ddrugs

r1=n0 �R�W þ 2bdrug*s

� �
�W þ Rþ 2ddrugs

0
@

1
A ð6Þ

and the next extinction time

te ¼
1
R
log

W � R� 2ddrugs r�1=n0

W þ R� 2ddrugs r�1=n0

 !
ð7Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbdrug*s � ddrugs Þ2 þ ð2bdrug*s þ 2ddrugs þ μ*Þμ*

q
, W ¼ bdrug*s þ ddrugs þ

μ* , and n0 is the starting number of sensitive cells of that barcode. Thus, barcodes
that go extinct have

r <
R�W þ 2ddrugs

RþW � 2bdrug*s

 !n0

ð8Þ

Barcodes that go extinct within the next time step, i.e. te < Δt, are replaced with a
count of 0. We used Δt= 1 day, since in the experiment, cells were checked once
per day and split if they reached 80% confluence. Expansion of barcodes that did
not mutate within the time step, i.e., tm > Δt, was simulated according to Eq. (5)
with modifications such that n≠ 0. Then, for each mutation event occurring within
Δt, the expansion of sensitive cells of that barcode is simulated up to the mutation
time tm as the sum of ~m � B n0 � 1; 1� pE tmð Þ=pM tmð Þð Þ, 1, and
~n � NB ~mþ 2; pB tmð Þð Þ, where

pM tmð Þ ¼ RC tmð Þþ 2ddrugs S tmð Þ�WSðtmÞ
RC tmð Þ� 2bdrug*s S tmð ÞþWSðtmÞ

pE tmð Þ ¼ ddrugs ð1� pM tmð ÞÞ
W� ddrugs � bdrug*s pM tmð Þ

pB tmð Þ ¼ bdrug*s pE tmð Þ
ddrugs

ð9Þ

and where C tð Þ ¼ cosh Rt
2 and S tð Þ ¼ sinh Rt

2 . One resistant cell of that barcode is
added, and its expansion for the rest of the time step is simulated according to
Eq. (5). A new mutation time is then simulated for that barcode according to
Eqs. (6)–(8). Expansion of other barcodes up to tm is simulated according to
Eq. (5), with modifications such that n≠ 0. These steps are repeated until all next
mutation times are beyond Δt.

The simulation is allowed to run for another Δt, until the total number of cells
reaches a number corresponding to 80% confluence (5 million). A split of 1:4 is
then simulated by sampling down to ¼ of the population size. If the current
passage is a passage for which we performed barcode sequencing in the experiment,
the other ¾ of the cells are outputted for diversity analysis. The entire BNB
algorithm is repeated for a total of 18 passages.

The simulation was run for a range of parameters ρ and μ. A wide range from
ρ= 1 × 10−1 to 1 × 10−6 and from μ= 1 × 10−2 to 1 × 10−6 was first sampled for
both JQ1 and palbociclib selection with one simulation run for each parameter
combination. A smaller range that more closely matched the experimental data was
then chosen and sampled, with five simulation runs for each parameter
combination.

DNA/RNA extraction. DNA and RNA were extracted from cultured cells and
xenografts using the AllPrep DNA/RNA Mini Kit (Qiagen) as directed. Viably
frozen cells from the last treatment passage were thawed and treated for 2–3
additional passages before DNA/RNA extraction. Frozen tumors were pulverized
using the Covaris CP02 Tissue Pulverizer. Tissues or cells were homogenized by
passing the sample through a 23g needle. Isolated RNA was treated with the
RNase-Free DNase Set (Qiagen). RNA was prepared from duplicate samples. The
QIAamp DNA Maxi and Mini Kits (Qiagen) were also used to extract DNA from
those samples on which we did not perform RNA-seq.

Barcode sequencing. PCR was used to amplify barcodes and introduce Illumina
adaptors along with a 5 bp index sequence for multiplexing as described20. Two
microgram of genomic DNA was used as template, and 15–16 samples were
multiplexed for NGS. PCR products were run on 0.8% agarose NGS E-Gels
(Invitrogen) to verify the correct library size, and bands were cut out and purified
using the MinElute Gel Extraction Kit (Qiagen) as directed.

RNA-sequencing. Bulk RNA-seq libraries were prepared from total RNA by the
Dana-Farber Cancer Institute Molecular Biology Core Facilities (MBCF) using the
Illumina TruSeq Stranded mRNA Library Prep Kit, and 16–18 samples were
multiplexed per lane for NGS. For single-cell RNA-seq, equal numbers of cells from

triplicates were pooled and washed twice in PBS with 0.04% RNase-free BSA (New
England BioLabs). Cells were then diluted to 700 cells/µL and filtered through a
35 µm nylon mesh prior to library preparation. Single-cell RNA-seq libraries were
prepared using the Chromium Single Cell 3’ Library & Gel Bead Kit v2 and Single
Cell A Chip (10X Genomics) as directed. Samples were multiplexed 8 per lane for
NGS. MBCF performed all sequencing.

Whole-exome sequencing. Libraries were prepared from equal amounts of pooled
genomic DNA from triplicates by the Dana-Farber Cancer Institute Center for
Cancer Genome Discovery (CCGD). Prior to library preparation, DNA was frag-
mented to 250 bp (Covaris ultrasonication) and further purified using Agencourt
AMPure XP beads. Size-selected DNA was ligated to sequencing adaptors with
sample-specific barcodes using the KAPA Hyper Prep Kit. Libraries were pooled
and sequenced on an Illumina MiSeq nano flow cell to estimate the library DNA
concentration based on the number of barcode reads per sample. Libraries were
pooled and captured using the SureSelectXT Human All Exon v5 (Agilent) in 7 ×
3-plex and 1 × 2-plex. Captures were performed using the SureSelectXT Reagent
Kit (Agilent). Captures were pooled together and sequenced on four lanes of the
Illumina HiSeq 3000.

Karyotyping. Karyotyping was performed by the Brigham and Women’s Hospital
CytoGenomics Core. Twenty metaphases were counted from each treatment
sample and 5–6 cells were karyotyped.

Metaphase spreads. Cells were treated overnight with 0.4 µg/mL colcemid.
Harvested cells were then treated with 75 mM KCl for 10–20 min and washed three
times in 3:1 methanol/acetic acid fixative. Cells resuspended in fixative were
dropped onto slides and allowed to dry. Slides were then stained with DAPI.

Droplet digital PCR (ddPCR). Taqman primer/probe mix was custom-made by
Life Technologies. The allele-specific MGB probes were labeled with either VIC or
FAM at the 5′ end and a nonfluorescent quencher (NFQ) at the 3′ end. The
forward primer sequence was 5ʼ-ACAGCGACCGTGTGCTC-3′, reverse primer
sequence was 5′-TTCAGTGGTTTAGGAGGGTTGC-3′, wild-type (E864) probe
sequence was 5′-VIC-AAGAAGTGCTGAAGGAA-MGB-NFQ-3′, and mutant
(E864*) probe sequence was 5′-FAM-AAAAGAAGTGCTTAAGGAA-MGB-
NFQ-3′. ddPCR cycling conditions were: 95 °C for 10 min, 40 cycles of 94 °C for 30
seconds, and 57 °C for 60 seconds, 10 °C forever. The reaction mixture (25 uL)
included ddPCR Supermix for Probes (Bio-Rad), custom-made Taqman primer/
probe mix, and appropriate DNA templates. Droplets were generated on the
Automated Droplet Generator (Bio-Rad). Reactions were cycled on a thermocycler
and were read on the QX200 Droplet Reader (Bio-Rad). Data analysis was per-
formed with QuantaSoft (Bio-Rad).

Time-lapse live cell imaging. SUM159 cells with H2B-GFP/membrane-TdTo-
mato were plated in 24-well µ-plates (ibidi) with 20,000 cells per well. Starting the
following day, images were collected every 10 min for 48 h from 10–15 positions in
each well, immediately after addition of fresh media with DMSO, JQ1, palbociclib,
or JQ1+ palbociclib. Imaging dishes were mounted on a TE2000-E2 inverted
microscope equipped with a Nikon Perfect Focus system. Images were acquired
from Andor brightfield, FITC, and Cy3 channels from 4 z-steps of 0.5 µm, using a
20X 0.5 NA Plan Fluor objective. An Okolab cage incubator was used to maintain
samples at 37 °C and 5% humidified CO2. Image acquisition was controlled with
MetaMorph (Molecular Devices). For data analysis, the lengths of each phase of the
cell cycle were quantified for the duration of the live imaging period (n ≈ 35 cells
for each treatment condition starting from the images at the first time point).
Nuclear condensation was defined as the beginning of prometaphase, chromoso-
mal segregation as the beginning of anaphase, furrow ingression as the beginning of
cytokinesis, and nuclear decondensation and reattachment of cells as the beginning
of interphase. After each cell division, only one daughter cell was analyzed in
subsequent cell cycles.

Barcode analysis. Barcode sequencing reads were demultiplexed and filtered for
reads with 30 bp length, containing an Illumina adaptor, matching the barcode
pattern (alternating A/T and C/G), having a Phred quality score of at least 10 for all
base pairs and an average Phred score of 30. For each sample, barcodes that had
only 1 read were also filtered out. Changes in barcode diversity over time and
between replicates were visualized using the fishplot R package56. The Shannon
index was used to quantify barcode diversity and is given by

H ¼ �
X
i

pi ln pi ð10Þ

where pi is the frequency for barcode i. Because of the high complexity of the
barcode library, we limited our analysis to barcodes that were observed in at least
one sequencing library of the plates being compared, to ensure that we were
comparing barcodes that were present in the initial seeded pools. To compare
replicates within treatment groups, we considered the intersection between
replicate plates of the unions of barcodes observed across all passages sequenced.
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When comparing between treatment groups, we used the intersection of barcodes
seen in all replicate plates in all treatments in at least one passage (n= 13,248 for
JQ1+ palbociclib experiment and 16,330 for JQ1+ paclitaxel experiment).

Validation of mathematical model of barcode selection. Simulation results were
compared with experimental data using the Shannon index and the proportion of
overlapping barcodes. To determine the best-fit parameters, we calculated a like-
lihood score for each parameter set (ρ, μ) using the distribution of proportions of
shared barcodes over five independent runs of the simulation. This was computed
as the sum of the likelihoods of observing the proportion of shared barcodes xi,j,k
between i= 1, 2, and 3 replicates, assuming a normal distribution with mean μρ,μ,i
and variance σ2ρ;μ;i seen over the five simulations using parameters (ρ, μ), for each
number of top barcodes j in each replicate k, summed over the three experimental
replicates,

L ρ; μjxð Þ ¼
X
i¼1;2;3;
j;k¼1;2;3

2πσ2ρ;μ;i;j

� ��1=2
exp � 1

2

ðxi;j;k � μρ;μ;i;jÞ2
σ2ρ;μ;i;j

 !
ð11Þ

RNA-seq analysis. RNA-seq reads were aligned to the hg19 build of the human
genome using STAR v2.6.0a57 and counted using HTSeq-count v0.6.1p158.
Libraries were then normalized for sequencing depth, and differential genes were
determined using DESeq2 v1.20.059. Differential gene lists (genes with padj < 0.05)
were analyzed for enriched pathways and process networks using MetaCore v19.4,
using a cutoff of FDR < 0.05 as significantly enriched.

Single-cell RNA-seq analysis. Single-cell RNA-seq reads were aligned to the hg19
build of the human genome and counted using CellRanger v2.1.0 (10X Genomics).
Using Seurat v2.3.460, cells with a low or high level of mitochondrial genes (less than
1% or greater than 15%) or a low number of detected genes (less than 2000) were
filtered out. We only considered genes expressed in a minimum of three cells. Gene
counts were log-normalized and scaled, and the percent of mitochondrial genes and
number of UMIs were regressed out. Cell cycle scoring was performed according to61

and the difference between the S and G2M scores was also regressed out. The top
principal components were then calculated and used to perform clustering with a
resolution of 0.4 and t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis.
Differential genes for each cluster were identified (genes with padj < 0.05), and dif-
ferential gene lists were analyzed for enriched pathways and process networks using
MetaCore, using a cutoff of FDR < 0.05 as significantly enriched.

Exome analysis. Exome data were analyzed by the Dana-Farber Cancer Institute
Center for Cancer Genome Discovery (CCGD). Reads were demultiplexed and
aligned to the reference sequence b37 edition from the Human Genome Reference
Consortium using Picard (http://broadinstitute.github.io/picard). Mutation analy-
sis for single nucleotide variants (SNV) was performed using MuTect v1.1.462 and
annotated by Variant Effect Predictor (VEP) v7963. After initial identification of
SNVs and indels by MuTect and GATK v1.65, respectively, the variants were
annotated using OncoAnnotate v1.3.0 to determine what genes are impacted and
their effect on the amino acid sequence.

Copy number variants were identified using RobustCNV, an algorithm in
development by the CCGD. Briefly, RobustCNV relies on localized changes in
mapping depth of sequenced reads in order to identify changes in copy number.
Observed values are normalized against the mapping depth in a panel of normals
(PON) sampled with the same capture bait set. Normalized coverage data are then
segmented using Circular Binary Segmentation64 with the DNAcopy Bioconductor
package. Finally, segments are assigned gain, loss, or normal-copy calls using a
cutoff derived from the within-segment standard deviation and a tuning parameter
set based on comparisons to array-CGH calls in separate validation experiments.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The barcode, exome, RNA-seq, and single-cell RNA-seq data have been deposited in
GEO under accession number GSE131986. The source data underlying Fig. 1a–b, f, 3b, 4,
7, and Supplementary Fig. 7h–i are provided as a Source Data file.

Code availability
The source code for the mathematical modeling is available within the Supplementary
Information files.
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