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Aneuploidy is pervasive in human cancers1 and is frequently (>90%) 
detected in patients with breast cancer2,3. DNA copy number aber-
rations (CNAs) often lead to gene dosage effects that promote tumor 
growth through the overexpression of oncogenes or downregulation 
of tumor-suppressor genes. However, most genomic studies have ana-
lyzed tumor samples from a single time point (biopsy or surgery), 
making it difficult to study the natural progression of chromosome 
evolution during tumorigenesis. Currently, the prevailing model for 
copy number evolution posits that CNAs are acquired gradually and 
sequentially over extended periods of time, leading to successively 
more malignant stages of cancer4,5. An alternative model is punctu-
ated copy number evolution (PCNE), in which CNAs are acquired 
in short bursts of crisis, followed by stable clonal expansions that 
form the tumor mass (Supplementary Fig. 1). Previous work has 
implicated a punctuated model to explain localized chromosome 
rearrangements, including chromothripsis6, chromoplexy7 and  
firestorms2. However, there has been limited data showing that 
genome-wide aneuploidy arises in a short punctuated burst at the 
earliest stages of tumor evolution.

Intratumoral heterogeneity provides a window into time by represent-
ing a permanent record of the mutations that occurred during tumor 
progression. By assuming that mutational complexity increases over 
time, it is possible to reconstruct the evolutionary history of a tumor8,9 
and investigate PCNE. However, most tumors consist of complex  

mixtures of single cells with different genotypes, complicating such 
studies. To address this problem, we previously developed a single-cell 
DNA sequencing method called single-nucleus sequencing (SNS)10,11. 
We applied this method to sequence single tumor cells from two patients 
with breast cancer, thus providing initial evidence for PCNE11. However, 
these data were limited to two patients, mainly because of the high 
costs and low throughput associated with SNS. To address these chal-
lenges, we developed a highly multiplexed single-nucleus sequencing  
(HM-SNS) method that can profile 48–96 single cells in parallel.

In this study, we applied HM-SNS to investigate the clonal sub-
structure and evolution of CNAs in patients with triple-negative 
breast cancer (TNBC). TNBC is a subtype of breast cancer that is char-
acterized by a lack of estrogen receptor (ER), progesterone receptor 
(PR) and HER2 (ERBB2) amplification12. Patients with TNBC show 
poor survival and frequently develop resistance to chemotherapy13. 
The majority of patients with TNBC harbor TP53 mutations3 and 
show complex aneuploid rearrangements2,14. Genomic studies have 
shown that patients with TNBC display a large amount of between-
patient heterogeneity in somatic mutations3, in addition to extensive 
intratumoral heterogeneity within each tumor mass15–18. However, 
most studies of patients with TNBC have been limited to bulk 
tumor analysis, and thus we investigated the clonal substructure of  
12 patients with treatment-naive TNBC at single-cell genomic  
resolution (Supplementary Table 1).
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RESULTS
Highly multiplexed single-cell copy number profiling
To profile genome-wide copy number in single cells, we developed 
HM-SNS and applied it to sequence 1,000 single cells from tumors in 
12 patients with TNBC (Fig. 1a). Nuclear suspensions were prepared 

from large (tumor volume 0.6–1.0 cm3) frozen tumor specimens, and 
DNA was stained with DAPI for flow sorting. Single nuclei were gated 
by ploidy and deposited into individual wells of a 96-well plate for 
whole-genome amplification using degenerative-oligonucleotide 
PCR (DOP-PCR)10,11. After amplification, barcoded libraries were  

Highly multiplexed SNSa b

Frozen
tumor
tissue

Nuclear
suspension

D

96-well plate

WGA

Barcoded
libraries

Next-generation
sequencing

800 T6 T12

600
D

A
A

A1 A2

2.9N

2.9N

A
2.7N

A
3.3N

A
3.3N

A

U

2.7N

A
3.6N

A
2.4N

A
2.2N

A
3.1N

4.1N

3.1N

U

2N

D
2N D

2.0N

D

U
U

2.0N

D

D

H

2.0N

2N D
2N

D
2N

D
2N

D
2N

D

A
2.0N

3.1N

1.8N

D
2N400

200

0

0

100

200

300

0

50

100

150

200

250

0

200

400

800

300

200

100

0

0

10

20

30

40

600

T5

T4

T3

T11

T10

T9

T8T2

T1 T7

C
el

l c
ou

nt
C

el
l c

ou
nt

C
el

l c
ou

nt
C

el
l c

ou
nt

C
el

l c
ou

nt

0 50 100

DAPI-A intensity (×103)

DNA ploidy

150 200 0
0

1,000

2,000

3,000

4,000

5,000

0

1,000

2,000

3,000

4,000

5,000

0

100

200

300

400

0

50

100

150

150

100

50

0

200

250

300

200

100

0

50 100

DAPI-A intensity (×103)

DNA ploidy

150 200

0 50 100

DAPI-A intensity (×103)

150 200

0 50 100

DAPI-A intensity (×103)

150 200

0 50 100
DAPI-A intensity (×103)

150

150

200

200 250

0 50 100

DAPI-A intensity (×103)

150 200

0 50 100

DAPI-A intensity (×103)

150 2000 50 100

DAPI-A intensity (×103)

150 200

0 50 100

DAPI-A intensity (×103)

150 200

0 50 100
DAPI-A intensity (×103)

DAPI-A intensity (×103)

150

0 50 100

150 200

DAPI-A intensity (×103)

0 50 100

Demultiplexing
of sequencing
data by
cell barcodesfastq

C
el

l c
ou

nt

Pooling

DOP-PCR

Deposit
single
nuclei

A

80

60

40

20

0
0 50 100

DAPI-A intensity (×103)

1
A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

150

C
el

l c
ou

nt

Flow sorting
of single
nuclei by
DNA
ploidy

Figure 1  Highly multiplexed single-nucleus sequencing of patients with TNBC. (a) The highly multiplexed single-nucleus sequencing (HM-SNS) method.  
Tumor tissues are dissociated into nuclear suspensions and stained with DAPI for flow sorting by DNA ploidy. Single nuclei are deposited into 96-well 
plates and subjected to whole-genome amplification (WGA) by DOP-PCR. Single-cell libraries are barcoded with unique 8-bp identifiers, and 48–96 
libraries are pooled for sparse next-generation sequencing. Sequence reads are demultiplexed using cell barcodes after sequencing is completed for 
copy number profile calculations. (b) FACS plots of DAPI intensity showing the ploidy distribution for each patient with TNBC. Single cells were isolated 
from different ploidy groups that were gated as diploid (D), hypodiploid (H), aneuploid (A) or universal (U).
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prepared for each single cell, and 48–96 libraries were pooled (Online 
Methods). The pooled libraries were sequenced on an Illumina  
platform with 76 single-end cycles. Single nuclei were sequenced 
with sparse coverage, and copy number profiles were calculated 
from sequence read depth at 220-kb resolution (Online Methods). 

On average, 83 single cells (range of 48–120) were sequenced 
from each patient with TNBC (Supplementary Table 2). In each 
patient, we observed a diploid (2N) peak and one or more aneuploid  
peaks that ranged from 1.8–4.1N in the flow sorting histograms  
(Fig. 1b). Single nuclei were isolated from the aneuploid and diploid 
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peaks, in addition to broadly gating nuclei across all ploidy distribu-
tions using universal gates for a subset of tumors.

Clonal substructure and diversity during tumor growth
To delineate the clonal substructure of each tumor, we performed 
1D hierarchical clustering of the aneuploid single-cell copy number 
profiles. Clustered heat maps identified 1–3 major subpopulations of 
clones (clones A, B and C) in each tumor (Fig. 2). Within each sub-
population, the single cells had highly similar copy number profiles 
(mean pairwise r = 0.87), representing stable clonal expansions that 
occurred during tumor growth. A similar population substructure 
was also observed in clustering of all of the aneuploid and diploid cells 
from each patient with TNBC, where the diploid cells formed another 
independent cluster (Supplementary Fig. 2). To quantitatively deter-
mine the optimal number of clusters in each tumor, we applied PAM 
clustering19 (Supplementary Fig. 3). The PAM results were consist-
ent with the hierarchical clustering results for most patients with 
TNBC. Principal-component analysis (PCA) was also consistent  
with the clustering results, showing that 1–3 major clusters were 

present in each tumor (Fig. 3a). We quantified the genotype frequen-
cies of the subpopulations, finding that some clones achieved higher 
frequencies in the tumor mass (Fig. 3b). To calculate a global metric 
of clonal diversity, we computed Shannon diversity indices for each 
patient with TNBC (Online Methods). The diversity indices showed 
a broad range across the cohort and corresponded to the number 
of clonal subpopulations that were present in each tumor (Fig. 3c). 
These data suggest that most TNBC tumors consist of 1–3 major 
clonal subpopulations and that complex aneuploid tumor profiles are 
highly stable (clonal stasis) during tumor growth.

Divergent subpopulations in polyclonal tumors
Polyclonal tumors shared most CNAs across subpopulations, but 
clones also differed by a few discrete subclonal events that emerged 
in the later stages of tumor evolution. Subclonal CNAs distinguished 
clones and often resulted in amplification of oncogenes and deletion 
of tumor-suppressor genes. In several cases, subclonal CNAs were 
associated with increased genotype frequencies of the corresponding 
clones in the tumor mass, suggesting that they may have provided a 
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fitness advantage. To further investigate this possibility, we calculated 
clonal frequencies (cf) in the polyclonal tumors (Online Methods and 
Supplementary Table 3). For instance, in tumor T3, two major clonal 
subpopulations (clones A and B) were identified, of which clone A 
acquired additional amplifications of chromosomes 10p and 12q  

(Fig. 4a). The 10p amplification increased the copy number of GATA3, 
while the 12q amplification increased the copy number of MDM2 
as well as several other genes. These amplifications were associated 
with increased frequency of clone A (cf = 0.85) in comparison to 
clone B (cf = 0.15). In another polygenomic tumor (T2), we identified 
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two major clonal subpopulations (clones A and B) that differed by a 
broad amplification on chromosome 5 that encompassed 14 cancer-
related genes, including MAP3K1, ERBB2IP and PIK3R1 (Fig. 4b). 
This amplification was associated with increased frequency of clone 
A (cf = 0.87) relative to clone B (cf = 0.13). Similar subclonal CNAs 
were found in tumors from other patients with TNBC (T5 and T8) 

and were often associated with increased genotype frequencies for the 
clones that harbored them (Supplementary Fig. 4). These data show 
that, in addition to undergoing stable clonal expansions, tumors in 
patients with TNBC can continue to acquire single CNAs in the later 
stages of tumor progression and that these events are associated with 
the increased prevalence of new subpopulations.

e

f g

h

Metastable tumor cells

Chromazemic cells Chromazemic cells

Metastable tumor cells

Pseudodiploid cells (tumor tissue)

Genomic coordinates (Gb)

Genomic coordinates (Gb) Genomic coordinates (Gb)

Genomic coordinates (Gb)

Pseudodiploid cells (normal tissue)

1

n = 1

n = 53

n = 1/65 n = 1/32

n = 78

n = 1

n = 1/22

n = 1/93 n = 1/83

n = 1/90n = 1/54

n = 1/37

2 3 4 5 6 7 8 9 10 11 12 13 14 151617181920. . X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 151617181920 .. X Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151617181920 .. X Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151617181920 .. X Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151617181920 .. X Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151617181920 .. X

2

0

2

0

2

0

2

0

Y

6
4

2
0

pop
6

4
2
0

4
3
2
1
0
5
4
3
2

0
3.02.52.01.51.00.50

3.02.52.01.51.00.50 3.02.52.01.51.00.50

3.02.52.01.51.00.50

3.02.52.01.51.00.50

0

1.0

2.0

0

1.0

2.0

2.00
1.00

0.20

0.05

0.50

0.05

0.20

0.02

1.00

0.20

0.05

0

1.0

2.0

0

1.0

2.0

1

5
4
3
2
1
0
5
4
3
2

0
1

5

6
4
2
0

pop

6
4
2
0

3.02.52.01.51.00.50

3.0

2.0

1.0

0
3.0

C
op

y 
nu

m
be

r 
ra

tio
C

op
y 

nu
m

be
r 

ra
tio

C
op

y 
nu

m
be

r 
ra

tio

Genomic coordinates (Gb) Genomic coordinates (Gb)

2.0

1.0

0

Integer copy num
ber

Integer copy num
ber

Integer copy num
ber

4

3

2

1

0

3

2

1

0

100

a b c dClonal Clonal aneuploid
Non-clonal Metastable

Diploid Diploid
Pseudodiploid Pseudodiploid

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

T1

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

P
er

ce
nt

ag
e

T2 T3 T4 T5 T6 T7 T8 T9
T10 T11 T12 T1 T2 T3 T4 T5 T6 T7 T8 T9

T10 T11 T12 T1 T2 T3 T4 T5 T6 T7 T8 T9
T10 T11 T12 M

3
M

5
M

8
M

10

Figure 5  Non-clonal copy number profiles in tumors and normal breast tissues. (a) Percentage of non-clonal cells in each tumor. (b) Percentage of non-
clonal metastable aneuploid cells in the aneuploid fraction of each tumor. (c) Percentage of non-clonal pseudodiploid cells in the diploid fraction of each 
tumor. (d) Percentage of pseudodiploid cells in matched normal breast tissues from four patients with TNBC (T3, T5, T8, T10). (e) Copy number profiles 
of two example metastable aneuploid cells (top) in comparison to those of cells from the major aneuploid subpopulation (bottom). (f) Copy number profile 
of an example pseudodiploid cell isolated from the diploid fraction of a tumor. (g) Copy number profile of an example pseudodiploid cell isolated from 
matched normal breast tissue. (h) Copy number profiles of four example chromazemic cells with large homozygous deletions of whole chromosomes or 
chromosome arms. Red arrows indicate non-clonal CNAs. Profiles labeled as “pop” show the consensus copy number profiles of the population of cells. 
Horizontal lines correspond to diploid copy number (2) and homozygous deletions (0).

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
np

g
©

 2
01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



Nature Genetics  VOLUME 48 | NUMBER 10 | OCTOBER 2016	 1125

A rt i c l e s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17181920 .. X Y
10
9
8
7
6
5
4
3
2
1
0

12,00010,0008,0006,000

Chromosome

Bins in genomic order

CNA events

4,0002,0000

0

100

200

300

400

500

a
B

in
 c

ou
nt

S
in

gl
e 

ce
lls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

C
opy num

ber

0

5

10

15

H
am

m
in

g 
di

st
an

ce

20

25

30

Single cells

+2
+18
+20
+23
+27
+28
+31
+59

–1
–6
–7
–11
–12
–13
–14
–15
–19
–22
–26
–30
–32
–34
–37
–40
–41
–42
–43
–46
–47

T1

BIC: 304

Single cells

0

0
5

10

C
ou

nt
 o

f C
N

A
s

15
20
25
30

20 40 60 80

Adjusted
R2 = 0.99

T1

AIC: 297 BIC: 284

0

5

10

15

20

Single cells

0 20 40 60 80 100

Adjusted
R2 = 0.99

T3

AIC: 276 BIC: 315

0

10

40

20

30

Single cells

0 20 30 4010 6050

Adjusted
R2 = 0.97

T7

AIC: 309 BIC: 294

0

10

40

50

20

30

Single cells

0 20 40 60 80

Adjusted
R2 = 0.99

T8

AIC: 286 BIC: 427

0

60

20

40

Single cells

0 20 40 60 80

Adjusted
R2 = 0.98

T9

AIC: 420 BIC: 295

0

10

20

30

Single cells

0 20 40 60 80

Adjusted
R2 = 0.99

T11

AIC: 288d

C
opy num

ber

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 181920 . . X Y

800

600

400

200

2,000 4,000

Chromosome

6,000

Bins in genomic order

8,000 10,000 12,000
0
1
2
3
4
5
6

7

0

0

b

B
in

 c
ou

nt

S
in

gl
e 

ce
lls

CNA  events

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

C
opy num

ber

Single cells

8

6

4

2

0

10

12

14

16

18

20

H
am

m
in

g 
di

st
an

ce

+2
+8
+9
+14
+15
+20
+21
+22
+29
+39
+48
+48
+52

–5
–19
–23
–36
–50
–54

+25 (10p)
+34 (12q)
–27

+28

T3

Single cells

T8

20

15

10

5

0
+26 –1

–9
–10
–11
–13
–15
–16
–17
–18
–19
–21
–22
–23
–24
–28
–30
–33
–35 –72

–49 (12p)
–50 (12q)

–71
–70
–69
–63
–61
–60
–59
–58
–57
–55
–53
–51
–47
–46
–41
–38
–36

+34
+40
+42
+43
+45
+48
+52
+62

25

30

35

40

45

50

H
am

m
in

g 
di

st
an

ce

2,000 4,000 6,000

Chromosome

Bins in genomic order

8,000 10,000 12,0000

c

CNA events

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9
8
7
6
5
4
3
2
1
0

171819 20 .. X Y

S
in

gl
e 

ce
lls

B
in

 c
ou

nt

500

400

300

200

100

0

Figure 6  Punctuated copy number evolution and phylogenetic trees. (a–c) Multiple-cell segmentation (top left), trinary event matrices (white, 0; red, 1; 
blue, −1) (bottom left) and maximum-parsimony trees (right) for tumors from three patients with TNBC: T1 (a), T3 (b) and T8 (c). Maximum-parsimony 
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Non-clonal copy number profiles in tumors
Whereas most cancer cells clustered into 1–3 major clonal subpop-
ulations, we also identified a minor fraction (<10%) of non-clonal 
single-cell copy number profiles in each tumor. On average, the non-
clonal copy-number profiles occurred at a frequency of 7.4 ± 0.8% 
(s.e.m.) in the aneuploid fractions, 7.9 ± 1.4% in the diploid frac-
tions and 5.9 ± 1.0% in the adjacent normal tissue cells (Fig. 5a–d 
and Supplementary Table 4). On the basis of the patterns of the 
CNA profiles, we identified three major classes of non-clonal cells:  
(i) metastable tumor cells, (ii) pseudodiploid cells and (iii) chro-
mazemic cells (Fig. 5e–h).

Metastable tumor cells are aneuploid cancer cells that have copy 
number profiles highly similar to those of the major subpopulations 
but have evolved additional gains or losses of single chromosomes 
or chromosome arms (Fig. 5e). In tumor T3, we identified 53 single 
aneuploid tumor cells that shared a copy number profile and 6 unique 
metastable tumor cells with non-clonal amplifications and deletions. 
One metastable tumor cell from tumor T3 showed an additional 
amplification of chromosome 5p in comparison to the tumor cells in 
the major aneuploid subpopulation (Fig. 5e–h, left). In tumor T6, we 
identified 79 single tumor cells that shared a copy number profile and 
6 unique metastable tumor cells with non-clonal CNAs. One metast-
able tumor cell with an additional amplification of chromosome 18p 
is shown in comparison to the major aneuploid tumor subpopulation 
(Fig. 5e, right). Metastable tumor cells acquired single CNAs in the 
later stages of tumor evolution but represent evolutionary ‘dead ends’ 
that did not undergo further expansion to achieve prevalence in the 
tumor mass.

Pseudodiploid cells are single cells with flat 2N copy number profiles 
that have acquired additional gains or losses of single chromosomes or 
chromosome arms at random genomic locations (Fig. 5f,g). Whereas 
most CNAs were randomly distributed, one exception was a frequent 
(23%) loss of the X chromosome in multiple cells from different  

patients (P < 0.0001, one-tailed t test) (Supplementary Table 5).  
To determine whether the presence of non-clonal diploid cells was 
due to a tumor field effect, we profiled normal breast tissues and 
found that 5.9% of cells also had non-clonal profiles (Fig. 5d,g).  
These data suggest that random copy number gains and losses occur 
during normal mitosis and are unlikely to be associated with a  
tumorigenic field effect (Supplementary Table 6).

Chromazemic cells (where zemia means damage or loss in Greek) 
are non-clonal cells with large homozygous deletions of whole chro-
mosomes or chromosome arms that occur at random locations in 
the genome (Fig. 5h). These cells are unlikely to be viable as a result 
of the large homozygous deletions of chromosomes. Chromazemic 
cells may be the byproduct of asymmetric cell divisions or, possibly, 
dying cells and were found in diploid fractions, normal tissues and 
aneuploid fractions.

Punctuated copy number evolution
To trace tumor evolution, we constructed phylogenetic trees from the 
single-cell copy number data. Intratumoral heterogeneity provides 
a permanent record of the mutations that occurred during tumor 
growth, enabling lineages to be reconstructed by assuming that  
mutational complexity increases with time8,9. Copy number segmen-
tation was performed using a multiple-sample breakpoint algorithm20 
to identify common chromosome breakpoints that occurred across 
single cells within each tumor. We then calculated a trinary event 
matrix to treat all large and small CNA events equally for phylogenetic 
analysis using maximum parsimony (Online Methods). The result-
ing maximum-parsimony trees show that each tumor evolved a long 
root branch of founder (‘truncal’) CNAs that were acquired in the 
early stages of tumor evolution and stably maintained in the clones 
during tumor growth (Fig. 6a–c). Evidence of gradual intermediate  
branching was not observed as cells progressed from diploid to aneu-
ploid genomes. Although some TNBC tumors showed clear evidence 
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of divergent subclones in later stages of tumor evolution, these clones 
typically only diverged by a few (n = 1–3) CNAs, in comparison to 
the many (n = 24–132) CNAs that were acquired in early punctuated 
bursts. Another notable characteristic of the phylogenetic trees is that 
they show that all cancer cells share a common evolutionary origin in 
each tumor, suggesting that these cells evolved from a single normal 
cell in breast tissue, not multiple initiating cells.

To further investigate whether the single-cell data were consist-
ent with PCNE, we performed linear (gradual) and multiple-step 
(punctuated) fitting of the sorted CNA count data from the single 
cells in each tumor (Online Methods). One-step fit resulted in higher 
correlation values (adjusted R2 = 0.977) than linear fitting (adjusted 
R2 = 0.704) and was statistically significant (P = 2.125 × 10−9,  
one-tailed t test) (Fig. 6d and Supplementary Fig. 5). Similarly, better 
Bayesian information criterion (BIC) and Akaike information crite-
rion (AIC) values, statistical measurements for model selection, were 
obtained for all tumors when step fitting was applied. These data sup-
port PCNE by showing that a large number of CNA events occurred 
within a short period of time during tumor evolution.

Absence of gradual intermediate cells in ungated fractions
One possible explanation for the absence of gradual intermediate copy 
number profiles in the tumor mass is that the gating of ploidy by FACS 
was too narrow and this analysis may therefore have missed gradual 
cells with intermediate copy number events that occurred in between 
ploidy peaks (Fig. 1b). To investigate this possibility, we performed 
universal gating to sample broadly across all ploidy values in 4 of 12 
patients with TNBC and flow sorted additional single nuclei for HM-
SNS. Hierarchical clustering was performed using data from narrowly 
gated and universally gated nuclei, and heat maps were constructed to 
compare the clonal substructure (Supplementary Fig. 6). Clustering 

analyses showed similar population substructure in the universally 
and ploidy-gated populations of tumor cells from each patient, with 
no evidence of additional intermediate copy number profiles in the 
universally gated data, suggesting that if intermediate profiles exist and 
persist in the tumor mass they are very rare. These data are consistent 
with cell counts in FACS histograms, which showed no evidence of 
intermediate density between the aneuploid and diploid populations, 
with the exception of minor S-phase populations (Fig. 1b).

Mathematical modeling of gradual and punctuated evolution
To further investigate in silico alternative scenarios such as punctuated 
and gradual evolution, we developed a multitype stochastic branching  
process model of tumor growth (Fig. 7). In this model, during each 
time step, a cell can divide to produce (i) two daughter cells that are 
identical to the mother cell, (ii) no cells (death) or (iii) one daughter 
cell identical to the mother cell and one daughter cell with a new 
CNA whose fitness advantage is selected from a mutational fitness 
distribution21. In the gradual model, each cell division event leads 
to the accumulation of a new CNA at a constant rate (Fig. 7a) cor-
responding to the baseline mutation rate for single copy number 
changes (Fig. 7c). In the punctuated model (Fig. 7b), each cell divi-
sion event results in either the accumulation of a single CNA or, at 
a different rate, a burst of multiple somatic CNAs whose number is 
chosen from a Poisson distribution (Fig. 7d). We implemented both 
models as exact stochastic computer simulations initiating with a sin-
gle diploid ancestral tumor cell and continued each instantiation of 
the model until the total number of cells was equivalent to the total 
number of cells in each patient with TNBC. From each simulation, 
we sampled 100 single cells at random and constructed phylogenetic 
trees (Supplementary Fig. 7). We then performed AMOVA22 to 
investigate the topologies of the resulting phylogenies. Permutation 
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testing was applied to obtain P values for each sample based on the 
gradual model (Fig. 7e) and the punctuated model (Fig. 7f) and to 
test whether these models were able to recapitulate the tree topologies 
obtained from the data for patients with TNBC (Online Methods). We 
investigated a wide range of parameter values by searching through a 
total of 162 combinations of parameters. In trees resulting from the 
gradual model, we found evidence of many intermediate subpopula-
tions, suggesting that selective sweeps are unlikely to occur in later 
stages of tumor evolution, even when clones with high fitness values 
emerge (Fig. 7g and Supplementary Fig. 7b). In contrast, the punc-
tuated simulations resulted in tree structures with long root nodes 
between the ancestral diploid and aneuploid subpopulations, which 
are consistent with our single-cell data (Fig. 7h and Supplementary 
Fig. 7a). We then investigated alternative scenarios for gradual  
simulations (epistasis, cancer stem cells, increased mutation rates, 
fixed fitness distributions and mutation rate from a distribution) 
to test their ability to recapitulate the data (Online Methods and 
Supplementary Note). In total, we investigated these alternative 
scenarios for a total of 2,097 parameter combinations. However, 
under all of these scenarios, the trees generated from 100 sampled 
single cells displayed evidence of many intermediate branching 
clones (Supplementary Fig. 7b). Collectively, these modeling data 
support PCNE and suggest that selective sweeps occurring in later 
stages of tumor growth are unlikely to explain the presence of highly  
clonal subpopulations.

Intertumoral heterogeneity between patients with TNBC
In addition to investigating intratumoral heterogeneity, we also 
compared copy number differences between patients with TNBC. 
Consensus profiles were calculated to represent the bulk tumor popu-
lations from each patient with TNBC by aggregating the single-cell 
aneuploid copy number profiles (Online Methods). Frequency plots 
were generated using data from all patients with TNBC to identify 
common amplifications and deletions that were recurrent in the 
patient cohort (Fig. 8a). This analysis identified frequent amplifica-
tions on chromosomes 1q (MDM4), 3q (PIK3CA), 6p (CCND3), 8q 
(MYC) and 18 (BCL2 and SMAD4), and frequent deletions included 
chromosomes 4p (FGFR3), 5q (PIK3R1), 8p (DBC2), 9p (NR4A3), 12 
(MDM2) and 22 (CHEK2). These genomic regions and oncogenes are 
consistent with regions previously identified by microarray compara-
tive genomic hybridization (CGH) as having copy number changes in 
patients with TNBC14. In addition to frequent CNAs, we also iden-
tified many unique high-level focal amplifications (<10 Mb) that 
occurred exclusively in individual patients (Supplementary Fig. 8).  
These focal amplifications are consistent with previous reports in 
patients with TNBC14,23. We further investigated between-patient 
tumor heterogeneity by integrating single-cell data from all patients 
with TNBC. Dimensionality reduction was performed using t-SNE24, 
showing that single cells clustered according to the patient from which 
they were isolated (Fig. 8b). Similarly, hierarchical clustering grouped 
single cells by patient (Fig. 8c). These data show that single cells from 
individual patients with TNBC are genetically more related to each 
other than they are to cells from other tumors, suggesting that they 
share a common ancestral lineage and evolved from a single normal 
cell in the breast tissue.

DISCUSSION
Collectively, our data support a punctuated model of copy number 
evolution, in which a large number of CNAs are acquired early in tumor 
evolution, during a short period of crisis, and remain highly stable 
as the tumor mass clonally expands (clonal stasis). Despite profiling 

hundreds of single cells from many spatial regions, we did not detect 
any intermediate copy number profiles, indicative of gradual evolution, 
as the tumor cells evolved from diploid to aneuploid genomes. These 
data challenge the dogma of gradual tumor evolution4,5 by showing that 
cancer cells with intermediate copy number profiles are not common 
during tumor growth. These findings also challenge reports of exten-
sive intratumoral genomic heterogeneity in breast cancer15,16,18,25 by 
showing that CNAs are remarkably stable throughout the tumor mass. 
However, previous studies focused mainly on point mutations, which 
may correspond to different molecular clocks during tumorigenesis17. 
PCNE is consistent with a ‘Big Bang’ model for tumor growth26–28 in 
which clonal diversification occurs at the earliest stages of tumor pro-
gression, leading to the stable expansion of one or more clones.

An analogous model called punctuated equilibrium was origi-
nally proposed by Gould and Eldredge in 1972 to explain species  
evolution29,30. This model was mainly supported by evidence in the 
fossil record and challenged Darwinian gradualism. Several inter-
esting parallels can be drawn between this model and our punctu-
ated model: (i) the occurrence of stasis, (ii) the lack of intermediates  
corresponding to gradual evolution and (iii) short bursts of rapid 
evolution. However, it is important to note that the mechanisms 
underlying punctuated equilibrium in species evolution (for exam-
ple, allopatric speciation) are likely to be very different from those 
underlying PCNE in human tumors.

PCNE and clonal stasis have important implications for tumor 
evolution, diagnostics and therapy. The data suggest that individual 
tumor cells may be hardwired at the earliest stages of tumor growth 
and intrinsically preprogrammed to become invasive, metastatic or 
resistant to chemotherapy26,31. This deterministic characteristic may 
allow oncologists to profile CNAs in early-stage breast cancers (for 
example, ductal carcinoma in situ) to predict whether the tumors 
should be treated aggressively or, alternatively, not at all (‘watchful 
waiting’). Our single-cell data also have important implications for 
clinical diagnostics by showing that multiregion sampling may not 
be necessary to assess CNAs as biomarkers in patients with TNBC, as 
these aberrations are highly stable throughout the tumor mass.

Although most copy number profiles in patients with TNBC were 
found to be highly clonal, we also identified a minor (<10%) fraction  
of cells with non-clonal copy number profiles. These cells were not 
intermediates in the tumor lineage but instead showed random 
chromosome gains or losses. To determine whether these cells were 
present because of a tumor-specific field effect, we also profiled cells 
from normal breast tissue, which showed percentages of non-clonal 
cells (5.9%) similar to those in tumors. These data are consistent 
with recent single-cell genomic data on tissue mosaicism, which 
have reported 1–5% non-clonal aneuploid cells in different normal 
tissues, including liver, brain and skin32. Because the majority of 
the non-clonal events involve a single-chromosome gain or loss, we 
speculate that they are due to the occurrence of lagging chromosomes 
during asymmetric mitoses33. Although such events are unlikely to 
lead to further cell proliferation in normal tissues, they may provide 
tumors with additional ‘fuel’ for evolution, occasionally leading to the 
emergence of new tumor subpopulations in the later stages of tumor 
evolution, as we observed in several polyclonal tumors.

Our study has addressed several key questions regarding copy 
number evolution in patients with TNBC, but it has also raised several 
new lines of inquiry. How can genome instability be turned on and 
off at the earliest stages of tumor evolution in a reversible manner? 
One possibility for a reversible switch is telomerase inactivation and  
reactivation: telomerase inactivation could lead to complex aneu-
ploid rearrangements within just a few cell divisions, in a manner that 
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could be reversed by telomerase reactivation. This mechanism has 
previously been described as ‘episodic telomere crisis’ and was dem-
onstrated using experimental systems34–36. However, we speculate  
that telomerase inactivation alone is insufficient to cause punctuated  
evolution, as TP53 inactivation and genome duplication are also 
requirements for PCNE. Indeed, previous work using in vivo sys-
tems has shown that TP53 and telomere loss can cooperate to drive 
tumorigenesis34. Another important question is how tumor cells with 
complex aneuploid rearrangements can undergo symmetric cell divi-
sions and stable clonal expansions (clonal stasis). For tumor cells to 
undergo symmetric cell divisions with supernumerary chromosomes, 
we speculate that aneuploid cells must cluster multiple centrioles 
together to align chromosomes equally along the metaphase plate37,38. 
Addressing these interesting questions will require future work, which 
should be performed using in vitro and in vivo systems.

We also investigated whether we sequenced a sufficiently large 
number of cells in each patient with TNBC to detect the major tumor 
subpopulations. To answer this question, we generated posterior  
saturation curves with multinomial distributions (Supplementary 
Fig. 9). The resulting data suggest that 20–40 single cells were  
necessary to detect the major subpopulations with 95% power,  
suggesting that our sample size was sufficient (mean = 83 cells). 
Another question we considered is whether an alternative model  
to PCNE could explain the observed single-cell data, in which  
evolution is gradual until a clone with high fitness emerges in later 
stages of progression, leading to a selective sweep. Despite exten-
sive testing with mathematical modeling, we found that selective  
sweeps were highly uncommon during gradual evolution, even 
when clones with high fitness emerged. Furthermore, a clonal sweep 
is inconsistent with studies that support early clonal diversification 
and selection26–28.

In summary, our single-cell copy number data and mathemati-
cal modeling suggest that clonal stasis and PCNE are common in 
patients with TNBC. This process leads to complex aneuploid copy 
number profiles that are remarkably stable during tumor growth and 
ubiquitous throughout the tumor mass. Our preliminary data in other 
tumors (colon, prostate, liver and lung) suggest that PCNE may not 
be restricted to breast cancer and is also likely to operate in other 
human cancers. This model has important implications for evolution-
ary understanding of cancer dynamics and for the clinical treatment 
of patients with TNBC.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. All data from this study have been deposited in 
the Sequence Read Archive (SRA) under accessions SRP064210 for 
tumors T1–T10 and SRA018951 for tumors T11 and T12.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Triple-negative breast cancer samples. Frozen tumors from 12 patients with 
TNBC were selected with poorly differentiated and high-grade (grade III)  
invasive ductal carcinomas as determined by Bloom–Richardson score.  
The triple-negative status of the tumor samples was determined by  
immunohistochemistry for ER (<1%) and PR (<1%) and FISH analysis of 
HER2 amplification using the CEP-17 centromere control probe (ratio of 
HER2/CEP17 < 2.2). The frozen tumor samples and matched normal breast 
tissues were obtained from the University of Texas M.D. Anderson Cancer 
Center Breast Tissue Bank. Two frozen tumor samples (T11 and T12) were 
obtained from the Cooperative Human Tissue Network (CHTN). This study 
was approved by the Institutional Review Board (IRB) at the University of 
Texas M.D. Anderson Cancer Center. Patients were consented by an informed 
consent process that was reviewed by the IRB.

Highly multiplexed single-nucleus sequencing. Nuclei from frozen tumors 
were isolated using NST-DAPI buffer (800 ml of NST (146 mM NaCl, 10 mM 
Tris base at pH 7.8, 1 mM CaCl2, 21 mM MgCl2, 0.05% BSA and 0.2% Nonidet 
P-40), 200 ml of 106 mM MgCl2, 10 mg of DAPI and 5 mM EDTA). Frozen 
tumors were dissociated into nuclear suspensions by mincing with no.11 sur-
gical scalpels in 1 ml of NST-DAPI cytoplasmic lysis buffer at 4 °C using ice 
blocks in a plastic Petri dish. Nuclear suspensions were filtered through 37-µm 
plastic mesh before flow sorting into a 5-ml polystyrene tube (Falcon). Single 
nuclei were flow sorted into 96-well plates by FACS using the FACSAria II flow 
cytometer (BD Biosciences). Ploidy distributions were gated by differences in 
total genomic DNA content as determined by DAPI intensity. To establish the 
DAPI fluorescence intensity corresponding to diploid (2N) cells, a lymphoblast 
control cell line (REFM) was flow sorted first to establish gates. Before flow 
sorting single nuclei, a few thousand cells were sorted to establish the DNA 
content distributions for gating by ploidy. Single nuclei were collected from 
both the diploid and aneuploid gated fractions. Additionally, nuclei were col-
lected from each tumor by gating broadly across all ploidy values. Single nuclei 
were deposited into individual wells of a 96-well plate each containing 10 µl 
of lysis solution from the Sigma-Aldrich GenomePlex WGA4 kit, along with 
negative-control reactions, in which no nuclei were deposited.

Whole-genome amplification and barcoded library construction.  
Whole-genome amplification was performed on single flow-sorted nuclei using 
DOP-PCR as described in the protocol for the Sigma-Aldrich GenomePlex 
WGA4 kit (WGA4-50RXN). For quality control of amplification perform-
ance, DNA concentration was measured (Thermo Fisher Scientific, Qubit 
2.0 fluorometer), and reactions were run out using gel electrophoresis to  
determine size distributions. To prepare sequencing libraries by TA ligation 
cloning, 500 ng of DNA was acoustically sonicated to 200 bp in size using the 
S220 Sonicator (Covaris). Fragmented whole-genome amplification products 
underwent end repair (New England BioLabs, E6050L) and were purified with 
the DNA Clean and Concentrator-5 kit (Genesee, 11-303 or 11-306). Libraries 
were constructed using NEBNext DNA Library Prep enzymes (New England 
BioLabs, E6050L, E6053L, E6056L/M0202L and M0541L) for end repair,  
3′ adenylation, ligation and PCR amplification according to the manufactur-
er’s instructions but using different P7 adaptors to barcode each single-cell 
library with a unique 8-bp identifier and common P5 adaptors for sample 
multiplexing. The 96 unique P7 indexes were NEXTflex-96 barcodes that were 
purchased from Bio Scientific. After ligation, DNA underwent negative and 
positive selection with AMPure XP beads (Beckman Coulter, A63881), 0.7× 
and 0.15×, respectively, before PCR amplification. Final library concentrations 
were measured using a Qubit 2.0 fluorometer, and 48–96 single-cell librar-
ies were pooled in equimolar concentrations. The final concentration of the 
pooled libraries was measured by quantitative PCR using the KAPA Library 
Quantification kit (KAPA Biosystems, KK4835) and an ABI PRISM real-time 
PCR machine (Applied Biosystems 7900HT), as well as a 2100 Bioanalyzer 
(Agilent Technologies).

Multiplexed Illumina next-generation sequencing. Pooled libraries contain-
ing 48–96 barcoded single-cell libraries were sequenced using 76 single-end 
cycles on the HiSeq 2000 system (Illumina) at the Sequencing Core Facility 
of the Genetics Department at M.D. Anderson Cancer Center to obtain target 

coverage of 0.1× for each single-cell library. Data were processed using the 
CASAVA 1.8.1 pipeline (Illumina), and sequence reads were converted to a 
master fastq file. Sequencing reads from each single cell were demultiplexed 
using an in-house Perl script (demultiplex.pl) into 48–96 independent fastq 
files, where each file represented the sequencing reads from one cell.

Sequence alignment and data processing. After barcodes and sequencing 
adaptors were trimmed, sequence reads in fastq format were mapped to human 
genome assembly NCBI Build 37 (hg19/NCBI37), using Bowtie 2 alignment 
software39 with default parameters to generate SAM files. SAMtools (0.1.19) 
was used to convert SAM files to compressed BAM files and sort the BAM files 
by chromosome coordinates40. To eliminate PCR duplicates, SAMtools was 
used to remove sequence reads with identical start coordinates. Sequence reads 
with low mapping quality (MQ <40) were also filtered out using SAMtools.

Integer copy number calculation from single-cell data. The sequencing  
data were counted in 11,927 genomic bins with variable start and stop 
coordinates, using the variable binning method as previously described10,11.  
The median genomic length spanned by each bin was 220kb. This variable 
binning approach reduces mappability errors and the number of false dele-
tion events when compared to an approach using scaffolds using uniform, 
length-fixed bins. A blacklist of aberrant bins was filtered out to remove false 
positive amplifications in centromeric and telomeric regions. Aberrant bins 
were defined as bins where 5–95% of ratios were distant from the ground states 
(|difference of ratio| > 0.5) in at least two-thirds of normal single-cell popula-
tions or bins with systematic artifacts where ratios were extremely high (>10) 
or low (<0.001) across all single cells. Only single cells with ≥50 median reads/
bin were included for downstream copy number analysis. We then applied 
Loess normalization to correct for bias from GC content10. Copy number 
profiles were segmented using circular binary segmentation (CBS)41 followed 
by MergeLevels42 to join adjacent segments with non-significant differences 
in segmented ratios. The parameters used for CBS segmentation were alpha 
= 0.0001 and undo.prune = 0.05. Default parameters were used to perform 
MergeLevels, which successfully joined false positive detections of erroneous 
breakpoints. exp.mad was calculated as the median distance between the log2-
transformed ratio and segmented values. Only segmentations having at least 
1.48 times exp.mad deviation were retained as CNAs. Finally, integer copy 
number was calculated by scaling segmented ratios with average DNA ploidy 
determined by flow sorting indexes and rounding to the closest integer values 
(Supplementary Code). When DNA ploidy information was unavailable for 
universally gated single cells, the least-square rounding method was applied 
to obtain the optimum scaling factor that had the least sum of deviations from 
the closet integer after rounding43. Lastly, we filtered out diploid single cells 
with variant coefficients of bin counts larger than 0.4 or having mean_resid 
values greater than 0.03. We calculated mean_resid as the average deviation of 
the scaled ratio from the true ground state integer value, which was 2, as cells 
were diploid (2N). We filtered out aneuploid single cells with median absolute 
deviation (MAD) for genome-wide ratios greater than 0.62 or autocorrelation 
values for neighboring data points less than 0.53. Autocorrelation values were 
calculated over sliding windows using a 10-bin interval size across the 11,927 
bins in the human genome scaffold. This window size results in low correla-
tion values in regions where adjacent data points have random values. These 
steps removed single cells with poor whole-genome amplification from the 
subsequent multivariate data analysis.

Cancer gene annotations. Amplifications and deletions identified in the single- 
cell copy number profiles were annotated for known cancer-related genes, 
which consisted of 413 genes that were compiled from multiple databases, 
including the Cancer Gene Census44, The Cancer Gene Atlas (TCGA) Project 
and the National Cancer Institute (NCI) cancer gene index (Sophic Systems 
Alliance, Biomax Informatics). BEDTools45 was used with the IntersectBED 
function to find the intersection of BED files for known cancer-related genes 
and regions of chromosome amplification and deletion that were detected in 
the single-cell sequencing data sets.

Clustering for single-cell copy number profiles. To construct the clustering 
heat maps, Euclidean distances were calculated from the copy number data 
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matrix, where each column represented one single cell and each row contained 
log2 (ratio + 0.1) data for each segment. 1D hierarchical clustering was per-
formed in R using the heatmap.2 function from the gplots package available on 
CRAN46. Columns representing a single cell each were hierarchically clustered 
using Ward linkage on the basis of pairwise Euclidean distances, and the x axis 
was ordered by genome position. To estimate the optimum number of clus-
ters for each patient, we performed partition around medoids clustering with 
the optimum Calinski–Harabasz index47 or average silhouette width using 
the pamk48 function from the fpc package. Clusters with singleton cells were 
collapsed and penalized using pamk criteria to minimize technical artifacts.  
PAM clustering was performed on a range of k values from 1–20.

High-dimensional data analysis methods. For each individual tumor, the 
numeric matrix containing integer copy numbers was used to perform PCA 
with the prcomp function in R (ref. 46). The columns in the numeric matrix 
were segmented bins, and each row was an individual single cell. PC1 and PC2 
were plotted on the x and y axes, respectively, for each plot. Each dot on the 
PCA plots represents a single-cell copy number profile and is colored accord-
ing to cells that clustered together into subpopulations that were identified by 
the hierarchical clustering analysis. To determine the genomic relationship of 
all aneuploid tumor cells from the 12 patients with TNBC, the t-distribution 
stochastic neighbor embedding (t-SNE)49 method was applied on the basis 
of pairwise Euclidean distances from the ratio data. The t-SNE method is an 
improved nonlinear dimensionality reduction and visualization method, with 
which both local and global structure in high dimension can be visualized in 
low-dimensional plots, while avoiding dramatic masking of very similar data 
points seen in PCA plots.

Calculation of the subclonal diversity index. To calculate the subpopula-
tion diversity index for each tumor, we performed hierarchical clustering of 
copy number data to cluster the aneuploid tumor cells into 1–3 major groups 
(‘species’) on the basis of Euclidean distances. Cells within each subpopulation 
were defined as highly correlated with mean R2 >0.8. We then calculated the 
proportion (p) of cells that belonged to each distinct group. The subpopulation 
diversity index was then calculated as the Shannon index: Dc = −Σi(pi × lnpi), 
where larger values represent higher subclonal diversity within the tumor.

Clonal frequency of subpopulations. To calculate the clonal frequency of 
each clonal subpopulation, we first identified clusters of genotypes by hierar-
chical clustering, and optimal clustering results were selected on the basis of 
the Calinski–Harabasz index47 or average silhouette width. We then counted 
the number of cells that were classified into each subcluster. Relative clonal 
frequencies were calculated as the number of cells that fell into each specific 
subcluster divided by the total number of clonal aneuploid cells. Singleton cells 
that formed the only member of a subcluster were defined as non-clonal and 
were excluded from this calculation.

Copy number aberration frequency calculation and plots. Consensus copy 
number integer profiles for each tumor were calculated using the median 
integer copy number segment values of all aneuploid single cells from each 
tumor. To calculate the frequency plot of the 12 TNBC samples, the mean 
copy number values across the genomic bins of each cell were treated as the 
ground-state copy number and 1.5 s.d. across the genome as deviation cutoff 
values. If a copy number was higher than mean + 1.5 × s.d., then a significant 
amplification was designated, while for copy number lower than mean −1.5 × 
s.d. a significant deletion was designated. The amplification and deletion fre-
quencies across all tumors were calculated by first counting the total number 
of consensus tumor profiles that had significant amplifications or deletions 
in each of the 11,927 bins across the genome and then dividing the counts by 
the total number of consensus profiles.

Multiple-cell segmentation and event matrix construction. To detect com-
mon chromosome breakpoints and segments that were shared by single- 
cell samples, we applied a multiple-sample population segmentation 
algorithm using a Bioconductor R package (copynumber)20, with regu-
larization parameter γ = 40 (default). Segments smaller than 20 bins were 

removed, and their flanking segments were joined, or separated at the 
center of the removed segment if they differed significantly (Wilcoxon test,  
Hommel-adjusted P < 0.05 in at least two cells)50. The ground state of each 
cell was calculated by rounding its expected ploidy to the nearest integer43.  
For each tumor, a median matrix M was constructed, in which M is the median 
of the ith segment in the jth cell. From this median matrix, an event matrix 
E was calculated as follows. Let gi be the ground state of the jth cell. Eij = 1 
(amplification) if Mij − gi > 0.6, Eij = −1 (deletion) if Mij − gi < −0.6, and Eij = 0  
(neutral) if |Mij − gi | < 0.4. If 0.4 ≤ |Mij − gi | ≤ 0.6, Eij was treated as miss-
ing with systematic artifact. Segments that had missing values systematically 
across all cells were removed if they satisfied the following criterion 
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where u is the probability density function (p.d.f.) of a uniform distribution 
on (0, 1), c0.2 is the cardioid p.d.f. (ref. 51) with concentration parameter  
ρ = 0.2 and {Mij} is the fractional part of Mij. This formula is a Bayes factor for 
comparing a model in which ploidy-scaled segment medians do not cluster 
around integer values to one in which they do, and the chosen cutoff represents 
99% certainty of the first model assuming equal prior probabilities.

Phylogenetic tree construction using maximum parsimony. Maximum- 
parsimony trees were calculated from event matrices using the parsimony 
ratchet algorithm with R package phangorn52. Amplification, neutral and dele-
tion were treated as characters, and missing values were treated as ambiguous 
sites. Events occurring on sex chromosomes were ignored. Metastable cells 
were removed from each tumor for phylogenetic analyses, as they do not share 
CNAs in the main tumor lineages. Cells were also removed if at least one-third 
of events were missing values. Branch lengths and ancestral character prob-
ability distributions were inferred using the Acctran algorithm52. Altered sites 
on each edge were estimated as sites such that 

∀ = = ∨ = =c i iP A c P B c: ( ) ( )0 0

where A and B are the ancestral sequences estimated at each node and c is a 
character (Supplementary Code).

Phylogenic tree visualization. Phylogenic trees were exported in Newick for-
mat from R-studio and plotted as square trees using MATLAB (MathWorks). 
The trees were re-rooted by the top node of diploid cells. Each individual 
single cell was represented as a tip of the tree; nodes are colored on the basis of 
subclonal population. Single cells from the same subpopulations were flipped 
to physically nearby with each other to favor visualization.

Mathematical modeling of gradual and punctuated evolution. Details on 
mathematical modeling of gradual and punctuated tumor growth are described 
in the Supplementary Note.

Statistical fitting of copy number aberrations. We first counted the total 
number of CNA events within each single cell from the collapsed trinary event 
matrix. To minimize technical noise, singleton CNAs that existed in only one 
cell or CNA events with missing values in >50% of cells, or cells with >40% 
missing values were excluded from analysis. Subsequently, single cells were 
sorted on the basis of the total number of CNA events in each cell. For the 
gradual linear model, we assumed that tumor cells evolved through intermedi-
ate genomes and therefore the total number of CNAs increased gradually over 
time. We therefore fit a linear model of total segments with slope CNAs = time 
+ error. For the punctuated model, we assumed that tumor cells lack gradual 
intermediate species and therefore the total CNAs changed over one or more 
critical evolutionary steps reflected in the jumping of events. The punctual 
model is CNAs = step + error, with no slope, where the fitted values are simply 
the average numbers of CNAs per cell in each step. Models were fit using the 
lm function in R (ref. 46). BIC, AIC and adjusted R2 values were calculated to 
measure the best fit of each model for the tumor data sets.
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Saturation analysis to estimate required sample sizes. A post-hoc saturation 
analysis was performed to determine whether we sequenced sufficient cells 
for the purpose of this study. We first obtained the total number of subpopula-
tions and the fractions of each subpopulation in each tumor by hierarchical 
clustering single cells with copy number data as described above. We then 
calculated the accumulative probability of observing at least three single cells 
in each subpopulation given the numbers of sequenced cells, by assuming the 
number of observed cells followed a binomial distribution for biclonal tumors 
and a multinomial distribution for triclonal tumors. The two monogenomic 
tumors were excluded from this analysis. The cumulative probabilities were 
calculated in R (ref. 46).
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