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Abstract

The human immune system functions to provide continuous body-wide surveillance to detect and eliminate foreign agents
such as bacteria and viruses as well as the body’s own cells that undergo malignant transformation. To counteract this
surveillance, tumor cells evolve mechanisms to evade elimination by the immune system; this tumor immunoescape leads
to continuous tumor expansion, albeit potentially with a different composition of the tumor cell population
(‘‘immunoediting’’). Tumor immunoescape and immunoediting are products of an evolutionary process and are hence
driven by mutation and selection. Higher mutation rates allow cells to more rapidly acquire new phenotypes that help
evade the immune system, but also harbor the risk of an inability to maintain essential genome structure and functions,
thereby leading to an error catastrophe. In this paper, we designed a novel mathematical framework, based upon the
quasispecies model, to study the effects of tumor immunoediting and the evolution of (epi)genetic instability on the
abundance of tumor and immune system cells. We found that there exists an optimum number of tumor variants and an
optimum magnitude of mutation rates that maximize tumor progression despite an active immune response. Our findings
provide insights into the dynamics of tumorigenesis during immune system attacks and help guide the choice of treatment
strategies that best inhibit diverse tumor cell populations.
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Introduction

In 1909, Paul Ehrlich was the first to propose the idea that the

immune system scans for and eliminates nascent transformed cells

in the human body [1]. This hypothesis received much interest

from both immunologists and cancer researchers and led to

experiments with tumors transplanted into mice; these studies

suggested the existence of tumor-associated antigens and formed

the basis of the idea of immune surveillance [2]. Since these

landmark studies in the 1950s, the model of cancer immune

surveillance has gained widespread acceptance, and the central

role of immune effector cells, such as B, T, and natural killer (NK)

cells, have been elucidated [3,4,5,6,7]. NK cells and CD8z cd T

cells were found to recognize and kill tumor cells through the

interaction of specific cell surface receptors with tumor cell

ligands [3,8,9,10,11,12]. Similarly, CD4z and CD8z ab T cells

recognize MHC class II and class I molecules on tumor cells,

respectively, and B cells produce antibodies against tumor antigens

[3,6,13]. When the immune system fails to eliminate all tumor

cells, then the malignant cell population continues to grow – a

phenomenon termed ‘‘tumor immunoescape’’. The interaction

with the immune system, however, may significantly decimate the

abundance of tumor cells and select for those phenotypes with

relative resistance against immune system attacks. The ‘‘cancer

immunoediting’’ hypothesis then predicts that, while one outcome

is complete eradication of a developing tumor, another is the

generation of a sculpted tumor cell population that either displays

reduced immunogenicity [4] or an increased ability to inhibit anti-

tumor immune responses [6,14,15,16]. The latter capacity may be

imparted via diverse mechanisms [17,18]: (i) tumor cells can lose

their MHC class I molecules, enabling them to evade CTL attacks

[19]; (ii) while the immunodominant epitope becomes the main

target of immune responses, cells with other phenotypes may

continue proliferating in the ‘‘shadow’’ of the dominant clone [20];

(iii) furthermore, tumor cell secretion of immunosuppressive

cytokines such as TGF-b and IL-10 can reduce the efficiency of

the immune response [21], and (iv) a modification of death

signaling may prevent cells from undergoing apoptosis [22].

Tumor immunoescape is driven by the generation of tumor cell

variants [17,23]. Frequent genetic and epigenetic alterations

enable tumor cells to lose MHC class I molecules, produce

immunosuppressive cytokines, and generate other phenotypes that

are selected to escape immunosurveillance. Although cells with

normal rates of accumulating such alterations may also manage to
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evade the immune response, this process is accelerated by the

evolution of genomic instabilities [24,25]. Genomic instabilities are

common in most cancer types [26], and two main categories have

been identified: in the majority of tumors, chromosomal insta-

bility (CIN) leads to an increased rate of losing or gaining whole

chromosomes or parts of chromosomes during cell division [24]; in

a smaller fraction of cancers, a mismatch-repair deficiency leads to

microsatellite instability (MIN) at the nucleotide level [27]. Similar

to genomic instabilities, epigenetic instabilities were also recently

found to contribute to tumorigenesis by modulating the produc-

tion of oncogenic proteins [28].

An increased chance of accumulating (epi)genetic alterations

during cell divisions enhances the rate of generating tumor cell

variants that may evade the immune response; however, high rates

of alterations may in turn lead to an error catastrophe in that a

functioning genome cannot be sustained when error-prone

replication produces excess damage [29]. The concept of an error

catastrophe was first introduced to describe the behavior of RNA

viruses [30], and numerous observations about the extinction of

such viruses due to excess error have been reported [31,32,33].

These findings imply that a mutator phenotype does not serve as

an unequivocal benefit for tumor cells, but also harbors a risk of

extinction if the extent of variability in the population crosses a

threshold. A delicate balance between the cost of a potential error

catastrophe and the benefits of outracing the immune response

enables tumor cells to survive and expand despite immune system

attacks.

Several mathematical models have been designed to provide

insights into the dynamics of tumorigenesis under immu-

nosurveillance or an error catastrophe of tumor cells

[34,35,36,37,38,39,40,41]. Most studies of the effects of immuno-

surveillance on tumor evolution considered a homogeneous

population of tumor cells and concentrated on phenomena such

as tumor dormancy and immunoescape. Studies of the tumor

error catastrophe, in contrast, investigated quasispecies models in

simplified situations without an immune response. The dynamics

of tumor immunoescape and error thresholds, however, result

from an interaction between both components; such studies are

still lacking from the literature. In this paper, we investigate an

integrated model of both concepts during tumor progression - the

effects of tumor immunosurveillance and the consequences of a

mutator phenotype of tumor cells. We introduce specific immune

responses to a formulation of the quasispecies model and study the

balance between evasion of immunosurveillance and prevention of

an error catastrophe. This study reveals the effects of various

tumor antigens on specific immune responses from the viewpoint

of evolutionary dynamics, and provides new perspectives on

optimum treatment strategies of tumors subjected to immunosur-

veillance and -editing.

Results

During the early phases of tumorigenesis, immune system cells

such as NK and CD8+ T cells attack tumor cells and may succeed

in suppressing their expansion; this outcome is referred to as

‘‘tumor dormancy’’. However, if the immune system cannot

successfully eradicate a tumor, then eventually a subset of tumor

cells will acquire the phenotypes necessary for immunoescape.

Depending on the magnitude of the mutation rate of these cells,

the tumor cell population may then be at risk of going extinct

due to the generation of excess damage – the event of an error

catastrophe. To investigate the dynamics, conditions, and

likelihood of these events, we designed a mathematical model of

tumor and immune system cells.

In the context of our mathematical model, initially there is only

a single type of tumor cells – those cells that originally founded the

tumor. Denote the abundance of these original tumor cells by x0.

They divide at rate f0 and die at rate d. During each division of

such a cell, a new variant tumor cell is produced with probability

u. Each tumor variant may have evolved a phenotype which

allows it to evade eradication by immune system cells. The

different tumor variants are enumerated as cell types i, and the

abundance of each type is given by xi. Let us first assume that

all tumor variants divide at rate a and die at rate d . These

assumptions ensure that intra-variant competition is stronger than

inter-variant competition, such that each tumor cell only competes

with cells of its own type for oxygen, nutrients, and space; these

assumptions will be relaxed later on. The total number of tumor

variants is denoted by N. Since we consider a maximum number

of N tumor variants, the growth rate of the original tumor cells

reduces to f0(1{Nu).

In addition to tumor cells, we also consider immune system cells

that launch a specific immune response against each particular

tumor variant. Denote the abundance of immune system cells

specific to the original tumor clone by y0, and the abundance of

those specific to tumor variant i by yi, for i~1,:::,N. These

immune system cells inhibit tumor variants at rate p and are

generated by interactions with the tumor cells at rate c. Figure 1

displays a schematic representation of this framework. Specific

immune responses such as CTLs recognize their target tumor

cells through random interactions and identification of antigens

presented on the cell surface [42,43]. In the context of the

mathematical model, we assume that immune system cells

encounter tumor cells at a rate proportional to the latter cells’

frequency, xi=(szX ); the parameter s represents the coefficient of

interactions between immune and tumor cells, and X~
P

i xi

represents the total number of tumor cells. Expansion and

differentiation of specific immune responses (e.g., precursor CTL

proliferation and their differentiation into effector CTLs) are also

regulated through interactions with tumor cells [44]. Therefore,

Author Summary

Immunologic surveillance is a function of the immune
system which serves to constantly monitor the body for
microorganisms, foreign tissue, and cancer cells. To evade
this surveillance and subsequent elimination, cancer cells
evolve strategies to prevent being recognized and killed
by immune system cells; one mechanism is to increase the
rate at which genetic and/or epigenetic variability is
generated. The benefits of an increased variability of
cancer cells to counteract immune surveillance, however,
stands in contrast to the costs associated with such
heightened mutation rates: the risk of an inability to
maintain essential genome structure and functions. To
study such situations arising in tumorigenesis, we de-
signed a novel mathematical framework of tumor immu-
nosurveillance and the evolution of mutation rates. We
then utilized this framework to study how increased
mutation rates and immunologic surveillance affect the
abundance of tumor and immune system cells. We found
that there exists an optimum number of tumor variants
and an optimum magnitude of mutation rates that
maximize tumor progression despite the presence of
actively proliferating and functioning immune system
cells. Our study contributes to an understanding of cancer
development during immune system attacks and also
suggests treatment strategies for heterogeneous tumor
cell populations.

Tumor Immunoescape and Genome Maintenance
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immune system elimination of tumor cells and the proliferation of

CTLs are described in a frequency-dependent way, with maximum

elimination and proliferation rates of p and c, respectively. The

lifespan of CTLs is considered to be exponentially distributed with

mean 1=d days.

The basic mathematical model
With these considerations, we define the basic mathematical

model including tumor variants and their specific immune

responses by

x’0 ~f0(1{Nu)x0{
px0y0

szX
{dx2

0,

x’i ~f0ux0zaxi{
pxiyi

szX
{dx2

i for i~1,:::,N,

y’0 ~
cx0y0

szX
{dy0,

y’i ~
cxiyi

szX
{dyi for i~1,:::,N, and

X ~
PN
i~0

xi:

ð1Þ

Baseline values of model parameters and their respective ranges

used for simulations are presented in Table 1. A subset of these

parameter values were estimated in [39,45,46]. Since the original

tumor cell clone has been suggested to proliferate faster than

variant tumor cells [37,47], the division rate of variant tumor cells

is a~ef0 where 0vev1; we assume a default value of e~0:05 but

also perform sensitivity analyses (see a later section). We found

that, although some of these values are rough estimates and might

deviate when measured by other groups or in other systems, our

main results are qualitatively preserved within broad ranges

around our baseline values.

Let us now discuss the possible outcomes of interactions

between the immune system and the tumor cell population: there

may be tumor dormancy, partial immunoescape, complete

immunoescape, and the event of an error catastrophe. In the

dormancy state, immunosurveillance serves to effectively suppress

the tumor cell population. In the partial immunoescape state,

some tumor variants (but not all) achieve immunoescape while in

the complete immunoescape state, the immune response is

completely unsuccessful. Finally, in the error catastrophe state,

the original tumor clone, which has the highest division rate, goes

extinct due to the accumulation of excess alterations. We now

outline how the original tumor clone, the tumor cell variants, and

the specific immune system cells behave during the accumulation

of alterations and the evolution of higher mutation rates.

Tumor immunoescape and error catastrophe
The four qualitative outcomes of the interaction between tumor

cells and the immune system – dormancy, partial and complete

immunoescape as well as error catastrophe – are most significantly

influenced by two systems parameters: the mutation rate

generating tumor variants (u) and the maximum number of tumor

variant types that can emerge (N). We therefore investigated the

dynamics of tumor evolution in dependence of these parameters,

and identified three analytical thresholds (N�1 , N�2 , and N�3 )

separating the potential outcomes (Figure 2). The formulas and

detailed mathematical analyses of these thresholds are provided in

the Methods section.

As long as the number of tumor variants is less than the first

threshold, N�1 , immune responses suppress all tumor variants (tumor

dormancy). When the number of variants exceeds this threshold,

however, then some tumor cells escape from the specific immune

response (partial immunoescape). Once the number of variants passes

the second threshold, N�2 , all tumor cells escape from immune

responses (complete immunoescape). This finding implies that tumor

cells can evade immune surveillance by accumulating a sufficiently

large extent of intratumor heterogeneity. However, if the number of

variants exceeds the third threshold, N�3 , then an error catastrophe of

tumor cells occurs, in which the original tumor clone can no longer

maintain an expanding population and the original tumor cells

therefore go extinct. We also found that, as the mutation increases, the

threshold N�1 increases while N�2 and N�3 decrease. In all scenarios,

however, tumor eradication is unlikely – although the tumor cell

burden may shrink by a large amount – when the growth rate of the

original tumor clone is negligibly small as compared to their death rate

by apoptosis and/or interactions with the immune system.

We have thus established that although high rates of

accumulating alterations allow tumor cells to reach a state of

complete immunoescape, those cells with an excessively high

mutation rate suffer an error catastrophe as the number of tumor

variant types increases. These systems dynamics suggest that there

is an optimum amount of instability that optimizes tumor

evolution (i.e. maximizes the number of tumor cells) while

maintaining a functioning genome.

Figure 1. A mathematical framework of tumor cell evolution
during immunosurveillance. The figure shows a schematic of the
mathematical model. Initially, there is only a single type of tumor cells –
those cells that originally founded the tumor. Their abundance is
denoted by x0 ; they divide at rate f0 and die at rate d . During each
division of such a cell, a new variant tumor cell is produced with
probability u. The tumor variants may have evolved a phenotype which
allows them to evade eradication by immune system cells. The different
tumor variants are enumerated as cell types i, and their abundances are
given by xi . Tumor variants divide at rate a and die at rate d . The total
number of tumor variant types is denoted by N . Since we consider N
tumor variant types, the growth rate of the original tumor cells reduces
to f0(1{Nu). In addition to tumor cells, we also consider immune
system cells that launch a specific immune response against each
particular tumor variant. Denote the abundance of immune system cells
specific to the original tumor clone by y0 , and those specific to tumor
variant i by yi for i~1,:::,N . These immune system cells inhibit tumor
variants at rate p and are generated by interactions with the tumor cells
at rate c. Immune system cells encounter tumor cells at a rate
proportional to the latter cells’ frequency, xi=(szX ); the parameter s
represents the coefficient of interactions between immune and tumor
cells, and X~

P
i xi represents the total number of tumor cells. The

lifespan of immune system cells is exponentially distributed with mean
1=d days.
doi:10.1371/journal.pcbi.1002370.g001
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The optimal rate of tumor evolution
Let us now investigate the system dynamics for varying

mutation rates and identify those regimes in which the total

tumor cell number is maximized. Every time a new tumor variant

arises, the dynamics of tumor evolution rapidly converges to its

steady state; we therefore analyze the dynamics in steady state. The

total number of tumor cells depends on the number of variants as

well as the mutation rate, and an optimum combination of these

parameter values exists that maximizes the total tumor cell number.

In Figure 3, we demonstrate how the total number of tumor cells is

affected by the number of tumor variant types for three different

cases in which the mutation rate is u~0:004, u~0:01, and

u~0:025, respectively. Detailed mathematical analyses of those

equilibria are provided in the Methods section.

Figure 2. The steady-state regime of tumor immunoescape and
error catastrophe. The figure displays the effects of the mutation rate
(u) and the maximum number of tumor variant types (N) on the
evolutionary dynamics of tumor cells. There are three thresholds that
determine the outcomes of interactions between immune system cells
and tumor cells. When the maximum number of tumor variant types is
less than N�1 , then immune responses suppress all tumor cells (blue),
but if the variant number exceeds this threshold, then tumor cells are
able to escape from their specific immune responses (yellow). Once the
number of tumor variants exceeds N�2 , all tumor cells completely
escape from immune responses (red). However, if their number exceeds
N�3 , then an error catastrophe occurs (gray) in which original tumor cells
cannot maintain a functioning genome due to excess error. Note that as
the mutation rate increases, the threshold N�1 increases but N�2 and N�3
decrease. In situations of complete immunoescape (red), we obtain two
thresholds regarding the total number of tumor cells, Nc and uc. The
total number of tumor cells increases until the number of the variants
and the mutation rate, respectively, exceed Nc (dashed line) and uc

(dotted line), but then decreases after passing these thresholds.
doi:10.1371/journal.pcbi.1002370.g002

Figure 3. The total number of tumor cells during tumorigen-
esis. The figure displays the dynamics of the total number of tumor
cells during the generation of an increasing number of tumor variants.
In cases in which the dynamics are not stable, we show an average
number of tumor cells. The abbreviations D, PI, CI, and EC represent the
dormancy state, partial immunoescape state, complete immunoescape,
and error catastrophe, respectively. The solid, dashed, and dash-dotted
lines, respectively, represent mutation rates of u~0:004, 0:01 and 0:025.
The total number of tumor cells decreases once the number of tumor
variant types, N , exceeds a threshold Nc (for u~0:01 and 0:025) and
eventually suffers an error catastrophe as soon as the variant number
exceeds N�3 (for u~0:025). Tumor cells with high mutation rates
increase in abundance by accumulating a large number of tumor
variant types during early phases of tumor progression, but are
incapable of efficient expansion in later phases due to the occurrence of
an error catastrophe.
doi:10.1371/journal.pcbi.1002370.g003

Table 1. Baseline parameter values and their ranges for numerical simulations.

Parameter Description (Units) Value and Range Reference

f0 Fitness of original cancer cells (day{1) 5:14:10{1 [39]

a Fitness of variant cancer cells (day{1) 2:5:10{2 [37,47]

d Degree of competition among variant cancer cells (cell{1:day{1) 5:24:10{10 [39]

p Maximum elimination rate of cancer cells (day{1) 5.8 [39,41]

s Coefficient of interaction between CTL and cancer cells 2:0:107 [39]

c Maximum proliferation rate of CTLs (day{1) 3:75:10{2 [39]

d Decay rate of CTLs (day{1) 7:5:10{3 [46]

N Number of cancer variants [0,100] -

u Mutation rate of original cancer cells [0,0.05] -

doi:10.1371/journal.pcbi.1002370.t001

Tumor Immunoescape and Genome Maintenance
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In situations in which all tumor cells are effectively

suppressed by the immune response (tumor dormancy), the

total number of tumor cells increases with the number of

variant types. In situations in which some tumor cell types

manage to escape from immune surveillance, the total number

of tumor cells increases as both the number of variant types and

the mutation rate increase (Figure 3). However, in situations in

which all tumor cell types completely escape from their specific

immune responses, there exist two thresholds regarding the

total number of tumor cells: Nc and uc (see Figure 2). In this

scenario, the total number of tumor cells increases until the

number of variant types and the mutation rate, respectively,

exceed the values of Nc and uc; once crossing these thresholds,

the tumor cell number decreases as N and u further increase.

Therefore, tumor cells with an excessively high mutation rate

cannot continue to become more abundant as the number of

variant types increases (Figure 3), but there is an optimum, non-

trivial parameter regime that maximizes the number of tumor

cells.

Our results demonstrate that there are two strategies to

maximize the rate of tumor evolution so that the total tumor cell

mass is maximally large: one is to maintain a low mutation rate,

since then the tumor cell population can increase the number of

variant types along the threshold uc (see Figure 2); another is to

keep the number of variant types relatively small, since then the

tumor cell population can increase the mutation rate along the

threshold Nc (see Figure 2). When both the mutation rate and the

number of variant types are large, then the tumor cell population

cannot maintain its maximum number without decreasing one of

the two parameters.

Fitness of variant tumor cells
Let us now investigate how the division rate of variant tumor

cells affects the evolution of tumor cells during their interaction

with immune system cells. Recall that in the basic model, the

division rate is a~ef0, and that the threshold for an error

catastrophe to occur (N�3 ) is independent of the division rate. To

investigate the dependence of the system behavior on this division

rate, we chose four different e and performed a sensitivity analysis

for the thresholds N�1 and N�2 .

Figure 4 displays how the division rate of variant tumor cells

influences the outcome of tumor immunoescape in the plane of

mutation rates (u) and the number of tumor variants (N). The

four panels of the figure represent cases with different values of e.

The higher the fitness of variant tumor cells becomes, the more

easily they escape from immunosurveillance. However, the

qualitative profiles of the system dynamics are preserved; that

is, tumor cells with high mutation rates tend to reach a complete

immunoescape while tumor cells with low mutation rates

effectively produce a diverse population and thus increase in

number.

Extensions of the mathematical model
Let us next consider additional effects arising during tumor

progression such as competition among tumor cells of

different variant types, the presence of an innate immune

response such as NK cells, which non-specifically target all

tumor variants, and differential growth rates among tumor cell

variants. In order to investigate the conditions for outcomes

such as tumor immunoescape and error catastrophe in these

more complex scenarios, we established an extended model,

given by

x’0 ~f0(1{Nu)x0{
px0y0

szX
{

rx0z

szX
{dx0X ,

x’i ~f0ux0zaixi{
pxiyi

szX
{

rxiz

szX
{dxiX ,

y’0 ~
cx0y0

szX
{dy0,

y’i ~
cxiyi

szX
{dyi,

z’ ~sz
gXz

szX
{kz,

X ~x0z
PN
j~1

xj ,

ð2Þ

where i~1,:::,N. The parameter ai represents the division rate

of tumor variant i. We now assume that each tumor cell

competes with all other tumor cells so that the death term

becomes dxiX . Furthermore, the variable z describes innate

immune responses, for instance by NK cells which attack

tumor cells without antigen specificity. The parameters g, r, k,

and s represent, respectively, the maximum proliferation rate

of NK cells, the maximum elimination rate of tumor cells by

NK cells, the decay rate of NK cells, and a constant source of

NK cells.

The dynamics of tumor progression considering these

situations are shown in Figure 5. We investigated how inter-

variant tumor cell competition (Figure 5A), incorporation of an

innate immune response (Figure 5B), growth rates which differ

between individual tumor variants (Figure 5C), and all three

effects simultaneously modulate the thresholds between

outcomes as well as the optimum parameter regimes for

maximizing tumor cell numbers. Competition among tumor

cells of the same variant type renders it difficult for the tumor

cell population to completely escape from immune surveillance

and to increase the total cell number beyond a relatively small

value, irrespective of the mutation rate (Figure 5A). However,

when only an innate immune response is present without inter-

variant competition, then there is a larger parameter regime in

which complete immunoescape is possible. Furthermore, the

total number of tumor cells is larger in this situation as

compared to the above case (Figure 5B). Similar to this scenario,

the presence of different growth rates for individual variant

clones allows for the existence of a large number of tumor cells

as well as a large regime in which complete immune escape can

be achieved (Figure 5C). Finally, when all three aspects are

combined in the mathematical model, then the region of

complete immune escape becomes very small; this effect is

mainly driven by the incorporation of interal competition. The

total number of tumor cells also remains below a rather small

threshold for this case (Figure 5D).

Optimum treatment strategies for diverse tumor cell
populations

Finally, let us discuss the effects of different treatment modalities

on the rates of cancer progression and the chance of immunoes-

cape. Since the behavior of tumor cells and thus patient outcomes

are to a considerable extent driven by the interactions between

tumor and immune system cells, we considered both traditional

chemotherapy and treatment options that stimulate the immune

system to launch or sustain an attack against the tumor cell

population. In general, immune therapies have not been proven

to be very effective against many tumor types; one of the few

exceptions is represented by adoptive cell therapy, which is used in

Tumor Immunoescape and Genome Maintenance
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the treatment of metastatic melanoma and causes regressions in

about 50% of patients [48]. Recently, however, synergistic effects

of immunotherapy in combination with chemotherapy have been

reported in both human and animal trials [49,50,51], and several

mechanisms were identified that may explain these synergistic

effects [52].

To study the effects of chemotherapy, immune therapy, and

combination therapy on the dynamics of tumor evolution, we

introduced a series of different treatment types into the

mathematical framework and identified optimal treatment

strategies for diverse tumor cell populations (Figure 6). These

different treatment modalities were tested in situations in which

tumor cells had previously achieved complete immunoescape and

consisted of a large number of tumor cells. The number of tumor

variants and the mutation rate were considered to be N~50 and

u~0:01 at the time of treatment initiation. Chemotherapy then

reduces the number of tumor variants and kills tumor cells

proportional to the tumor cell number present. We also

Figure 4. The effects of change in the fitness of variant tumor cells. The figure displays how the fitness of variant tumor cells, a, affects the
dynamics of interactions between tumor and immune system cells. Parameters are (A) e~0:005, (B) 0:01, (C) 0:1, and (D) 0:25. As the fitness of variant
tumor cells increases, the parameter regime in which immunoescape is possible becomes larger; however, the qualitative behavior of the system
dynamics is preserved.
doi:10.1371/journal.pcbi.1002370.g004

Tumor Immunoescape and Genome Maintenance
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considered the case in which chemotherapy reduces the growth

rate of tumor cells. Then the model after treatment initiation is

given by

x’0 ~f ’0(1{N ’u)x0{
px0y0

szX
{dx2

0{bx,

x’i ~f ’0ux0za’xi{
pxiyi

szX
{dx2

i {bxi for i~1,:::,N ’,

y’0 ~
cx0y0

szX
{dy0,

y’i ~
cxiyi

szX
{dyi for i~1,:::,N ’, and

X ~
PN ’

i~0

xi:

ð3Þ

Here chemotherapy reduces the number of tumor variants to N ’
and either kills the tumor cells at rate b or reduces the growth

rates to f ’0 and a’. Immunotherapy increases the number of

specific immune cells (yi for i~0,:::,N) during treatment.

We then utilized this system to investigate optimum treatment

strategies. First, let us consider the effects of chemotherapeutic

agents which reduce the number of tumor cells by inducing cell

deaths at a rate proportional to the cell number present within the

tumor. Administration of such treatments decreases the total

cell number, but may not be capable of leading to complete

eradication of all tumor cells (Figure 6A) unless its effects are

sufficiently (and maybe unrealistically) strong (Figure 6B). Second,

consider chemotherapeutic drugs which reduce the number of

tumor variant types as well as the growth rates of tumor cells.

Again, administration of such treatments decreases the total cell

number but is incapable of achieving complete eradication of

tumor cells (Figure 6C). Third, consider the administration of

immunotherapy which increases the population of tumor-specific

immune system cells. Such therapy alone is not able to decrease

the abundance of tumor cells by a large extent (Figure 6D).

However, when combining chemotherapy and immunotherapy,

an effective decrease of the tumor cell population can be achieved,

which may ultimately lead to tumor eradication and a cure

(Figure 6E). Notably, in situations in which the mutation rate is

small, the administration of combination therapy is more

successful in eradicating all tumor cells as compared to situations

in which the mutation rate is high (Figure 6F).

In conclusion, our mathematical model predicts successful

outcomes of combination therapy when (i) chemotherapy is

administered which induces tumor cell death at a significantly

large rate, or (ii) combination therapy is administered which

reduces the number of tumor variants, induces tumor cell death,

and replenishes immune cell populations. When the mutation rate

of tumor cells is small, combination therapy is more effective than

when variations arise at a large rate. An explanation of these

findings can be found in Figure 2 – activation of the immune

response alone does not change the state of the tumor cell

population once it has reached complete immunoescape; in that

case, the number of tumor cells does not decrease (Figure 6D). A

reduction of the number of tumor variant types and tumor

cells by administering chemotherapy alone allows for partial

immunoescape or dormancy states, but there is an insufficient

abundance of immune system cells to effectively control the tumor

cell population (Figure 6A). However, combination therapy which

enables immune cells to be activated in the states of partial

immunoescape or dormancy is capable of eradicating the tumor

(Figure 6E). Thus, our mathematical framework is capable of

identifying those treatment modalities that have the potential to

lead to a cure of the tumor.

Discussion

In this paper, we have investigated the dynamics of tumor

progression under immune system surveillance while considering

the effects of increasing rates at which (epi)genetic alterations are

generated. We defined specific situations that can arise due to the

interactions of immune system cells and tumor cells. When the

tumor cell population is able to persist under immunosurveillance

without leading to tumor growth, then a state of tumor dormancy

ensues. Should the immune system not be capable of efficiently

suppressing the tumor cell population, then partial or complete

immunoescape is possible, depending on whether some or all

tumor clones evade immune system inhibition. Finally, an error

catastrophe occurs when the tumor cells evolve mutation rates that

are incompatible with the maintenance of a functioning genome

due to excess error.

The dynamics of the system and likelihood of these different

states depend on the rate at which variability emerges in the

population (denoted by the mutation rate u per cell division) as

well as the number of distinct tumor clones (given by N) that are

distinguished by their capabilities of generating a specific immune

response (see Figure 2). If both quantities are excessively large,

then an error catastrophe occurs and the original tumor cell

population goes extinct. In intermediate regimes, states of

dormancy and partial or complete immunoescape are possible.

We also investigated the extent to which the total number of tumor

cells depends on these parameters and identified regimes in which

the maximum number of tumor cells is attained. Moreover, we

relaxed the model assumptions to consider more complex

scenarios such as growth competition among tumor variants,

innate immune responses that non-specifically recognize and kill

tumor cells, and different growth rates of tumor variants. These

studies revealed that the patterns of states do not vary significantly

as the assumptions of competition, growth, and innate immune

responses are altered; however, internal competition among tumor

variants renders it difficult for tumor cells to achieve complete

immune escape.

Finally, we investigated the effects of different treatment modalities

on the rates of tumor progression and found that administration of

both chemotherapy and immunotherapy leads to optimum response

rates, thereby confirming recent experimental findings [49,50,51].

These investigations have direct implications for the clinical

management of cancers since they incorporate both mutator

phenotype and the interactions between tumor cells and the immune

system. A consideration of these factors is essential for an

understanding of the dynamics of tumor cell populations evolving

during immune system attacks. Our results thus suggest that

Figure 5. More complex scenarios arising during tumor progression. The figure displays the effects of more complex situations arising during
tumorigenesis such as internal competition between tumor cells of different variant types (A), the presence of an innate immune response such as NK
cells, which inhibit all tumor cells equally (B), different growth rates of tumor variants (C), and all of the above (D). These factors are incorporated into the
basic model, equation (1). The qualitative behavior of the system is preserved although the size and identity of the parameter regimes for various
outcomes are different. Additional parameters in the extended models are (B) g~0:025, r~0:000000323, k~0:0412 and s~13000, (C) variant growth
rates ai are randomly sampled from a normal distribution with mean = 0:025 and variance = 0:01, and (D) all of the above.
doi:10.1371/journal.pcbi.1002370.g005
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Figure 6. Optimal treatment strategies. The figure displays the effects of several treatment modalities on the total tumor burden. Treatment
starts at time t~0. The number of tumor variant types and the mutation rate are given by N~50 and u~0:01. We consider situations in which tumor
cell populations have reached the state of complete immunoescape before the initiation of therapy. (A and B) Chemotherapy is administered which
reduces the number of tumor variant types and induces tumor cell deaths proportional to the tumor cell number. (C) Chemotherapy is administered
which reduces the number of variant types and the growth rates of tumor cells. (D) Immunotherapy is used which replenishes the number of tumor-
specific immune cells. (E and F) Chemotherapy and immunotherapy are administered which reduce the number of tumor variant types, induce tumor
cell deaths, and replenish specific immune cells. Parameters are (A) 10% of tumor cells are killed per time unit by chemotherapy (b~0:1) and the
number of tumor variants decreases to N ’~50 (red), N ’~40 (yellow), N ’~30 (green), N ’~20 (blue), and N ’~10 (purple); (B) the number of tumor
variants does not change (N ’~50), but 10% (red), 20% (yellow), 30% (green), 40% (blue), and 50% (purple) of tumor cells are killed by chemotherapy;
(C) growth rates are reduced by 10% by chemotherapy and the number of tumor variants decreases to N ’~50 (red), N ’~40 (yellow), N ’~30 (green),
N ’~20 (blue), and N ’~10 (purple); (D) 1 (red), 100 (yellow), and 10,000 (green) immune cells specific to each tumor variant are added into the
system by the administration of immunotherapy; (E) 10,000 immune cells specific to each tumor variant are added into the system by
immunotherapy, 10% of tumor cells are killed per time unit by chemotherapy, and the number of tumor variants decreases to N ’~50 (red), N ’~40
(yellow), N ’~30 (green), N ’~20 (blue), and N ’~10 (purple) by chemotherapy; and (F) 10000 immune cells specific to each tumor variant are added
into the system by the administration of immunotherapy, 10% of tumor cells are killed per time unit by chemotherapy, the number of tumor variants
does not change (N ’~50), and mutation rates are u~0:01 (red), u~0:05 (yellow), and u~0:1 (green).
doi:10.1371/journal.pcbi.1002370.g006
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combination therapy incorporating both chemotherapeutic and

immunostimulatory agents would lead to best results in the clinic.

Our mathematical framework represents only one possibility of

modeling the system of tumor and immune system cells. This

modeling choice was made for reasons of mathematical simplicity

as well as availability of parameter estimates; however, several

model extensions are conceivable. For instance, the spatial

components of the system could be incorporated such that the

spatio-temporal aspects can be considered. Also, we have neglected

stochasticity in our formulation of the mathematical model since

both population sizes and mutation rates are large, and therefore

deterministic dynamics dominate. However, for more detailed

investigations – such as a determination of the probability that a

certain phenotype arises – the stochasticity of the system cannot be

neglected. Such studies will be the topic of future contributions.

Furthermore, interactions with the microenvironment such as with

stromal cells and other factors could be considered. The

incorporation of these extensions are complicated by the fact that

few quantitative estimates are available. The determination of

system parameters necessary for including such factors into a

mathematical framework is an important goal of the field.

Methods

Mathematical analysis
Let us first consider the basic model, equation (1), in detail. The

basic model can be considered qualitatively as a 4-dimensional

ODE system (although equation (1) is a 2(Nz1)-dimensional

ODE system) when analyzing the equilibria, since all parameters

in the equations describing xi and yi are the same, and therefore

xi and yi have the same properties at the equilibria. Hence we can

consider that X~x0zNxi with respect to the equilibria, where N
is a model parameter.

Existence conditions of equilibria
We investigated the existence conditions of the equilibria of

model (1). The model has seven possible equilibria:

E0 ~(0,0,0,0);

Ee ~(0, xi
_

,0,0) where xi
_

~
a

d
;

Ec ~(~xx0,~xxi,0,0) where ~xx0~
f0(1{Nu)

d
and

~xxi~
az

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z4f 2

0 (1{Nu)u
q

2d
;

En ~(0, ’xi ,0, ’yi ) where ’xi ~
ds

c{dN
and

’yi ~
(a{d ’xi )(szN ’xi )

p
;

Eu ~(x̂x0,x̂xi,0,ŷyi) where x̂x0~
f0(1{Nu)

d
and

x̂xi~
dfdszf0(1{Nu)g

d(c{dN)
,

ŷyi ~
(f0ux̂x0zax̂xi{dx̂x2

i )(szx̂x0zNx̂xi)

px̂xi

;

Ep ~(�xx0,�xxi,�yy0,0) where �xx0~
d(szN�xxi)

c{d
,

�yy0~
c(szN�xxi)

p(c{d)
f0(1{Nu){

dd(szN�xxi)

c{d

� �
,

and �xxi is the positive root of the following equation:

F (xi)~d(c{d)�xx2
i {fa(c{d)zf0dNug�xxi{f0dsu~0;

Ez ~(xz
0 ,xz

i ,yz
0 ,yz

i ) where xz
0 ~xz

i ~
ds

c{(Nz1)d
,

yz
0 ~

cs

pfc{(Nz1)dg|

f0(1{Nu){
dds

c{(Nz1)d

� �
, and

yz
i ~

cs

pfc{(Nz1)dg f0uza{
dds

c{(Nz1)d

� �
;

While the equilibria E0 and Ee always exist, Ec only exists if

Nv1=u. Furthermore, En exists if Nvc=d{ds=a, and Eu exists if

Nv1=u, Nvc=d and f0ux̂x0zax̂xi{dx̂x2
i w0 because c{dw0. The

existence condition of Ep is ff0(1{Nu)(c{d){ddsg=ddNw�xxi. In

addition, we calculate the existence conditions of Ez as follows.

Note that xz
0 ~xz

i w0 and yz
i w0 are equivalent to Nv(c{d)=d

and Nv(c{d)=d{ds=(azf0u), respectively. If Nv(c{d)=d,

then we have the following relations:

yz
0 w0 uf0(1{Nu){

dds

c{(Nz1)d
w0

uG(N)~f0duN2{f0fu(c{d)zdgNzf0(c{d){ddsw0,

because G(1=u)v0, G(N)~0 always has real roots Nc and �NNc

(Ncv
�NNc). Here we assume that f0(c{d){ddsw0: otherwise Ez

never exists and Ec becomes stable. Therefore, yz
0 w0 is equivalent

to NvNc. Note that the roots of G(N)jd~0~0 are (c{d)=d and

1=u, which implies that Ncv(c{d)=d, 1=u. Furthermore,

when u~0, G(N)w0 is equivalent to Nv(c{d)=d{ds=f0.

Since (c{d)=d{ds=av(c{d)=d{ds=f0 in the context of f0wa

(which is a suitable assumption), we can roughly estimate that

(c{d)=d{ds=(azf0u)vNc if uvv1. Consequently, if

Nv(c{d)=d{ds=(azf0U), f0(c{d){ddsw0, f0wa and

uvv1, then Ez exists.

Derivation of thresholds
Consider the situation in which Ez exists, all tumor cells are

suppressed by their specific immune responses, and the number of

tumor variants is 1 (i.e., N~1). Let us investigate the transversal

eigenvalue in the yi{direction at Ep. Here we define

N�1 ~
c{d

d
{

ds

azf0u
:

Since sz�xx0zN�xxi~c�xx0=d, the transversal eigenvalue is evaluated

as follows:

Ly’i
Lyi

v0 u
c�xxi

sz�xx0zN�xxi

{dv0

u
�xxi

�xx0
{1

� �
dv0

u�xxiv
ds

c{d(Nz1)
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uF
ds

c{d(Nz1)

� �
w0

u
sd(c{d)½ff0(Nz1)uzdsgd{cf0uzafd(Nz1){cg�

fc{(Nz1)dg2
w0

uff0(Nz1)uzdsgd{cf0uzafd(Nz1){cgw0

uN�1vN:

This result implies that, if N�1vN , then Ez disappears from R4
z

and yi approaches 0 near Ep. Hence only the original tumor cells

are suppressed by their specific immune responses while tumor

variants escape from immune surveillance once the number of

tumor variant exceeds N�1 . Next, we investigate the transversal

eigenvalue in the y0{direction at Ec. Here we define N�2 to satisfy

f0(1{N�2 u)(c{d){dds

ddN�2
~�xxi(N

�
2 ):

The transversal eigenvalue is evaluated as follows:

Ly00
Ly0

v0 u
c~xx0

sz~xx0zN~xxi

{dv0

u c~xx0v(sz~xx0zN~xxi)d

u 2(c{d)f0(1{Nu){d(2dszaN)

vdN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z4f 2

0 (1{Nu)u
q

u f2(c{d)f0(1{Nu){d(2dszaN)g2

vd2N2fa2z4f 2
0 (1{Nu)ug

u 4Sc2f 2
0 (Nu{1)2{cf0(Nu{1)f2f0(Nu{1){aN{2dsgd

z½f 2
0 f1{2NuzN2(u{1)uzN3u2gzds(aNzds)

{f0(Nu{1)(aNz2ds)�d2Tv0:

On the other hand, we have the following relations:

N�2vN u
f0(c{d)(1{Nu){dds

ddN

v

a(c{d)zf0duNz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fa(c{d)zf0duNg2

z4(c{d)f0udds

q
2d(c{d)

u2(1{Nu)f0(c{d)2{d(c{d)(aNz2ds){f0ud2N2

vdN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fa(c{d)zf0duNg2

z4(c{d)df0dsu

q

uf2(1{Nu)f0(c{d)2{d(c{d)(aNz2ds){f0ud2N2g2

vd2N2½fa(c{d)zf0duNg2
z4(c{d)df0dsu�

u4(c{d)2Sc2f 2
0 (Nu{1)2{cf0(Nu{1)f2f0(uN{1){aN{2dsgd

z½f 2
0 f1{2NuzN2(u{1)uzN3u2gzds(aNzds)

{f0(Nu{1)(aNz2ds)�d2Tv0:

This result implies that N�2vN is equivalent to Ly’0=Ly0v0 near

Ec; that is, if N�2 vN, then Ep disappears from R4
z and y0 converges

to 0 near Ec (Ec is stable). Thus, the immune response against the

original tumor clone also becomes inactivated if the number of tumor

variants exceeds N�2 . Note that we consider a restricted region of u and

N, where 2(1{Nu)f0(c{d)2{d(c{d)(aNz2ds){f0ud2N2
w0.

Consequently, all tumor cells escape from their immune responses

once the number of tumor variants exceeds N�2 . Furthermore, the

original tumor cell clone is no longer sustainable (i.e., an error

catastrophe occurs) as soon as the number of the variants exceeds

N�3 ~1=u.

The total number of tumor cells
Let us now calculate the total number of tumor cells at

equilibrium. Note that the dynamics of the basic model, equation

(1), might not converge to an equilibrium, but may oscillate if

NvN�2 .

When the number of tumor variants is 0vNvN�1 , then the total

number of tumor cells at Ez is Xz~(Nz1)ds=fc{(Nz1)dg.
Since we evaluate LXz=LNw0 and LXz=Lu~0, the total number

of tumor cells increases as the number of variants grows. When the

number of variants is N�1 vNvN�2 , then the total number of tumor

cells at Ep is �XX~(cN�xxizds)=(c{d). Again, as we evaluate

L �XX=LNw0 and L �XX=Luw0, the total number increases as the

number of variants and the mutation rate increase. When the

number of variants is N�2 vNvN�3 , then the total number of tumor

cells at Ec is ~XX~f2f0(1{Nu)zaNzN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2z4f 2

0 (1{Nu)u
q

g=2d.

Here we find critical thresholds Nc and uc such as L ~XX=LNjN~Nc
~0

and L ~XX=Luju~uc
~0. Therefore, the total number of tumor cells

increases as long as the number of variants and the mutation rate

are N�3 vNvNc and uvuc, respectively. However, once the

number of variants and the mutation rate exceed Nc and uc,

respectively, the total number of tumor cells decreases. Eventually,

when the number of variants is N�3 vN, the total number of tumor

cells at Ee is Xe~aN=d.
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