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Abstract
The traditional view of cancer as a genetic disease that can successfully be treated with

drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in

many human cancer types. However, only a subset of mutations found within the genomic

landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such

“driver”mutations from innocuous “passenger” events is critical for prioritizing the validation

of candidate mutations in disease-relevant models. We design a novel statistical index,

called the Hitchhiking Index, which reflects the probability that any observed candidate

gene is a passenger alteration, given the frequency of alterations in a cross-sectional can-

cer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology

is based upon a population dynamics model of mutation accumulation and selection in colo-

rectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can

be used to aid in the prioritization of candidate mutations for functional validation and con-

tributes to the process of drug discovery.

Author Summary

Evolutionary dynamic models have been intensively studied to elucidate the process of
tumorigenesis. One key aspect of studying tumorigenesis is to distinguish the “driver”
mutations providing a fitness advantage to cancer cells against neutral “passenger” or
“hitchhiking”mutations. Many statistical models to address this question have been devel-
oped. Evolutionary models, however, add another layer of complexity by taking into
account the process of mutation accumulation and selection within the tissue. Here we
present a novel approach combining both statistical and evolutionary thinking to identify
driver mutations in cancer genomes using cross-sectional mutation data. Our method con-
siders the process of mutation accumulation and selection before and during colorectal
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cancer initiation. This work demonstrates the importance of using evolutionary popula-
tion dynamic models to study driver events of tumorigenesis.

Introduction
Cancer cells often harbor hundreds to thousands of genetic changes [1–3]. Many of those
changes represent neutral variation that does not influence cancer development; such muta-
tions are called passenger or hitchhiking mutations [1, 4, 5]. A few alterations, however, are
essential for driving tumorigenesis. Those changes are known as driver mutations and increase
the reproductive fitness of the cancer cell [6–8]. The identification of such mutations is of cru-
cial importance for drug discovery because they represent promising targets for therapeutic
intervention.

There is a growing literature of mathematical and statistical approaches to this question [9–
18]. In particular, several recent contributions utilized evolutionary models. Tomasetti et al
[18] investigated a multiphase model of cancer initiation and tumor growth and studied the
mutational burden of tumors across various tissue types. They found that the mean number of
somatic mutations in tumors of self-renewing tissues is correlated with patient age at diagnosis.
In their model, the time of tumor initiation is chosen so the results fit to incidence data.
Another evolutionary modeling framework was considered by Bozic et al [10]. In this work, the
mutation accumulation process during the tumor growth (post-initiation) phase was modeled.
The authors proposed a formula relating the number of driver mutations to the total number
of mutations in the tumor, and applied this methodology to experimental data to infer the
selective advantage conferred by typical somatic mutations. This model was based on the
assumption that each driver mutation leads to the same selective advantage over the parent cell
fitness. Finally, McFarlane et al [13] argued that passenger mutations can also accumulate
albeit weak deleterious effects, eventually resulting in oncogenic phenomena.

Adopting not evolutionary, but data-driven approaches, statisticians and computational
biologists have been successful at designing methodology to distinguish driver from passenger
mutations. For example, MuSiC [19] compares the mutation rates of genes against the back-
ground mutation rates using both the Neymanian likelihood ratio test and the Fisherian com-
bined p-value criterion. Youn and Simon [20, 21] further incorporated heterogenous
functional impacts of mutations at different nucleotide positions—for instance, missense muta-
tions are considered have less impact than frameshift indels. Later on, using a more ad hoc
approach, Vogelstein et al. [22] developed a method based on the patterns of mutation frequen-
cies in each gene: they required that> 20% of mutations in a putative cancer gene are located
at recurrent positions and are missense, and that> 20% of mutations in a putative tumor sup-
pressor genes are inactivating. MutSigCV [9], improved from the original MutSig method [1],
corrected for population and genomic heterogeneity of mutation rates using a high-dimen-
sional approach to decrease the false discovery rate when calling driver mutations based on
mutation frequency. Similarly, DrGaP [23] took into account the length of protein-coding
regions, transcript isoforms, variation in mutation types, different background mutation rates,
redundancy of the genetic code and others and used a likelihood ratio test to obtain signifi-
cance levels. Moreover, Multi-Dendrix, DriverNet, MuSiC, and MEMo [12, 17, 19, 24–26]
were also developed to identify driver pathways using network-based approaches. An inte-
grated meta-analysis using multiple methods can be accessed through DriverDB [27].

Here we describe a computational approach designed to identify alterations that act as driv-
ers during tumorigenesis. We first designed a mathematical model of the evolutionary
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processes of mutation accumulation both in healthy tissue during the phase prior to tumor ini-
tiation, as well as during the clonal expansion phase of the tumor. One novel aspect of our
model is the inclusion of flexible mutational fitness distributions during both phases of muta-
tion accumulation; each mutation may confer a random effect on the reproductive fitness of a
cell, drawn from a fitness distribution. We tuned this model to specifically describe disease pro-
gression in colorectal cancer by combining literature-based estimates of biological parameters
with epidemiological data on the incidence of colorectal cancer as well as pre-cursor condi-
tions. We then sought to identify driver mutations by considering a hypothetical neutral muta-
tion at any locus in the genome and following its progression through our evolutionary
framework to determine the likelihood of observing this mutation at a detectable frequency in
a significant portion of patients with this cancer type. This quantity is called the “Hitchhiking
Index” and can be used to reject the hypothesis that any particular candidate mutation is neu-
tral, thus identifying potential driver mutations. Since the likelihood of acquiring each candi-
date gene mutation may vary across the genome, we stratified mutation rates into three large
groups: those with high, intermediate and low mutation rates [9]. By helping to identify muta-
tions that are potential driver mutations during tumorigenesis, this methodology can be used
to aid in the prioritization of candidate mutations for functional validation.

The computational framework
Our computational approach is based upon the evolutionary dynamics of the accumulation of
driver and passenger mutations in a population of cells (Fig 1.(a)). There are two phases (Fig 1.
(b)): a pre-initiation phase and a clonal expansion phase. During the pre-initiation phase, the
first driver mutation has not yet emerged and the population is maintained at a homeostatic
cell number. Cells proliferate according to a stochastic process: at each time step, a cell is cho-
sen at random proportional to its fitness to divide, and its offspring replaces another randomly
chosen cell. During each cell division, a mutation may emerge with probability u. Each muta-
tion confers an additive change to the fitness of the daughter cell; this additive change is chosen
from a mutational fitness distribution which is approximated discretely by a mutational kernel
M1. The survival of the resulting mutant clone is dependent on its relative fitness, as well as any
subsequent mutations it may accumulate. This phase of the methodology is designed to model
the behavior of stem cells within a crypt of the colon.

If a cell in the population has accumulated a sufficiently large fitness to counter the homeo-
static mechanisms of the compartment, then the second phase of clonal expansion begins (Fig
1.(b)). The cell number in the tumor is now described by a multi-type stochastic branching
process: at each time step, a cell is chosen proportional to fitness to divide (possibly with muta-
tion) or chosen at random to die. This initiated cancer cell carries one or more driver mutations
that confer a larger growth than death rate; the population of cells thus grows on average expo-
nentially. Each time a cell in this population divides, a mutation may again arise with probabil-
ity u. Once again, mutations confer an additive change to the fitness of the daughter cell; this
additive change is chosen from a mutational fitness distribution which is approximated
discretely by a mutational kernelM2. This mutational kernel is not, in general, the same as the
mutational kernel from the pre-initiation phase (M1), since there is no reason to assume that
the mutational fitness distribution in a normal compartment of healthy cells during the pre-ini-
tiation phase should be the same as the distribution in a rapidly expanding cancer clone. How-
ever, we utilize the same family of mutation kernels, noting that the shape parameters may
differ between phases. As mutations accumulate and undergo clonal expansion in the model,
the number of cell types grows and the tumor population becomes more heterogeneous. Each
additional driver mutation increases the fitness of the cell lineage, such that the rate of
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expansion accelerates (Fig 1.(b)). Clonal growth continues until the tumor reaches its detection
size, Nd (Fig 1.(b)).

We then utilize this underlying evolutionary model to determine the probability q that a
particular candidate gene is found in a detectable frequency of the tumor, conditioned on the
null hypothesis that alterations of this gene are selectively neutral. This probability q is then
used to derive the probability of obtaining the observed frequency of alterations in the sample
set, given the null hypothesis. More specifically, when sampling tumors from Y patients, we cal-
culate the “Hitchhiking Index”, which specifies the probability of detecting a certain mutation

Fig 1. Schematic representation of the model. (a) During each cell division, a mutation might arise which
changes the fitness of a daughter cell according to a fitness distribution. (b) Tumor development consists of
two phases: the pre-initiation phase, in which the population consists of a constant number of N cells (blue),
and the post-initiation phase, in which more and more aggressive cell types emerge (shades of purple and
red). The tumor is diagnosed when the total population size reachesM. A neutral hitchhiker mutation (green)
might arise during the pre-initiation phase (c) or during the post-initiation phase (d).

doi:10.1371/journal.pcbi.1004350.g001
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in at least α% of Y patients, as

H ¼
XY

k¼daYe
PðX ¼ kÞ;

where X is binomially distributed as Binom(Y,q) and dαYe is the smallest integer greater than
αY. This index provides a tool for rejecting the null hypothesis. If for exampleH< 0.001 for a
given observed α and Y, we can reject the assumption of neutrality of a mutations in a given
gene of interest.

The parameters of this model (e.g. cell turnover rates and mutation kernels in both phases,
population size during homeostasis and at detection) must be specifically tuned for each cancer
and sample type. In addition to the evolutionary processes within the tissue, the value of the
Hitchhiking Index also depends upon the relative mutation rate of each candidate gene, detec-
tion sensitivity of the sample set, and the observed alteration frequency in the sample set. Note
that the Hitchhiking Index provides a method for rejecting the null assumption of neutrality;
however, failure to reject this assumption does not necessarily imply that the gene is neutral.

The pre-initiation phase
Let us provide further details of underlying mathematical framework that models the pre-initi-
ation phase, which was first introduced in [28]. During this phase we consider a small popula-
tion of cells of constant size N which describes a homeostatic compartment of cells at risk for
accumulating mutations leading to cancer initiation, described by a multi-type Moran process
[29]. Each cell on average divides every D days. Thus, at rate N/D (i.e. time between events are
i.i.d exponential random variables with mean D/N), the process undergoes division events.
During each event, a cell is chosen at random to die, and proportional to its fitness an individ-
ual is chosen to reproduce. Specifically, if there is a single cell with fitness s and N−1 cells with
fitness 1, then the cell with fitness s is chosen to reproduce with probability s/(s + (N−1)). Dur-
ing each cell division event, an (epi)genetic alteration may occur with probability u<< 1; thus
alterations arise in the compartment of cells at rate Nu.

The fitness effects of individual alterations are random variates drawn from a mutational fit-
ness landscape governed by the mutation kernelM1(�, �). HereM1(x,y) represents the probabil-
ity that a cell with fitness x produces a daughter cell with fitness y (i.e.Mðx; yÞ ¼ f xcðy � xÞ). If
y> x, then the fitness of the daughter cell is advantageous as compared to the fitness of its par-
ent cell; if y< x, it is disadvantageous, and if y = x, it is neutral. The type space is discretized
into fitness bins to aid in computational tractability, and thus the kernelM is a finite-state tran-
sition matrix. In this work we utilize a general family of mutation kernels that have exponen-
tially decaying tails on the positive and negative sides with shape parameters α and β,
respectively. Note that α = β = 0 represents the uniform distribution case, and for α,β> 0 the
mutational fitness distribution has a mode at 0 (neutral mutations). This process continues for
as long as the fitness of all cells is within the homeostatic range [a,b] for a = 1−1/N and b = 1
+1/N; these values were chosen since they signify the boundaries for neutral evolution [30].
Also note all sample paths will result in cancer initiation prior to death.

In the event that a cell with a sufficiently large fitness emerges, it can escape homeostatic
mechanisms in the compartment and initiate clonal expansion. It has been shown that when
3Nu(logN + γ)� 1, where γ is the Euler-Mascheroni constant, the time between mutational
events is much larger than the time it takes for a mutation to take over or go extinct in a popu-
lation of cells (see, e.g. [28]). In the application of colorectal cancer considered in this work,
this condition holds, supported from the parameterization discussed in the sectionModel
parameterization. Therefore, on the timescale of interest, the population moves between
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various homogenous states and we can approximate this process by a Markov process Z(�),
where Z(t) represents the fitness of the homogeneous compartment at time t. The process Z
jumps whenever a cell harboring a novel non-neutral mutation reaches fixation in the com-
partment, and takes values in the space of all possible fitness values dictated by the fitness land-
scape. This process closely approximates the behavior of cellular fitness values in a small
compartment for the vast majority of time.

Given that a mutation of fitness y arises in a population of cells with fitness x, the probability
that the mutation takes over the population is given by rx,y = (1−x/y)/(1−(x/y)N). By symmetry
we have rx,x = 1/N. With this information, we define the intensity matrix for the Markov pro-
cess Z, denoted by Q = Q(x,y),

Qðx; yÞ ¼ urx;yM1ðx; yÞN=D; y < b

uNM1ðx; yÞ=D; y � b;
:

(

Mutational events transforming a cell with fitness x to a cell with fitness y occur at rate uM(x,y)
N/D, and of those a fraction rx,y reach fixation (i.e. 100% frequency) in the entire population. At
the lower end of the fitness range a, there is a reflecting boundary such that any fitness below a
is immediately replaced by a cell with fitness a; this behavior is implemented in the mutation
kernelM. By definition, we have Q(x,x) = −∑y 6¼ x Q(x,y), and the states x� b are absorbing soQ
(x,y) = 0 for all y and x� b. The summation is over all y in the discrete fitness space.

The process Z represents the dynamics of the fitness of a healthy compartment of cells over
time; this process is then conditioned upon the event that cancer initiation occurs during a
human lifetime [28]. This is achieved by creating an additional lifetime process, L, that is run
simultaneously with Z in a second dimension. The lifetime process has a single absorbing state
representing death of the patient, and transition rates between intermediate stages are tuned
using mortality statistics in the United States. Details of this tuning process can be found in
[28]. We are then interested in the joint process (Z,L) conditioned on Z hitting its absorbing
state (fitness greater than b) prior to L hitting its absorbing state (death). This set of sample
paths describes the cancer initiation paths which may lead to tumor diagnosis prior to death.

To consider the fate of a particular candidate mutation ‘A’ in our data set, suppose that this
mutation arises with probability u0 per cell division. Under our null hypothesis, we assume
mutation A is neutral and confers no selective advantage/disadvantage; thus its presence does
not alter the evolutionary outcome of the sample path. Conditioned on initiation prior to
death, we compute the probability of mutation A arising in the initiating cancer cell. To do
this, we analyze the amount of time the (Z,L) process spends in each state of the two-dimen-
sional state space. Details of this derivation are provided in the Methods.

The clonal expansion phase
Once a cell in the pre-initiation phase has acquired a fitness value greater than b, the second
clonal expansion phase of the model commences. This phase is modeled by a continuous time
multi-type birth and death process, initiated by the cell from the pre-initiation phase that has
accumulated a sufficiently large fitness to break free from the Moran process and initiate clonal
expansion. The initial branching process has birth rate b and death rate d, where b> d. During
this expansion phase, each time a cell divides, it has a probability u of mutating and selecting a
new random birth rate from a fitness distribution, and probability u0 of obtaining the specific
candidate mutation A without any change in birth rate. The birth rate of a mutated daughter
cell is the parental fitness plus a random variable selected from a distribution specified by the
mutation kernelM2. The type space is once again discretized into fitness bins to aid in compu-
tational tractability, and the kernelM2 is a finite-state transition matrix, accordingly.
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Simulation methodology
We then aim to determine the probability that mutation A is present in a significant fraction of
the final population size at detection, Nd, conditional upon the event that the expansion process
was initiated and reached detection size during a human lifetime. To study this event we first
utilized analytical calculations to determine the probability of tumor initiation prior to death,
in the first phase of the model, by solving the linear system described in [28] using a biconju-
gate gradient stabilized method. We next performed event-driven Monte-Carlo simulations of
the two-dimensional Markov process describing the fitness of the crypt and the lifetime state
conditional on initiation prior to death [28]. To account for the fact that sample paths of inter-
est may be rare, the probability of initiation calculated in the previous stem was used to per-
form a Doob h-transform of the process (Z,L) conditioned on initiation prior to death. Thus we
only simulated sample paths that lead to initiation, saving computational time.

At the time of initiation for each sample path, the time of initiation as well as the status of
mutation A in the initiating cell is recorded. These initial conditions are used to begin a stochas-
tic simulation of the clonal expansion process. During each event in the simulation, a cell is cho-
sen to divide based on its relative fitness and abundance. During each cell division, a mutation
occurs with probability u and the outcome of that mutation is selected from the mutation kernel
Mc. The tagged mutation A arises with probability u0� u. Naturally, a certain fraction of paths
in the expansion phase die out at early times due to stochastic fluctuations. For the remaining
paths, the simulation is halted when the total population hits the detection size Nd, and then the
abundance of mutation A in the total population of tumor cells is recorded.

Results

Application to colorectal cancer
To apply this framework to analyze genomic data from any specific cancer type, the main chal-
lenge is to determine the probability q that a particular mutation of interest, mutation A, arises
during the clonal expansion phase and eventually makes up a significant fraction of the final
population size,M. This outcome can occur via two possible scenarios: (1) mutation A arises
and reaches 100% frequency during the pre-initiation phase, so that all cells of the resulting
tumor have mutation A (Fig 1.(c)), and (2) mutation A is not present in the initiating cell but
arises during clonal expansion (Fig 1.(d)). Recognizing these two mutually exclusive possibili-
ties suggests an interesting question: which is the more likely path out of these two scenarios?
The answer to this question depends on the parameters of the evolutionary model, which
might vary from cancer type to cancer type. We investigated colorectal cancer in particular,
through the approach outlined in the following.

Model parameterization. The parameters of our model can be divided into two sets
according to which phase (pre-initiation or clonal expansion) they belong to. Table 1 shows
the parameters involved during the pre-initiation and clonal expansion phases.

We estimated these parameters in colorectal cancer using a combination of biological
knowledge and clinical incidence data. A normal human colon contains approximately 15 mil-
lion crypts, and these crypts contain approximately 10 stem cells each that divide on average
once every 7 days [10]. As such, we estimate the population size during the pre-initiation phase
to be N = 10 and set the baseline birth rate of healthy stem cells D to be once every 7 days. The
mutation probability per cell division u is estimated to be 3�10−3; this follows from an estimate
in [31]: the mutation rate per base pair per cell division is roughly from 10−10 to 10−11, and the
size of the human exome is 3×107, and thus u = 10−10�3�107 = 3�10−3. The diameter of tumors
at diagnosis is around 1–10 centimeters and for each 1cm3 volume there are approximately 109
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cells [32]. It is commonly thought that only a small subset of the tumor cells are capable of
propagating the entire tumor cell population over time, and that these so-called cancer ‘stem’

cells comprise perhaps 1 in 10000 cells within the tumor [33]; thus the tumor detection size Nd

is set as 1 million cancer (stem) cells. The remaining parameters to set are the mutational fit-
ness kernels as well as the birth/death rate of the cell initiating clonal expansion. These parame-
ters are estimated using epidemiological data as outlined below.

The SEER database (seer.cancer.gov) states that the median age of colorectal cancer diagno-
sis in the US is approximately 69 yrs and the lifetime risk of colon cancer is around 4.8%. A sig-
nificant percentage of the population develops aberrant crypt foci (analogous to an initiated
crypt) during their lifetime, although exact incidences of this condition are unknown. We thus
suppose that the probability of initiation of at least one crypt within the entire colon should be
of the order of magnitude of 10–20 percent. Using this data, we then estimated the mutational
fitness distribution for each phase and initial expansion rate of the cell population to recapitu-
late these incidence estimates. A simple computational search of the parameter space for α1,β1,
α2,β2,b,d was conducted to find a set of parameters that lead to model behaviors closely match-
ing the three incidence data points discussed; however, there are multiple parameter sets that
can yield good matches. Thus, we tested the sensitivity of our model predictions to these
parameters in the model (Methods).

Using this procedure, our estimated mutational fitness distributions are shown in Fig 2.
(parameters α1 = β1 = 180,α2 = β2 = 1000) and the estimated initial birth and death rates in the
expansion phase are 0.004 and 0.001 days−1, respectively. To illustrate the match or the result-
ing predictions with incidence data, we computed the probability of initiation from a single
crypt during the Moran phase to be 1.15×10−8. Since there are approximately 15 million crypts
in the human colon, this leads to an overall incidence of aberrant crypt foci of approximately
17 percent. Once initiation occurs, the probability of reaching tumor detection size between
the time of initiation and the end of the lifetime is 0.28. Therefore, the event that any single
crypt initiates and leads to a detectable cancer has probability 1.15×10−8×0.28 = 3.23×10−9.
Then, if considering a binomial random variable with parameters 15 million (number of
crypts) and success probability 3.23×10−9, we obtained the lifetime risk of cancer to be approxi-
mately 4.85%. We also found computationally that the average age of diagnosis is between 65
and 70 years, and that for these cancers the age at the time of cancer initiation is around 55 to
60 years. We performed extensive sensitivity analyses demonstrating that, when varying the fit-
ness distribution with the restriction that the model predictions be consistent with incidence
data, the changes to the Hitchhiking index are negligible (Methods).

Finally, the parameter u0 represents the probability that our candidate neutral mutation
arises during each cell division. To take into consideration the local variation across the
genome of the mutation rate [9, 34], we first calculated the mutation rate for each genomic

Table 1. Parameters of the evolutionary model.

Parameter Definition Phase

N number of cells at risk for accumulating oncogenic mutations pre-initiation

D division rate of cells at risk for accumulating oncogenic mutations pre-initiation

u overall mutation probability per cell division both

α1, β1 shape parameters of mutational fitness kernel pre-initiation

b, d birth/death rate of cell initiating clonal expansion clonal expansion

α2, β2 shape parameters of mutational fitness kernel clonal expansion

Nd number of cells at time of detection clonal expansion

doi:10.1371/journal.pcbi.1004350.t001
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locus using the recently published analytical methodology MutSigCV [9]. This method esti-
mates differential mutation rates between genes on the basis of DNA replication timing, chro-
matin state, and transcription activity level. We then categorized all genes into three different
categories: the “high mutation rate” group, “intermediate mutation rate” group, and “low

Fig 2. Probability density function of mutational fitness change in the pre-initiation phase (a) and clonal expansion phase (b). Parameterization for
this example: in the pre-initiation phase, the decay rate parameter is 180, and for the expansion phase the decay rate is 1000.

doi:10.1371/journal.pcbi.1004350.g002
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mutation rate” group based on K-means clustering (K = 3) of the mutation rate of all genes,
where the mutation rate is defined as nsilent

Nsilent
from the standard MugSigCV output. Then the

median mutation rates were calculated for all three categories. Next, the ratios of “high” vs.“in-
termediate” and“low” vs “intermediate” categories, r1 and r2, were applied to calculate the
mutation rate per cell division by setting uintermediate = u0, uhigh = uintermediate�r1, and ulow = uin-
termediate/r2. Note that the baseline rate u0 is not based on the mutation rates inferred from can-
cer patients, but are determined as outlined above. However, the ratios between high,
intermediate and low mutation rate categories are inferred from cancer tissues. Unfortunately,
no accurate estimates are available for these quantities in normal tissue in order to determine
these ratios for pre-initiation stage of the model, so the cancer-derived rates are used for both
phases of the model.

Determining the Hitchhiking Index for each candidate gene. We then applied our meth-
odology to determine a frequency cut-off for passenger mutations by considering cross-sectional
data from colorectal cancer patients. We simulated the model using the parameters outlined
above for 1 million samples to determine the probability q that mutation A arises in more than
x % of cells in the tumor at detection, for a spectrum of mutation rate levels. Fig 3. shows the
number of samples (out of 1 million) in which the cell population harboring the mutation of
interest comprises more than a certain percentage (i.e detection threshold) of the final popula-
tion. The minimum detection threshold percentage is varied on the x-axis. For example, Fig 3.
shows that if the mutation is detectable at a frequency of 0.01 and higher, it is expected to be
observed with probability q = 0.26). For mutation rates of 10−5 and 10−4 per gene, assuming that
the mutation is detectable at a frequency of 0.01 and higher, we obtain q = 0.027 and 0.26,

Fig 3. Number of patients out of 1 million samples in which cells with candidate mutation ‘A’make up
a threshold (x-axis) frequency in the ending tumor cell population. (Black) all patients, (red) patients in
which mutation A arose and reached fixation (i.e. 100% frequency) during the pre-initiation phase.

doi:10.1371/journal.pcbi.1004350.g003
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respectively. Remarkably, in the vast majority of the time, if the mutation is present in a signifi-
cant percentage of the tumor (e.g. 10 percent or higher), it arose during the pre-initiation phase.

We then applied our methodology to analyze possible driver genes in colorectal tumors
based on data from The Cancer Genome Atlas (TCGA) [35]. In particular, we utilized the cal-
culated q values for each mutation rate to determine the frequency threshold for rejecting the
hypothesis that a particular candidate genetic mutation is a passenger mutation, by calculating
the Hitchhiking Index for each gene family. Fig 4. shows the Hitchhiking Index, i.e. the proba-
bility of observing at least x% of patients with a candidate mutation in the set of 220 TCGA
patients, for several different q values. For example, if we are considering a candidate mutation
whose background mutation rate is 10−5, our calculated q value is 0.027. Fig 4. then shows that
if the mutation is neutral, the probability of observing at least 19 patients with alterations in
this gene is less than 10−5. Thus we may use the Hitchhiking Index to set a threshold for reject-
ing the hypothesis (or alternatively determine a p-value) that a particular candidate gene muta-
tion is a passenger mutation.

Using this methodology with a cutoff of hitchhiking index 10−11, we identified a total of 43
genes to be drivers of colorectal tumorigenesis (S1 Dataset). Our method is able to identify the
known driver genes for colorectal cancer; additionally, we also identified some driver genes not

Fig 4. The Hitchhiking Index. Probability of detecting the passenger mutation in x out of 220 patients for a
variety of values q, which represents the probability that the candidate mutation ‘A’ is present in a sufficiently
large fraction of the final population size to be detected.

doi:10.1371/journal.pcbi.1004350.g004
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found by the MutSigCV study, such as COL12A1, MLL2, FAT4 and ARID1A. There exists lit-
erature supporting the crucial role of these genes in the development of colon cancer: for exam-
ple, COL12A1 has been reported to be expressed in colon cancer patients [36]; FAT4 has been
shown to have increased recurrent mutation in colorectal cancer [37]; MLL2 is known to have
altered expression in colon cancer as well [38]. Finally, ARID1A, a chromatin remodeling gene,
has also been reported to be mutated in colon cancer [39].

We then performed a power analysis to provide some guidance about how many patients
would need to be profiled in order to obtain a more complete list of colorectal driver genes.
Out of 220 patients in the data, we randomly selected 10, 20, � � �,210 subsamples, performed all
the above analyses on the subsamples, and identified the number of driver genes using the
same cutoffs. The number of driver genes identified using this approach is shown in S1 Fig. We
found that as the number of patients increases, the number of genes identified as driver genes
by our approach increases linearly; thus, according to our methodology, a large sample size of
profiled patients would be required for the size of the identified driver gene set to level off.

Discussion
In this work we have developed a novel methodology to identify driver mutations from cross-
sectional tumor sequencing data, based on an evolutionary model of tumorigenesis. We devel-
oped the ‘Hitchhiking Index,’ which represents the probability of observing alterations in a par-
ticular gene in a certain fraction of the patient sample set, under the null assumption that the
gene is not a cancer driver. This index takes into account the impact of a number of important
parameters on the statistical power of the conclusion: the sample detection threshold (sensitiv-
ity of the sequencing method), patient sample size, and variable mutation rates across the
genome. The underlying evolutionary model is designed and parameterized for colorectal
tumorigenesis, but can be generalized to other cancer types. Here we have not incorporated full
pathway information of the gene of interest, but the model can easily be adapted to group
genes together into pathways and analyze selection dynamics at the pathway level instead of at
the individual gene level. The Hitchhiking index is calculated for any particular candidate gene,
using the observed patient sequencing data, and can be used to identify candidate genes as
potential drivers.

We applied our methodology to analyze TCGA data for colorectal cancer, considering het-
erogeneous mutation rates measured per cell division which are inferred from baseline muta-
tion rate estimates and relative changes from that rate across the genome as determined by
MutSigCV [9]. We built upon MutSigCV by incorporating heterogeneous mutation rate esti-
mations into our model: (1) We specify an underlying evolutionary dynamic model to describe
the processes generating mutations to calculate the probability of a mutation being a driver
event; and (2) by controlling for the bias introduced by DNA replication timing, gene expres-
sion and higher-order chromatin structure, we infer the relative mutation rate per cell division
compared to the cross-sectional mutation rate. Remarkably, we found that any gene that is
mutated in at least 10% of cells in the tumor is most likely to have arisen prior to clonal expan-
sion of an initiated cell clone. Utilizing the Hitchhiking Index analysis, we obtained a list of 43
genes identified as potential drivers. In comparison to a recent analysis utilizing MutSigCV [9],
our methodology identified other colorectal cancer related genes such as COL12A1, MLL2,
FAT4m and ARID1A. Recent studies support the crucial role of these genes in the development
of colon cancer [36–39].

One caveat to our approach is that it is unclear how to choose the threshold Hitchhiking
Index value; similar to a statistical p-value, the choice of threshold at which to reject the null
hypothesis is largely a matter of choice. Since this index depends upon the sample size and
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detection sensitivity of the method, it would be difficult to compare absolute values of the
Hitchhiking Index across different sample sets. Note that if the Hitchhiking Index for a particu-
lar gene is above the rejection threshold, we do not conclude that the gene is necessarily a pas-
senger—our methodology provides only the probability of observing the data, conditioned on
the assumption of neutrality. Also, note we used the same u and u0 in both phases. While the
precise values are unknown, it is possible that the mutation rates can be higher in the latter
phase, since it is possible that the initiating mutation causes an increase in the mutation rate
itself, e.g., a mutation that reduces the effectiveness of DNA repair. This scenario has the poten-
tial to alter the creation rate of passenger mutations and will be the topic of future investiga-
tions. As such, our current work excludes consideration of colorectal cancers with
microsatellite instability, a deficiency of the mismatch repair (MMR) pathway that leads to
increased point mutation rates across the genome. Additionally, hereditary forms of colorectal
cancer are also not explicitly considered and will be investigated in future work. Furthermore,
the presented model does not include all possibilities for alternative initiation mechanisms.
Such a model would not be very useful since it would address mutually exclusive evolutionary
trajectories; instead, we have presented one possible model of the evolutionary process leading
to tumorigenesis. A novel feature of this model is the formulation of the initiation event as an
accumulation of a sufficiently large fitness advantage in the initiating cell through a flexible
series of mutational events rather than a specific set or number of hits. Because of this flexibil-
ity, a multitude of mutational pathways can lead to initiation in our model, and in particular it
can be used to consider the situation in which each of these events is disruption of a particular
pathway. The approach can also modified to incorporate the more traditional view that a spe-
cific set of hits is required to initiate cancer (by specifying instead a discrete distribution for the
mutational fitness landscape) and making this landscape dependent on the current mutation
status.

Here, we have utilized a specific, tunable evolutionary model of mutation accumulation in
cancer to develop a novel statistical test for identifying driver mutations from cross-sectional
genomic data of cancer sample sets. We have opted for a somewhat more flexible approach to
modeling the process of mutation accumulation and initiation. For instance, we have consid-
ered mutational heterogeneity in a coarse manner, by grouping genes into three different cate-
gories with different baseline mutation rates per cell division. A more complete model could in
principle use different baseline mutation rates for each categories of DNA replication timing,
gene expressions and other genomic features, even including the difference between transitions
and transversions [15, 40]. In contrast to the model by Tomasetti et al [18], in which all muta-
tions prior to initiation are considered to be selectively neutral and the time of tumor initiation
is set by epidemiological data, here we have assumed that mutations conferring random fitness
advantages can arise during the constant population size phase, and that tumor initiation
occurs as a result of accumulating sufficiently many advantageous mutations to escape homeo-
stasis. Consequently, in our model the timing of cancer initiation is random, and correlated
with the process of mutation accumulation. We have carried the same modeling framework
through to the tumor growth phase, in which cells may accumulate mutations conferring a
spectrum of fitness changes. Consequently, in contrast to the model by Bozic et al [10], we
assume that driver mutations may be variable in number and lead to variable fitness effects and
that tumors may alternatively have many drivers with small selective advantage or a few drivers
with large selective advantages. These differing modeling choices reflect a rich set of hypotheses
about the underlying evolutionary dynamics of mutation accumulation in cancer; more model-
ing and experimental effort is needed to investigate the perspectives and relative strengths of
these and many other models. Several important conclusions, however, seem robust: first,
mathematical analyses of the evolutionary processes in cancer suggest that the majority of
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mutations found in tumor sequencing efforts arise prior to cancer initiation; and second, math-
ematical frameworks of evolution and mutation accumulation in cancer can be exploited to
extract important biological information from genomic sequencing data.

Methods

Probability that mutation A is present at the start of clonal expansion
Letm(t) denote the number of cells carrying mutation A that are present in the compartment
at time t. We define the stopping times τ = inf{t� 0 : Z(t)� b} and σ = inf{t� 0 : L(t) = d}. We
are interested in finding

mAðx; rÞ ¼ Pðx;rÞ½mðtÞ > 0jt < s�; ð1Þ

where μA(x,r) represents the probability that mutation A is present in the compartment at the
time of initiation starting from state (x,r). Between jumps of the two-dimensional process (Z,
L), a random number of neutral mutations can reach fixation within the compartment of cells.
Let Tj and Tj+1 be the jump times of (Z,L), and for simplicity denote (Z(Tj),L(Tj)) = Xj. During
the transition from Xj to Xj+1, the compartment can accumulate Yj(Xj) neutral mutations.
Define

rðx; rÞ ¼ uM1ðx; xÞ=D
uM1ðx; xÞ=D� Qðx; xÞ � S

:

The numerator represents the rate at which neutral mutations which eventually reach fixation
arise within the compartment, and the denominator represents the total rate at which fixating
mutations arrive and the time process changes. With this definition, Yj(x,r) is distributed like a
geometric random variable with

ProbðYjðx; rÞ ¼ nÞ ¼ Zðx; rÞn ð1� Zðx; rÞÞ;

which gives

ProbðYjðx; rÞ > 0Þ ¼ rðx; rÞ:

By conditioning on the first step we can see that μA(�,�) satisfies the following equation for each
possible fitness x in [a,b],

mAðx; rÞ ¼ rðx; rÞ þ
X
y

Qrðx; yÞmAðy; rÞ
uM1ðx; xÞ=D� Qðx; xÞ � s

� Qxðr; r þ 1Þmðx; r þ 1Þ
uM1ðx; xÞ=D� Qðx; xÞ � S

;

where we note that μA(x,r) = 0 for those fitnesses that lie outside of [a,b]. Therefore we can find
μA(�,�) by solving the linear system.

Sensitivity analysis
We tested the sensitivity of the model predictions to varying parameters. First, we studied the
sensitivity to the parameters for which we have no experimental data-based estimates: the
shape parameters of mutational fitness distribution and the birth and death rates of the initiat-
ing cell. We also investigated the sensitivity to the background mutation rate u, and in particu-
lar studied the impact of an increased mutation rate during the clonal expansion phase. For all
of these sensitivity analyses we confined our parameter variation to the ranges in which the
model is consistent with the population-level epidemiological data. In particular, we required
that there is a significant incidence of aberrant crypt foci over a lifetime (10–90 percent of the
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population), that the average age at diagnosis is between 70–79 yrs, and that the lifetime risk of
colon cancer is around 6–10%.

Sensitivity to α1 and β1
We first investigated the sensitivity of our model predictions to the shape parameters of the
mutational fitness distribution during the pre-initiation phase of the model. Keeping all other
parameters constant, we varied α1 and β1. To determine the allowable ranges of these parame-
ters, we first studied the probability of initiation during a lifetime as a function of α1 and β1.
Note that this is the probability that a single crypt leads to initiation during a lifetime, and
there are 15 million crypts in the average human colon. Thus, in order to ensure that the aver-
age probability of aberrant crypt foci is between 10 and 90 percent in the population, we
require that the probability of initiation from a single crypt is between 0.7×10−8 and 6×10−8. In
Fig 5.a the probability of initiation for a single crypt is plotted for example ranges of parameters
α1,β1. The intermediate colors (between dark blue and red) represent admissible initiation
probabilities. Thus we see that for any given α1, there is a small range of β1 that can give rise to
the correct range of initiation probabilities. We then investigated the compatibility of these α1,
β1 combinations with the other incidence data. We found that only α1 in the range 170* 180
can give rise to the correct overall lifetime cancer incidence rates within the range 6–10%. Fur-
thermore, for α1 = 170, β1 must fall within the narrow range 115* 120; larger values of β1
result in lifetime incidence above the allowable range, and lower values of β1 result in too low
an incidence of aberrant crypt foci in the population Similarly, for α1 = 180, β1 must lie within
the range 180* 185 to match the incidence data constraints.

Next we used the model to determine the sensitivity of the results, as determined by the
Hitchhiking Index, to variations to α1 and β1 within these allowable ranges. For example, Fig 5.
b shows the number of patients out of 100,000 samples in which cells harboring mutation ‘A’
make up a threshold frequency in the final tumor cell population, for varying α1 and β1. We
observed only modest differences in q, which would translate to negligible differences in the
Hitchhiking Index. Therefore, within the constraints of matching the observed incidence data,
the Hitchhiking Index is robust to varying the shape parameters of the mutational fitness land-
scape during the carcinogenesis phase.

Sensitivity to α2 and β2
We also investigated the sensitivity of the results to the shape parameters of the mutational fit-
ness distribution during the clonal expansion phase of the model. Fig 5c. demonstrates the
impact of varying α2 and β2 up to 60 percent from the original values on the Hitchhiking
Index; we found that the Hitchhiking Index is not particularly sensitive to these parameters.

Sensitivity to initial growth kinetics of clonal expansion, b and d
We then investigated the model’s sensitivity to the growth rates of the first cell initiating clonal
expansion (b,d). We varied b first to determine the impact of the net growth rate on the Hitch-
hiking Index. Variation of this parameter leads to overall lifetime cancer incidence rates that
fall outside the range of our incidence data; this suggests that the net growth rate during the
clonal expansion phase within our model should not vary significantly from the fitted value.
There is, however, the possibility that both b and d vary in such a way that the net growth rate
remains conserved, for example if both b and d are increased or decreased by the same amount.
These variations might lead to small differences in the model predictions.
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Fig 5. Sensitivity analyses for model predictions. (a) Heatmap for the probability of initiation for a single
crypt for ranges of parameters of α1 and β1. (b) Number of patients out of 100000 samples in which mutant A
cells make up a threshold (x-axis) frequency in the ending tumor cell population, for variable shape
parameters of the mutational fitness distribution (α1,β1). (Solid) All patients (Dashed) Patients in which
mutation A arose and fixed during the pre-initiation phase. (c) Probability of detecting the passenger mutation
in x out of 220 patients for a varying α2, β2.

doi:10.1371/journal.pcbi.1004350.g005
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Supporting Information
S1 Dataset. The driver gene list. The gene list is based on a Hitchhiking Index of 10−7 and is
shown together with the output of MutSigCV. Columns: the gene name, the number of unique
base pairs that contain non-silent mutations in coding regions, the number of unique base
pairs that contain silent mutations in coding regions, the number of non-silent mutations in
coding regions, the number of silent mutations, the p-value calculated by MutSigCV, and the
q-value calculated by MutSigCV. The gene rank is ordered by q-value from the output of Mut-
SigCV.
(CSV)

S1 Fig. Computational analyses of the relationship between the number of identified driv-
ers and the number of samples sequenced. The subsamples consist 10, 20, . . ., 210 patients,
sampled from a total of 220, respectively. The blue line shows the number of identified drivers
as a function of number of samples. Error bars are the 95% confidence interval for each sub-
sample. The number of different simulations is 50 for each subsample and the error bar is
obtained from the 50 simulations.
(TIFF)
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