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Abstract

Despite mounting evidence that epigenetic abnormalities play a key role in cancer biology, their contributions to the
malignant phenotype remain poorly understood. Here we studied genome-wide DNA methylation in normal B-cell
populations and subtypes of B-cell non-Hodgkin lymphoma: follicular lymphoma and diffuse large B-cell lymphomas. These
lymphomas display striking and progressive intra-tumor heterogeneity and also inter-patient heterogeneity in their cytosine
methylation patterns. Epigenetic heterogeneity is initiated in normal germinal center B-cells, increases markedly with
disease aggressiveness, and is associated with unfavorable clinical outcome. Moreover, patterns of abnormal methylation
vary depending upon chromosomal regions, gene density and the status of neighboring genes. DNA methylation
abnormalities arise via two distinct processes: i) lymphomagenic transcriptional regulators perturb promoter DNA
methylation in a target gene-specific manner, and ii) aberrant epigenetic states tend to spread to neighboring promoters in
the absence of CTCF insulator binding sites.
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Introduction

Follicular lymphomas (FLs) and diffuse large B-cell lymphomas

(DLBCLs) are the most common non-Hodgkin lymphomas [1].

Follicular lymphomas represent a spectrum from low- to high-grade

tumors and, while predominantly diagnosed as indolent tumors,

progress to more aggressive lymphomas like DLBCL over the

course of several years [2]. DLBCLs are high-grade tumors that are

sub-classified based on gene expression profiling into a typically

chemo-responsive germinal center B-like (GCB) subtype and a more

refractory activated B-like (ABC) subtype (Figure 1A) [3]. Although

FL and DLBCL have markedly distinct clinical phenotypes, they

both originate from mature B-cells transiting the germinal center

(GC) reaction. When resting naı̈ve B-cells are activated by exposure

to T-cell dependent antigens, they migrate within lymphoid follicles

and initiate massive clonal expansion while simultaneously under-

going somatic hypermutation and class switch recombination.

Genetic defects arising as a byproduct of this immunoglobulin

affinity maturation process are believed to give rise to FLs and

DLBCLs [4]. Consistent with this hypothesis, genomic resequen-

cing studies identified a large number of mutations occurring in FL

and DLBCL. While it is known that FLs accumulate new mutations

as they progress, the underlying cause of the different phenotype of

de novo FL and DLBCL, which share many of the same mutant

alleles, remains unclear. Emerging data suggest that epigenetic gene

regulation through cytosine methylation is perturbed in FLs and

DLBCLs, yet very little is known about how aberrant DNA

methylation contributes to the disease phenotype, the genomic

features of epigenetic defects in these tumor types, and mechanisms

through which these defects occur. Recently we demonstrated that

DNA methylation patterning plays a key role in hematopoietic

development [5] and that DNA methylation and expression

signatures define molecular subtypes of diffuse large B-cell

lymphomas [6]. Here, we hypothesized that direct comparison of

DNA methylation patterning in normal B-cells, FLs and DLBCLs

would provide clues about gene deregulation during lymphoma-

genesis and explain the nature of the different clinical behavior of

these lymphoma subtypes.
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Results/Discussion

DNA methylation heterogeneity is associated with
increasing disease aggressiveness

We examined the DNA methylation profiles of normal naı̈ve B-

cells (NBC, 8 samples), normal germinal center B-cells (NGC, 10

samples), follicular lymphomas (FL, 8 samples), germinal center B-

like DLBCLs (GCB, 39 samples), and activated B-like DLBCLs

(ABC, 18 samples) (Figure 1A, Methods and Text S1, Module 1;

Table S1) using the HELP assay [7] and custom-designed

NimbleGen microarrays with probesets representing .50,000

CpGs corresponding to regulatory regions of roughly 14,000

human genes. In the HELP assay, the normalized array signal

intensity corresponds to the degree of methylation associated with

Author Summary

Follicular lymphomas and diffuse large B-cell lymphomas
are the most common non-Hodgkin lymphomas. Although
these diseases share many mutant alleles, the underlying
cause of the different phenotypes remains unclear. We
show that direct comparison of DNA methylation pattern-
ing provides insights about gene deregulation during
lymphomagenesis and explains the nature of the different
clinical behavior.

Figure 1. Methylation variation in normal and lymphoma samples. (A) Summary of the normal and lymphoma samples used in this study. (B)
Histogram representation of DNA methylation score (M-score, horizontal axis) and frequency (vertical axis). Positive M-scores represent hypo-
methylation while negative scores represent hyper-methylation. The DNA methylation distributions of samples are shown using the same color code
as in panel A. The methylation patterns of NBC are bimodal, where the positive node represents hypo-methylation and the negative node represents
hyper-methylation. The proportion of promoters with intermediate M-score (around zero), which represents high intra-sample variation, increases for
lymphoma categories with increased disease severity. (C) The histogram represents the frequency distribution of inter-quartile ranges (IQR) of the M-
scores per probeset for normal and diseased samples. The vertical axis represents the frequency of probesets and the horizontal axis represents the
IQR. High IQR values indicate high inter-sample variation, and the proportion of such promoters increases for lymphoma categories with increased
disease severity. (D) The scatter plot reflects the joint distribution of M-scores and IQR, which represent intra- and inter-sample variation, respectively,
per probeset for normal B-cells and lymphoma categories. The color intensity is proportional to the density of points on the graph. High inter-sample
variation is also associated with high intra-sample variation. The distribution of points becomes progressively broader and more smear-like in
lymphoma samples vs. normal B-cells. The colors are the same as in (A).
doi:10.1371/journal.pgen.1003137.g001
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each probeset (Methods, [6,8]). For any given probeset, a positive

or negative normalized signal intensity indicates that the respective

CpGs are either unmethylated or methylated (Figure S4). In

contrast, intermediate probeset signal intensity indicates that a

fraction of cells within the sample are unmethylated while others

are methylated, thus reflecting the heterogeneity of methylation.

We performed technical validation for the HELP array and

validated DNA methylation profiles of six DLBCL samples using

orthogonal base-pair resolution quantitative bisulfite sequencing

based assays: ERRBS and MassARRAY assays (Text S1, Module

1 and Figures S5, S6, S7, S8). Overall mapping of probesets

according to their positions along the human chromosomes

indicated that sites of hypo- and hyper-methylation were

distributed across all chromosomes in both normal and lymphoma

samples (Text S1, Module 1, and Figure S9). However, we noted a

higher abundance of intermediate methylation states in lympho-

mas and hypothesized that epigenetic heterogeneity might

contribute to the clinical features of the disease.

In order to address this question we derived two parameters:

(i) The ‘‘M-score’’, a measurement of intra-sample DNA

methylation heterogeneity. The M-score specifically reflects

the degree of methylation at a given probeset and thus the

uniformity with which specific CpGs are methylated or

unmethylated; an intermediate score (around zero) reflects

the presence of balanced hypo- and hyper-methylated CpGs

within the cells of a sample and thus high intra-sample

variation (Figure 1B).

(ii) The inter-quartile range (IQR) of the M-score, a measure-

ment of inter-sample heterogeneity, derived from comparing

the differences in signal intensity of given probesets across

different samples of the same normal or tumor cell type. The

IQR reflects the extent of inter-sample methylation variation

by measuring the spread of the distribution of M-scores

(Figure 1C).

Using these indicators for normal cell types, we observed a

strong bimodal distribution of probeset intensities, indicating that

the vast majority of gene promoter CpGs were predominantly

either unmethylated or methylated within the cells of a sample, as

represented by the two modes at positive or negative M-scores,

respectively (Figure 1B). This observation is consistent with

previous studies noting the bimodality of DNA methylation

distributions in normal tissues [7,9]. In contrast, the distribution

of DNA methylation in lymphoma samples was significantly

different from those of normal cells (Figure 1B; Kolmogorov-

Smirnov test between pairs of normal and lymphoma samples;

FDR corrected p-value,2.2610216). All lymphoma subtypes

showed a significantly greater proportion of probes with an

intermediate M-score, indicating increased intra-sample variation,

and most notably, such variation increased progressively from FL

to GCB to ABC DLBCLs. This intra-sample variation was not due

to sample purity, which was high for both lymphoma and normal

(NBC, NGC; .90% purity) samples as confirmed by flow

cytometry, and was not accounted for by differences in cellularity

among the samples [10] (Text S1, Module 1). In order to prove

that intra-sample variation is an inherent feature of neoplastic

transformation, rather than a technical artifact or a result of a

confounding biological factors, we performed analysis controlling

for (i) copy number variations using SNP data (Figure S1), (ii)

sample purity using % purity data (Figure S3), (iii) exclusion of low

signal-to-noise ratio probes from the analysis (Figure S4), (iv)

differences in mitotic rate using cell line data with known doubling

times (Figure S11; Table S2), and (v) potential age differences

between controls and DLBCL patients (Figure S12). Finally, we

validated the observation of increasing intra-sample heterogeneity

in DLBCLs using the MassARRAY and ERRBS orthogonal

assays, which supported our findings (Text S1, Module 1, and

Figures S5, S6, S7).

Likewise, we then found that the IQR values, which represent

inter-sample variation, were small in normal B-cell controls, but

again progressively increased in FL and the GCB and ABC

subtypes of DLBCL (Figure 1C; Mann-Whitney test between pairs

of normal and lymphoma tissues; FDR corrected p-value

,2.2610216). We also obtained consistent results using alternative

approaches to profile methylation changes as well as an alternative

definition of inter-sample variation (Text S1 Module 1, Figure

S10). Since higher-grade lymphomas are known to display

genomic instability, we verified that the observed differences in

methylation in lymphomas were not due to gain or loss of genomic

material by controlling for copy number alterations using SNP

data from the same patients (Text S1, Module 1, and Figure S1).

Variability was also independent of whether the probes were

localized in CpG islands or not (Text S1, Module 2; Figure S13).

We found that the promoter regions with high CpG density

usually were more hypo-methylated than others, as observed using

both HELP and ERRBS assays, but that the CpG density did not

affect patterns of inter-sample variation (Text S1, Module 2;

Figures S14, S15 S16). Notably, the probes with high intra-sample

variation (i.e., M-scores near zero) were also likely to have high

inter-sample variation (i.e., high IQR) in normal and lymphoma

samples (Figure 1D); this finding is consistent with the identifica-

tion of variable CpGs in solid tumors [11].

In summary, since FLs are diagnosed most often as indolent

tumors while GCB and ABC DLBCLs have progressively worse

prognosis, our findings suggest that the extent of intra-and inter-

sample variation in DNA methylation increases with disease

aggressiveness. Based on our cell line data (Text S1, Module 1, and

Figure S11) it is unlikely that the greater epigenetic heterogeneity

in more aggressive tumors is a reflection of higher proliferative

rates that lead to stochastic variation in the DNA methylation

distribution. Alternatively, heterogeneity could be related to loss of

function of specific epigenetic regulators that normally tightly

control DNA methylation patterns. Either way, epigenetic

diversity could foster the survival of subpopulations of lymphoma

cells after exposure to cytotoxic drugs, thus contributing to the

greater risk of relapse in ABC DLBCLs. We found that DNA

methylation diversity initiates within NGC, which are more

heterogeneous than NBCs (Figure 1B–1D), which is consistent

with recent findings [10]. All three lymphoma subtypes originate

via different molecular and likely epigenetic mechanisms from a

common precursor – germinal center B-cells. Each subtype is

characterized by a different extent of epigenetic heterogeneity,

which likely reflects different mechanisms of lymphomagenesis.

Epigenetic diversity might then cooperate with somatic mutations

in predisposing NGC towards malignant transformation.

The patterns of aberrant DNA methylation predict
patient survival

It is not known whether alterations in DNA methylation

patterning are associated with clinical outcome in lymphomas.

Using a phylogenetic clustering approach [12], which arranges

samples according to their distance in methylation patterning from

that of undifferentiated cells, we found that genome-wide DNA

methylation undergoes progressive changes from bone marrow

CD34+ hematopoietic progenitor cells to NBC and NGC, FL and

then DLBCL (Figure 2A). This finding reflects the ontogeny of

normal B-cell development, the origin of B-cell lymphomas in

Aberration in DNA Methylation in B-Cell Lymphomas
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NGC, and the increased aggressiveness of DLBCL subtypes. We

then performed a Kaplan-Meier analysis using a methylation

heterogeneity score derived from the distances of the methylation

pattern of each tumor to that of the methylation pattern of NGC

(Text S1, Modules 1 and 3; Figures S18, S19; Tables S3, S4). Cox

models incorporating the International Prognostic Index (IPI) [13]

and methylation heterogeneity score as covariates were then

utilized for stratification of patients into high- and low-risk groups,

depending on whether their estimated risk scores were above or

below the cohort median. Analyzing the GCB and ABC samples

together, we found that the methylation heterogeneity score

improved the concordance [14] of the predictions of the IPI from

0.64 to 0.7 (DC 0.06; 95% CI 20.08–0.20; Text S1, Module 3)

and yielded a significant risk stratification (HR = 3.85, p,0.03;

Figure 2B). Thus, we found that the extent of aberrant

methylation, as measured by the distance of a patient sample in

terms of its methylation patterning from that of normal B-cells, is a

significant predictor for survival: disease types with high intra-

sample methylation variation have a poor prognosis and short

survival while disease types with low intra-sample methylation

variation have a good prognosis and long survival. Increased

epigenetic heterogeneity may reflect the presence of diverse tumor

cell populations in the patient, which in turn increases the risk of

resistance and of the emergence of more aggressive clones, thus

leading to poor prognosis. In a complementary analysis, we

grouped the FL samples according to grade and found that DNA

methylation patterning becomes increasingly heterogeneous with

an increase in disease severity in FL (Text S1, Module 3; Figure

S20). Taken together, our results demonstrate that the landscape

of epigenetic DNA modifications is associated with the degree of

neoplastic transformation and aggressiveness of a tumor.

Aberrant cytosine methylation patterning is dependent
on chromosomal regions and local gene density

To determine whether genomic features direct the aberrant

cytosine methylation distribution in lymphomas, we examined

DNA methylation diversity at the chromosomal regional level. In

order to facilitate the visualization of intra-sample (M-scores) and

inter-sample (IQR) heterogeneity in DNA methylation, we

transformed the histograms shown in Figure 1B and 1C into a

‘‘violin’’ plot format (Figure 3A). Chromosomes were separated

into telomeric, centromeric, and intermediate regions. We

observed that centromeric regions were hyper-methylated in

normal cells but exhibited a gradual loss of methylation in

lymphomas (Figure 3B). Intermediate chromosomal regions

displayed increasing intra-sample variation with disease severity,

i.e. NBC,NGC,FL,GCB,ABC (p-value for NBC-FL,

NBC-GCB and NBC-ABC pairs,2.2610216; Kolmogorov-Smir-

Figure 2. The extent of DNA methylation aberration is predictive of patient survival. (A) Phylogenetic tree, as estimated based on the
correlation of group-averaged M-scores. Departure from normal methylation patterns is correlated with disease severity of the lymphoma samples.
(B–C) Kaplan-Meier curves for risk groups defined according to their methylation distance score (i.e. distance from normal B-cells), which reflects how
different a sample’s methylation profile is from that of NBC or NGC, for all DLBCL (GCB and ABC) samples. (B) Multivariate analysis with the
International Prognostic Index (IPI) and distance to NBC. (C) Only IPI.
doi:10.1371/journal.pgen.1003137.g002

Aberration in DNA Methylation in B-Cell Lymphomas
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Figure 3. Genome-wide patterns of aberrant methylation. (A) Graphical explanation of how the distribution of M-scores and IQR are
transformed into violin distribution plots to enable more efficient visualization and comparison on intra- and inter-sample variability. (B) Distribution
of the methylation score (M-score, left) and inter-quartile ranges (IQR, right) at probesets in centromeric, telomeric, and intermediate regions for
normal and diseased tissues. Bar width is proportional to the number of data points, and the colors are the same as in Figure 1A. (C) Distributions of
M-score (left) and IQR (right) are shown for gene-poor, gene-rich, and intermediate regions.
doi:10.1371/journal.pgen.1003137.g003
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nov test), suggesting that much of the heterogeneity observed in

the initial analysis is localized in these regions. All three regions

displayed an overall tendency towards greater inter-sample

variation in lymphoma cells compared to normal cells throughout

all three chromosomal regions. These results were also validated

using the ERRBS assay (Text S1, Module 2; Figure S17).

To investigate whether disruption of cytosine methylation is

associated with gene density, we divided the genome into non-

overlapping windows classified as gene-rich, intermediate, or gene-

poor (Methods section). We found that in normal B-cells, gene-rich

regions displayed a bimodal methylation pattern, while gene-poor

regions were mostly hyper-methylated. This distribution was

perturbed in lymphomas, which exhibited increased intra-sample

variation in gene-rich regions, while gene-poor regions displayed

progressive hypo-methylation compared to normal B-cells

(Figure 3C). Inter-sample variation was low in normal cells in

both gene-poor and gene-dense regions, but significantly increased

in the lymphoma subtypes for both categories (FL: p-value

,161023, GCB and ABC: p-value,1610210; Mann Whitney

test). Our findings were robust even after excluding centromeric

and telomeric regions (Text S1, Module 4; Figure S21). Taken

together, our results show that abnormal methylation patterns in

lymphoma samples depend on chromosomal regions and local

gene density. This differential aberration in gene-poor versus gene-

rich areas suggests that these changes are not random, but are

directed by genomic or epigenomic modifiers.

Aberrant DNA methylation patterning spreads locally
between genes but is limited by CTCF

We next focused at the level of specific genes and their impact

on DNA methylation of neighboring genes (Figure 4A). We found

that 3,414 and 2,044 probesets were significantly hyper- and hypo-

methylated in ABC vs. NGC specimens, respectively (FDR-

corrected p-value,5.061023, Text S1, Module 5). For each of

these hypo- and hyper-methylated promoters (denoted as ‘‘i’’ in

Figure 4A and 4B), we investigated their neighboring promoter

probesets (‘‘i+1’’, ‘‘i21’’, ‘‘i+2’’, ‘‘i22’’ up to ‘‘i25’’ and ‘‘i+5’’).

For both hyper- and hypo-methylated promoter probesets, we

found that their neighboring promoter probesets also displayed a

change in methylation in the same direction (Figure 4B), and that

this effect weakened with increasing distance, i.e. decayed from i+1

(or i21) to i+5 (or i25). Therefore, when a promoter displayed

aberrant hypo- or hyper-methylation in lymphoma samples, their

neighboring promoters were also likely to follow a similar trend.

For instance, when the i-th promoter probeset was aberrantly

hypo-methylated (DM-score.0), then the i61 (i.e. i+1 and i21)

promoter probesets were also significantly aberrantly hypo-

methylated (DM-score.0; p-value: 4.5661025); and when the

i-th promoter probeset was aberrantly hyper-methylated (DM-

score,0), then the i61 positions were also significantly aberrantly

hyper-methylated (DM-score.0; p-value: 3.1161023). This effect

was stronger for hypo-methylated loci. For instance, when the i-th

probeset was aberrantly hypo-methylated (DM-score.0), then the

s65 (i.e. i+5 and i25) positions were also significantly aberrantly

hypo-methylated (DM-score.0; p-value: 3.0161023), but the

effect was not significant in the case of aberrant hyper-methylation

(DM-score,0; p-value.0.05 at i65 positions). We then found that

the aberrantly hypo-methylated promoters, but not the hyper-

methylated ones, generally displayed a greater extent of inter-

sample variation among ABC lymphomas (Figure 4C). Our results

were similar for the other lymphoma subtypes (Text S1 Module 5;

Figures S22 and S23), and at par with published reports that local

DNA methylation and histone modification (H3K9me3) patterns

spreads to neighboring regions. [15–17] Thus it is likely that

abnormal promoter methylation, especially hypo-methylation,

tends to spread to neighboring promoters along the chromosomes;

however, at this stage we cannot rule out other possibilities.

The transcriptional repressor CTCF contributes to the organi-

zation of chromatin domains and the spatial delimitation of

epigenetic marks [18]. Hence, we investigated whether CTCF was

associated with the DNA methylation status of genes in normal

and lymphoma cells. Overlaying published genome-wide CTCF

ChIP-seq data [18,19], we found that promoters in CTCF-binding

site (BS)-poor regions were usually hyper-methylated in normal B-

cells, but hypo-methylated in lymphomas (FL, GCB and ABC)

(Figure 5A–5B). There was little inter-sample variation in normal

Figure 4. Spreading of aberrant methylation to neighboring
probesets in the ABC samples. (A) A schematic representation of
how the genome was divided into blocks of genes to study spreading
of altered DNA methylation. (B–C) Analysis of spreading of aberrant
methylation within genomic neighborhoods. Loci ‘‘i’’ represent
probesets that are significantly hypo- (black) or hyper-methylated
(grey) in lymphoma samples compared to normal tissues, and loci ‘‘i6j’’
represent both the (i+j)-th and (i2j)-th neighbors of those probesets.
For instance, when we focused on probeset #10 (i.e. i = 10), we
analyzed spreading of aberrant methylation at probesets #5, 6, 7, 8, 9,
11, 12, 13, 14 and 15. Panel B displays the change in methylation states
while panel C shows the change in IQR (variability between samples).
doi:10.1371/journal.pgen.1003137.g004
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cells regardless of the density of CTCF binding, whereas in the

lymphoma subtypes, CTCF-BS-poor regions displayed significant-

ly greater inter-sample variation than CTCF-BS-dense regions (p-

value for NBC: 1.04061026; NGC: 6.65661027; FL: 2.9610213;

GCB: 1.367610211; ABC: ,2.2610216, Mann Whitney test).

Our findings were robust even after excluding centromeric and

telomeric regions (Text S1, Module 6; Figure S24). These data

suggest that CTCF-BS-poor regions are more susceptible to

epigenetic deregulation.

Since CTCF can establish boundaries between genomic

regions, we tested whether it might affect DNA methylation

spreading between loci and whether this function was perturbed in

lymphomas. We divided the probesets into two groups: those in

which neighboring promoter probesets were separated by at least

Figure 5. The insulator factor CTCF prevents spreading of aberrant methylation. (A) Methylation heterogeneity depends on the density of
CTCF-binding sites. Methylation state (M-score, left) and inter-sample methylation variation (IQR, right) are shown for CTCF-BS-poor, CTCF-BS-rich,
and intermediate regions. (B) Spreading of aberrant methylation from genomic position ‘‘i’’ to ‘‘i61’’ (i.e. two neighboring sites) when at least one
CTCF-BS is present (black vertical dotted line) and when no CTCF-BS is present (light grey vertical dotted line) between ‘‘i’’ and ‘‘i61’’, for aberrant
hypo-methylation (two left panels) and aberrant hyper-methylation (two right panels). The presence of CTCF-BS more efficiently restricts the
spreading of aberrant hypo-methylation. (C) A schematic overview showing spreading of abnormal methylation in the absence of CTCF-binding sites
in genomic neighborhood.
doi:10.1371/journal.pgen.1003137.g005

Aberration in DNA Methylation in B-Cell Lymphomas
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one CTCF-BS, and those in which neighboring promoter

probesets were not separated by any CTCF-BS. First, focusing

on the promoters hypo-methylated in ABC versus NGC, we found

that promoter pairs not containing intervening CTCF–BS

displayed greater spreading of aberrant hypo-methylation from

one promoter (probe set i) to the neighboring promoters (probe

sets i+1 and i21) compared to those that had one or more

intervening CTCF-BS (Figure 5B, comparing probe sets i+1, i21

between the two groups, p-value = 2.261028, Mann Whitney test).

In contrast, we did not observe any impact of CTCF on genes with

hyper-methylation in DLBCL (Figure 5B, p-value.0.05 at

probesets i61, Mann Whitney test). We obtained similar results

for the FL and GCB samples and using the ERRBS assay instead

of the HELP assay data (Text S1, Module 6; Figures S25, S26).

Thus, CTCF is suspected to play a gatekeeper role in the

spreading of aberrant hypo-methylation among genes in DLBCL

(Figure 5C), although more work is necessary to rule out other

possibilities.

Lymphomagenic regulatory proteins contribute to
aberrant DNA methylation patterning in DLBCL

We then investigated potential factors associated with the

abnormal DNA methylome in lymphomas. We first investigated

whether in general, there was an association between promoter

methylation status and the expression of the same gene and found

a positive correlation (Text S1, Module 7), which suggests that

genes with a loss of promoter methylation were likely to experience

increased expression. We then obtained genomic localization data,

detected by genome-wide CHIP-chip or CHIP-seq studies, of four

master regulators of lymphoid differentiation and lymphomagen-

esis: BCL6 [20], EZH2 [21], MYC (newly reported herein), and

AICDA [22], and overlaid promoter methylation information

(Text S1, Module 7; Figures S27, S28, S29). BCL6 is a

transcriptional repressor that is expressed in NGCs and also in

most DLBCLs and FLs [23], and its constitutive expression is

known to drive malignant transformation of NGCs [24]; EZH2 is

a Polycomb repressor protein also expressed in NGC [25] that is

highly expressed in most DLBCLs [26] and is sometimes targeted

by gain of function mutations [27]; and the MYC oncogene, is

aberrantly expressed in DLBCLs, often through chromosomal

translocations [20,28]. AICDA is a cytosine deaminase that

mediates single- and double-strand DNA breaks during somatic

hypermutation and class switch recombination [29]. We first

investigated the extent of change in the DNA methylation status of

the BCL6 and MYC loci, including the surrounding genes, in

lymphoma samples compared to that in the NBC samples, and

found that both BCL6 and MYC loci experienced loss of promoter

methylation in lymphoma samples compared to normal samples

(Text S1, Module 7; Figure S29). Furthermore, we found that the

target gene promoters of MYC, BCL6 and EZH2 were hypo-

methylated in normal B-cells and became increasingly hyper-

methylated in lymphoma samples (Figure 6A–6C; p-value

,161024 for all three cases; Mann-Whitney test). Gain of

methylation at the promoters of the target genes of MYC,

BCL6, and EZH2 in lymphomas was significantly higher than that

at the promoters of other genes (Mann Whitney test, p-

value,161025 in each case). Since BCL6 and EZH2 are

transcriptional repressors, accumulation of DNA methylation

may reflect their constitutive activity at their targets in lymphoma

cells. Notably, a previous report showed that EZH2 and H3K27

are mostly mutually exclusive with DNA methylation in NGC B-

cells, but that this opposing relation is disrupted in DLBCL [21].

The reason for MYC targets acquiring hypermethylation is not as

clear, but it is notable that the MYC and BCL6 ChIP-on chip

binding patterns are highly overlapping (data not shown). In

contrast, target genes of AICDA, such as BRCA2, GATA1 and

LMO1 [22], displayed a loss of bimodality (Figure 6D). However,

hypomethylation of promoters of AICDA target genes was not

immediate apparent, perhaps indicating disruption or variability in

AICDA binding to the genome in malignant cells. Nevertheless,

AICDA expression was associated with a loss of DNA methylation

at a genome-wide scale, as discussed in the following section in

detail, which is consistent with the role of AICDA in demethyl-

ation [6,30,31]. AICDA plays a role in gene demethylation

downstream of TET family protein-mediated hydroxylation of

methylcytosine [30]. Moreover, we recently reported that genes

that are hypo-methylated in NGC B-cells tend to be known direct

targets of AICDA [10]. Collectively, aberrant DNA methylation in

lymphomas is related in part to the action of constitutively

expressed lymphomagenic regulatory factors during lymphoma-

genesis (Figure 6E).

We next used an independent approach, integrating DNA

methylation and gene expression profiling data in a subset of our

cases, to identify factors driving or associated with the aberrant

lymphoma methylome. First, we focused on a set of genes:

DNMT3A, DNMT3B, DNMT3L, MYC, BCL6, AICDA,

MBD4, MBD6, CD79A, CD79B and MECP2 – which include

DNA methyltransferases, methyl-CpG binding domain proteins,

as well as signaling and transcription factors involved in lymphoid

differentiation and lymphomagenesis. We investigated whether the

expression levels of these genes correlated with genome-wide

aberrant DNA methylation patterns in DLBCL samples (see Text

S1, Module 7 for details of the method). We found the following

trends (Figure 7A): (i) the BCL6 expression level was significantly

correlated with aberrant hyper-methylation at a genome-wide

scale (p-value,0.05), which is consistent with a transcriptional

repressor role of this gene, and (ii) expression levels of AICDA and

CD79A were significantly correlated with aberrant hypo-methyl-

ation at a genome-wide scale (p-value,0.05 in both cases). This

finding was significant given the role of AICDA in demethylation,

as noted above [6,30,31]. The association was not significant for

other genes in the list for our dataset. Larger patient cohorts will

be necessary to test those cases systematically.

Some the above factors, such as DNMT3B, are associated with

the maintenance of methylation in simple repeat sequences [32].

Indeed, overlaying DNA repeat sequence information, we found

that both low-complexity repeats and simple repeats exhibited

hypo-methylation in normal cells, but displayed an increasing

extent of hyper-methylation in lymphoma samples (Text S1,

Module 8; Figure S30). Note that the effect size of expression levels

of each of the 11 genes, including DNA methyltransferases, is

relatively modest; this may be at least partly due to the fact that

these modifier genes influence the epigenetic state of their target

genes by the recruitment of other enzymes or cofactors, and that

the lymphoma samples show a high level of intra-sample variation.

A completely unbiased genome-wide analysis exploring whether

other genes on the expression array showed significant associations

with the aberrant methylation pattern in lymphomas yielded a list

of candidates provided in Figure 7B (see Text S1, Module 7 for

details). Interestingly, some of the top genes are known epigenetic

modifiers. For instance, the top candidate of the list, WHSC1L1, is

a known histone methyltransferase and plays a key role in

chromatin integrity [33–35]. Other top hits are important for the

genomic and epigenomic integrity of the cell, such as NAP1L2,

which promotes histone acetylation [36], and SMC6, which

regulates chromosomal stability [37,38]. Many of these genes are

known epigenetic modifiers, downstream targets or co-factors of

the shortlisted genes described in the paragraph above, while
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others may be novel factors associated with perturbation of DNA

methylation patterning in DLBCLs. Systematic characterization of

these candidates will be pursued further in forthcoming work.

Conclusions
Through integrative analysis of DNA methylation, copy

number variation, genomic sequence, gene expression and

genomic localization data, our study provides insights into the

architecture and biology of aberrant DNA methylation patterning

in a human malignancy. Based on these analyses, we report three

key findings: (a) DNA methylation exhibits considerable hetero-

geneity, both within individual lymphoma samples and between

patients, and the degree of heterogeneity and departure from the

DNA methylation pattern of normal B-cells correlates with disease

severity and patient survival, (b) these abnormal methylation

patterns are not randomly distributed but instead associate with

chromosomal regions, local gene density, and the methylation

status of neighboring genes, and (c) the pattern of DNA

methylation abnormalities is at par with the effects of at least

two distinct processes: i) lymphomagenic transcriptional regula-

tors, such as BCL6 and EZH2, perturb DNA methylation in a

target gene-specific manner; and ii) aberrant methylcytosine

marks, especially promoter hypo-methylation, tend to spread to

neighboring promoters in the absence of insulator elements such as

CTCF. We propose that focal aberrant hyper- and hypo-

methylation via target-specific recruitment of master regulators

and non-specific spreading of aberrant methylation drives the

generation of epigenetic abnormalities in follicular lymphoma and

DLBCL. While our results themselves cannot pinpoint causality,

they are consistent with emerging reports that highlight the roles of

lymphomagenic transcriptional regulators [23,24,26] and that

DNA methylation patterns tend to spread in a genomic

neighborhood [15–17]. Recently, Lai et al. showed that BCL6

expression is maintained during lymphomagenesis in part through

DNA methylation that prevents CTCF-mediated silencing [39],

and our results confirm their conclusions. The fact that epigenetic

diversity is first observed in NGC B-cells further suggests that

epigenetic heterogeneity may originate in these rapidly dividing

Figure 6. Genomic localization of transcriptional regulators and AICDA associates with sites of aberrant DNA methylation. (A–D)
Methylation heterogeneity of promoters of genes that are targets of master regulators. The panels display the distribution of methylation scores (M-
scores) for promoters of target genes of (A) BCL6, (B) MYC, (C) EZH2, and (D) AICDA. (E) A schematic overview showing targeted abnormal promoter
methylation by master regulators such as MYC, BCL6, EZH2 and AICDA in the lymphoma subtypes.
doi:10.1371/journal.pgen.1003137.g006
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cells and potentially contributes to malignant transformation.

Since epigenetic abnormalities increase with disease aggressiveness

and are a predictor of patient survival, clonal epigenetic diversity

and evolution may increase the survival advantage of lymphoma

cells, leading to more aggressive and chemo-resistant tumors.

Heterogeneity in DLBCL DNA methylation patterning does not

preclude the co-existence of subtype-specific DNA methylation

profiles, in which specific genes are differentially methylated.

Indeed, we previously observed that ABC and GCB DLBCLs

feature distinct and specific DNA methylation signatures, involv-

ing genes of potential functional significance, most notably

including hypermethylation of a TNFa gene network in ABC

DLBCLs [6]. These signatures represent a core of stably affected

loci within the larger context of more variable DNA methylation

disruption as reported herein. While previous studies including

ours aimed at identifying key genes and pathways dysregulated in

lymphomas, here we add another dimension to these studies by

highlighting the implications of epigenetic heterogeneity at a

genome-wide scale, and also the complex interaction between

master regulators and insulator elements that contribute to

establishing an abnormal methylome during lymphomagenesis.

Our approach can be used to analyze other tumor types and

delineate the contribution of aberrant methylation patterning to

the development of human cancers.

Methods

Sample collection
Samples used in the study included naı̈ve B-cells (NBC; 8

samples), normal germinal center B-cells (NGC; 10 samples),

follicular lymphoma (FL: grades 1 and 2 representing lower grade

lymphoma than Diffuse Large B-cell Lymphoma (DLBCL); 8

samples), germinal center B-cell-like DLBCL (GCB: DLBCL with

better prognosis; 39 samples), and activated B-cell-like DLBCL

(ABC: DLBCL with worse prognosis; 18 samples). All FL and

DLBCL samples used in the study were selected based on their

high content of neoplastic cells from primary diagnostic material

preceding treatment and were obtained by the Vancouver Cancer

Center in British Columbia, Canada. The FL and DLBCL

samples represent soft tissue biopsy material. The percent of

neoplastic cells in the biopsy was determined based on pathologic

evaluation using morphologic criteria and immunohistochemical

characteristics of the neoplastic cells (expression of CD79B, CD20,

BCL2, CD10, CD43, BCL6 antigens).The use of human tissue

was in agreement with IRB of the Vancouver Cancer Center and

Weill Cornell Medical Center. Primary NBC and NGC B-cells

were purified from reactive human tonsillar specimens. Tonsils

were minced on ice and mononuclear cells were isolated using

Histopaque density centrifugation. All washes were performed in

PBS/2% Bovine Serum Albumine/2% EDTA. All antibodies

were used at 1:100 dilution in cold PBS and staining was done for

10 min on ice, followed by 3 washes. The B-cell populations were

separated using the AutoMACS system (Milteny Biotec, Auburn,

CA) using the ‘‘posselD’’ program. In brief, NBC cells were

separated using depletion of GC cells, T-cells, plasma and memory

cells (CD10, CD3, CD27), followed by enrichment for IgD+ B-

cells; GCB cells were separated by positive selection with CD77

(anti-CD10: BD Biosciences cat# 555373 Lot 59624, anti-CD3:

BD Biosciences cat# 555332 Lot 59347, anti-CD27: BD

Biosciences cat# 555439 Lot 71274, anti-CD77: Serotec cat#
MCA579 Batch 180510, anti-IgD: BD Biosciences cat# 555778

Lot 58641). While the tissue environment of the collected normal

and lymphoma cells (e.g. cytokine exposure level) differ, this is

unlikely to bias our analyses. All NBC and NGC samples yielded a

purity of .90%. For patient characteristics (Table S1) see

Shaknovich et al. [6] and GEO number GSE23967.

HELP assays and analysis of DNA methylation data
We assayed genome-wide patterns of promoter methylation

using HELP assays and custom-designed oligonucleotide arrays.

HELP assays were performed based on the standard protocol [7].

One mg of high molecular weight genomic DNA was digested with

HpaII and MspI (NEB, Ipswich, MA), digestion products were

extracted with phenol-chloroform and resuspended in 10 mM

TRIS-HCl pH8, after which they were subjected to ligation of

HpaII adapter using T4 DNA Ligase. This approach was followed

by PCR amplification and labeling of HpaII and MspI digestion

products and co-hybridization to custom NimbleGen HELP

Figure 7. Genes associated with aberrant DNA methylation patterns B-cell lymphoma. (A) List of genes potentially associated with
aberrant methylation patterns in DLBCL. Boxplots visualize the distribution of Pearson correlation coefficients of primary variable (expression level of
a candidate gene) and the fitted variables (DM of promoters). The numbers on top represent the summarized quantity R2, i.e. statistical variance in
the fitted variable explained by the primary variable (in percent). See Text S1, Module 7 for more details. Statistically significant R2 values (p,0.05) are
marked with an asterisk. (B) List of the top 10 genes with highest R2 the unbiased genome-wide analysis. See Text S1, Module 7 for more details.
doi:10.1371/journal.pgen.1003137.g007
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microarrays (NimbleGen, Inc. Madison, WI). The microarray

design was previously published and represents .50,000 CpGs

corresponding to 14,000 promoters [6,7].

Data processing was performed using the published HELP

pipeline [40]. Intra- and inter-array normalization was performed

by subtracting mean random probe intensity separately within

HpaII and MspI channels, after which quantile normalization was

performed within each channel independently. Quantile normal-

ized log2(HpaII/MspI) values, denoted as M-scores, were subse-

quently used for all further analysis. The probes whose intensity of

Msp1 channel was less than 2.5 mean absolute standard deviations

from the mean of log2(Hpa2/Msp1) of random probes were

considered failed and removed from the analysis. Since the Msp1

channel served as an internal control, it allowed us to remove the

probes that had low intensities due to genomic deletions, thus

avoiding false positives for hypermethylation. We also calculated

the inter-quartile range (IQR) of the M-scores between the

samples within the same normal or disease group at a given locus

to reflect inter-sample methylation diversity. The analysis was

based on the Human Reference Genome version hg19 [41] and

the list of human protein-coding genes was obtained from Ensembl

v59 [42]. HELP arrays for DLBCLs can be found in GEO

number GSE23967 and for CD34+ cells in GEO number

GSE18700. NBCs, NGCs and FLs data is pending GEO accession

number.

Phylogenetic tree analysis
HELP methylation data for CD34+ hematopoietic progenitor

cells was obtained from the NCBI Geo database (GSE18700).

HELP was performed in the same manner as the normal (NBC

and NGC) and lymphoma (FL, GCB and ABC) samples,

hybridized on the same methylation microarray and normalized

using the same protocol together with the normal and lymphoma

samples. Only promoter methylation probes without missing

values were considered for further analysis. M-scores were

averaged for each group (CD34+, NBC, NGC, FL, GCB and

ABC) on each probe. Pairwise distances between groups were then

calculated with the Pearson correlation distance on the group-

averaged M-scores. This approach was repeated 1000 times, with

bootstrapping of promoter methylation probesets and samples.

Then, phylogenetic trees were constructed using the FastME

method, implemented in the ape R package, on these 1000

distance matrices. A consensus tree was calculated in Dendro-

scope. The code is available as R package at https://github.com/

lima1/maphylogeny.

Gene expression analysis
We obtained both genome-wide promoter methylation and

gene expression data for 4 NBC and 45 DLBCL samples (13 ABC

and 32 GCB samples). Expression data for NBC were obtained

from GSE15271, generated using Affymetrix HG133_Plus2_mi-

croarray and mas5 normalized together with the expression data

for the DLBCL samples (GSE23501). The processing of RNA,

hybridization, and image scanning were performed as per

Affymetrix protocols. The trimmed mean target intensity of each

array was set to 500. Expression-based classification labels GCB

and ABC were assigned as published in Shaknovich et al. [6]. The

gene expression data for all DLBCLs was deposited to GEO

number GSE23501.

ChIP-on-chip analysis
MYC ChIP-on-chip analysis was performed using Ramos cells.

First, Ramos cells were fixed in 1% formaldehyde for 10 min,

quenched with glycine and washed three times with PBS. Cells

were then resuspended in lysis buffer and sonicated 6630 sec

(amplitude 55%) in an Ultrasonic Dismembrator Model 500

(Fisher) to shear the chromatin to an average length of 500 bp.

Supernatants were precleared using protein-A agarose beads

(Roche) and 10% input was collected. Immunoprecipitation was

performed in 107 cells using antibodies against MYC (Santa Cruz).

DNA-protein complexes were pulled down using protein-A

agarose beads and washed. DNA was recovered by overnight

incubation at 65uC to reverse cross-links and purified using

QIAquick PCR purification columns (Qiagen). ChIP products and

their respective input genomic fragments were amplified by

ligation-mediated PCR [43]. Q-ChIP was repeated after ampli-

fication to verify that the enrichment ratios were retained. The

genomic products of three biological ChIP replicates were labeled

with Cy5 (for ChIP products) and Cy3 (for input) and co-

hybridized on a NimbleGen human promoter array representing

1.5 kb of promoter sequence from .24,000 genes (human genome

version 35, May 2004) according to manufacturer’s protocol

(Roche NimbleGen, Inc., Madison, WI). The enrichment for each

promoter was calculated by computing the log ratio between the

probe intensities of the ChIP product and input chromatin, which

were co-hybridized on the same array. Thereafter, for each of the

.24,000 promoter regions, the maximum average log ratio of

three neighboring probes in a sliding window was calculated and

compared with random permutation of the log ratios of all probes

across the entire array. The MYC ChIP-on-chip data is available

on GEO (accession number GSE31110).

The Chip-chip data for BCL6 and EZH2 were previously

published [20,21]. AICDA ChIP-seq data was obtained from the

recently published study in mouse activated B-cells [22] (GEO

accession number GSE24178). Short reads were aligned to the

mm9 genome and ChIP-seq peaks were called using the

ChIPSeeqer program (http://icb.med.cornell.edu/wiki/index.

php/Elementolab/ChIPseeqer_use). Peaks within RefSeq gene

promoters, defined as 4 kb windows centered on transcription start

sites, were then extracted. Human and mouse unambiguous

orthologs were then determined using the reciprocal best BLAST

strategy with protein sequences obtained from RefSeq (and

matched with RefSeq transcripts). Human genes whose mouse

orthologs were associated with 1 or more AICDA peaks in mouse

activated B-cells were then determined.

We obtained CTCF binding site data from InsulatorDB

(http://insulatordb.uthsc.edu; downloaded Jan, 2011), where

CTCF binding sites (CTCF-BS) were determined using ChIP-

on-chip and computational approaches [18,19,44]. We performed

our analysis using experimentally determined CTCF-BS from this

database, and obtained similar results using computationally

predicted CTCF-BS from this database.

All statistical analyses were performed in R.

Supporting Information

Figure S1 Copy number analyses. (A) Distributions of M-scores

against copy number log2 ratios for two GCB and two ABC

samples. (B) Boxplots showing the distributions of M-scores against

copy number loss, gain, and wild type (wt) for those GCB and

ABC samples.

(TIF)

Figure S2 Copy number analyses for frequently amplified or

deleted regions. (A) The distributions of M-scores against copy

number log2 ratios for two GCB and two ABC samples. DNA

promoter methylation probes in the regions that were amplified or

deleted in a given sample, and also overlapped with GISTIC

peaks, are shown in black, and remaining probes are shown in
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grey. (B) Boxplots showing the distributions of M-scores against

copy number loss, gain, and wild type for those GCB and ABC

samples.

(TIF)

Figure S3 The frequency distribution of (left) the median M-

score and (right) inter-quartile ranges (IQR) of the M-score, per

methylation probe of gene promoters for normal and diseased

samples with $80% purity. The color code is similar to that of

Figure 1A in the main text.

(TIF)

Figure S4 Frequency distribution of M-scores at the genome-

wide methylation probe positions. Data is shown after removal of

low signal to noise ratio probes. Color codes are the same as in

Figure 1.

(TIF)

Figure S5 Scatter plot showing the M-score as reported by the

HELP assay and the percentage DNA methylation as reported by

the RRBS assay for 6 samples. Pearson correlation coefficient (top

right corner) and regression lines are shown for each panel.

(TIF)

Figure S6 MassARRAY validation shows that there is greater

variance in methylation within DLBCL samples than in normal B-

cell samples.

(TIF)

Figure S7 Log(variance ratio) vs. q-value plot demonstrates

greater variance of CpG methylation values derived from

MassARRAY validation. Only 4 CpGs had a lower variance in

DLBCL but the remaining CpGs had a higher variance in

DLBCL as compared to NGC samples. The dashed line on the left

represents equal variance between the two groups. The dashed

line on the right represents 36 higher variance in DLBCL as

compared to NGC.

(TIF)

Figure S8 Technical validation of the HELP array using

MassARRAY Epityping reveals a linear relationship between

these two assays. These validation studies revealed that 1 unit of

log2(HpaII/MspI) change in HELP intensity corresponds to 30%

change in methylation as detected by the MassARRAY.

(TIF)

Figure S9 Distribution of the sites of hypo- and hyper-

methylation along the human chromosomes in both normal and

lymphoma samples. The color code is similar to that of Figure 1A

in the main text.

(TIF)

Figure S10 Distribution of inter-sample standard deviation of

M-score, grouped by NBC, NGC, FL, GCB and ABC. Outliers

are not shown.

(TIF)

Figure S11 Distribution of M-score of the cell lines which

are grouped into three categories – low, intermediate and

high, based on their doubling times. In each panel, the X-axis

represents the M-score, and the Y-axis represents the

frequency of promoter methylation probe sets which have

that M-score. The HELP ID of the cell lines and their

doubling time are provided at the top of each panel. The last

column represents the distribution of the M-score for the

group average. Median and the two quantiles are highlighted

in red.

(TIF)

Figure S12 Distribution of % methylation using the eRRBS

assay at CpG sites in young and old B-cell controls and in

DLBCLs.

(TIF)

Figure S13 Distributions of M-scores at the methylation

probesets overlapping with CpG islands and non-CpG islands

for normal B-cell and DLBCL samples. The color code is as

following: NBC-green, NGC-blue, FL-purple, GCB-red and ABC-

orange. For each sample type, bar width is proportional to the

number of probes with a given M-score, as discussed in details in

Figure 3A in the main text.

(TIF)

Figure S14 Distribution of M-score against CpG density at gene

promoters for NBC, NGC, FL, GCB, and ABC samples. The

regression line for each category is shown in black.

(TIF)

Figure S15 Distribution of the percentage DNA methylation as

estimated for the number of CpG sites in the gene promoters for 6

DLBCL samples. The regression line for each category is shown in

black.

(TIF)

Figure S16 Distribution of (i) |M-score| (y-axis, top) and (ii)

IQR (y axis, bottom) against CpG density at gene promoters for

NBC, NGC, FL, GCB, ABC samples. The regression line for each

category is shown in black.

(TIF)

Figure S17 Distribution of % methylation using the eRRBS

assay at CpG sites in centromeric, telomeric, and intermediate

regions for normal and diseased tissues. In each panel, the vertical

bar represents the median value of the respective distribution.

(TIF)

Figure S18 Kaplan-Meier comparison of the risk stratification

by stage and methylation heterogeneity score (MHS; left) and stage

alone (right) in ABC and GCB.

(TIF)

Figure S19 Kaplan-Meier analysis in ABC only. (A) MHS; (b)

IPI; (c) stage; (d) IPI+MHS; (e) stage+MHS.

(TIF)

Figure S20 Distribution of M-score of the FL samples which are

grouped according to their grades. In each panel, the X-axis

represents the M-score and the Y-axis represents the frequency of

promoter methylation probe sets, which have that M-score. The

HELP ID of the cell lines and their grade are provided at the top

of each panel.

(TIF)

Figure S21 Distributions of M-score for gene-poor, intermedi-

ate, and gene-rich regions for normal and lymphoma samples.

Color codes are the same as in Figure 1. Bar width is proportional

to the number of probes with a given M-score, as discussed in

details in Figure 3A in the main text.

(TIF)

Figure S22 Spreading of aberrant methylation in neighboring

positions. Position ‘‘i’’ represents probes that are significantly

hypo- (black) or hyper-methylated (grey) in lymphoma samples

compared to normal tissues, and ‘‘i6n’’ represents the nth

neighbors of those probes. The difference in M-score (A and B)

and the difference in between-sample variation, estimated by IQR

(C and D) between the lymphoma and normal samples at ‘‘i’’,

‘‘i61’’, … ‘‘i65’’ positions are shown.

(TIF)
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Figure S23 Spreading of aberrant methylation in neighboring

gene promoters after excluding probesets that map to multiple

genes or genes marked by multiple probesets. Position ‘‘g’’

represents probes that are significantly hypo- (black) or hyper-

methylated (grey) in lymphoma samples compared to normal

tissues, and ‘‘g6n’’ represents the n-th neighboring promoter

probeset. The difference in M-score (A) and the difference in

between-sample variation, estimated by IQR (B) between the

lymphoma and normal samples at ‘‘g’’, ‘‘g61’’, … ‘‘g65’’

positions are shown.

(TIF)

Figure S24 Distributions of M-score for regions with low

CTCF-BS density, intermediate, and high CTCF-BS density in

normal and lymphoma samples. Color codes are the same as in

Figure 1. Bar width is proportional to the number of probes with a

given M-score as discussed in detail in the main text.

(TIF)

Figure S25 Effects of CTCF-binding site on spreading of

aberrant methylation in (left) FL and (right) GCB samples. Locus

‘‘i’’ refers to a promoter probe position that has significantly

different methylation pattern in ABC compared to NGC, and

‘‘i61’’ represent its immediate up- and downstream neighboring

probe positions. Changes in M-score at ‘‘i’’ and ‘‘i61’’ in the

lymphoma samples relative to NGC samples were calculated for

four different scenarios – depending on whether ‘‘i’’ had aberrant

hypo- or hyper-methylation, and presence (black vertical dotted

line) or absence (light grey vertical dotted line) of CTCF-BS

between ‘‘i’’ and ‘‘i+1’’. The horizontal line represents the

genome-wide median D M-score between ABC and NGC

samples. We found that the presence of CTCF-BS restricted the

spreading of aberrant hypo- or hyper-methylation.

(TIF)

Figure S26 Effects of CTCF-binding sites (BS) on the spreading

of aberrant methylation in DLBCL samples. Locus ‘‘i’’ refers to a

promoter probe position that has significantly different methyla-

tion pattern in DLBCL compared to NGC, and ‘‘i61’’ represent

its immediate up- and downstream neighboring positions.

Changes in % methylation at ‘‘i’’ and ‘‘i61’’ in the lymphoma

samples relative to NGC samples were calculated for four different

scenarios – depending on whether ‘‘i’’ had aberrant hypo- or

hyper-methylation, and presence (black vertical dotted line) or

absence (light grey vertical dotted line) of CTCF-BS between ‘‘i’’

and ‘‘i+1’’.

(TIF)

Figure S27 Inter-sample variation, measured using IQR, for the

promoter methylation probe positions of the target genes of

AICDA, BCL6, EZH2, and MYC and also all the promoter probe

positions in our dataset.

(TIF)

Figure S28 Association of promoter methylation of the target

genes of AICDA, BCL6, EZH2, and MYC and transcription

factor gene expression. This association was tested utilizing gene

set analysis (GSA) and the plots (A–C) visualize the GSA results.

The bar plots on the bottom visualize the TF targets in a ranking

by correlation with gene expression, while the plots on the top

visualize the local enrichment, i.e., the deviation from a random

ranking. A positive enrichment score indicates that targets have a

higher (positive) correlation of promoter methylation with

expression than expected by chance. Promoter methylation of

both AICDA and MYC is significantly associated with expression

of BCL6 (panels A and B, respectively), while EZH2 expression is

anti-correlated with its target promoter methylation (C). The

highly similar results in A and B are due to high overlap of targets,

i.e., because many genes are regulated by both MYC and AICDA

(D).

(TIF)

Figure S29 Extent of change in DNA methylation status of

BCL6 (chr3:187 Mb) and MYC (chr8:128 Mb) loci, including the

surrounding genes, in lymphoma samples (FL, GCB and ABC)

compared to that in the normal NBC samples. Blue lines indicate

CTCF binding sites.

(TIF)

Figure S30 Distributions of M-score and inter-sample variation

(IQR) for methylation probes that overlap with common repeat

elements in normal and lymphoma samples. M-scores are shown

on the left and IQR on the right. Color codes are the same as in

Figure 1. Bar width is proportional to the number of probes with a

given M-score as discussed in Figure 3A in the main text. The

dotted horizontal line separates low complexity and simple repeats

from other repeat classes.

(TIF)

Table S1 Patient characteristics.

(PDF)

Table S2 The doubling times of the cell lines used.

(PDF)

Table S3 C-statistic with their standard errors (SE) and 95%
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