
Stochastic Tunneling of Two Mutations in a Population
of Cancer Cells
Hiroshi Haeno1, Yosef E. Maruvka2, Yoh Iwasa1*., Franziska Michor2*.

1 Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan, 2 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute,

and Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

Cancer initiation, progression, and the emergence of drug resistance are driven by specific genetic and/or epigenetic
alterations such as point mutations, structural alterations, DNA methylation and histone modification changes. These
alterations may confer advantageous, deleterious or neutral effects to mutated cells. Previous studies showed that cells
harboring two particular alterations may arise in a fixed-size population even in the absence of an intermediate state in
which cells harboring only the first alteration take over the population; this phenomenon is called stochastic tunneling.
Here, we investigated a stochastic Moran model in which two alterations emerge in a cell population of fixed size. We
developed a novel approach to comprehensively describe the evolutionary dynamics of stochastic tunneling of two
mutations. We considered the scenarios of large mutation rates and various fitness values and validated the accuracy of the
mathematical predictions with exact stochastic computer simulations. Our theory is applicable to situations in which two
alterations are accumulated in a fixed-size population of binary dividing cells.
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Introduction

Genetic and epigenetic alterations in signaling pathways, DNA

repair mechanisms, the cell cycle, and apoptosis lead to abnormal

reproduction, death, migration, genome stability, and other

behaviors of cells, which may lead to the onset and progression

of cancer [1]. For example, homozygous inactivation of the RB1

gene causes the childhood eye cancer retinoblastoma [2].

Similarly, a reciprocal translocation between chromosomes 9

and 22 leads to the creation of the BCR-ABL fusion oncoprotein

resulting in chronic myeloid leukemia [3,4]. Epigenetic alterations

can also induce abnormalities in gene expression within cancer

cells [5]. Furthermore, drug resistance in cancer cells is acquired

by genetic and/or epigenetic changes: in the treatment of chronic

myeloid leukemia, for instance, combination therapy of imatinib

(Gleevec, STI571) and dasatinib (BMS-35482) often fails due to

the emergence of only one or two genetic alterations within the

tyrosine kinase domain of BCR-ABL [6].

While experimental studies have identified specific (epi)genetic

changes and their consequences for cancer progression and drug

resistance, mathematical investigations have provided insights into

how tumor cells accumulate such alterations during tumorigenesis.

In the 1950s, the multi-stage theory of carcinogenesis was

proposed when Nordling, Armitage and Doll, and Fisher

investigated the age distribution of cancer incidence with

mathematical approaches [7,8,9]. In 1971, Knudson revealed,

utilizing statistical analyses of the retinoblastoma incidence data,

that two hits in an ‘‘anti-oncogene’’ are the rate-limiting steps in

this disease [2]; this gene was later identified as the tumor

suppressor RB1 [10]. In recent years, biological knowledge about

population dynamics and molecular mechanisms of tumorigenesis,

invasion, and therapeutic resistance have been incorporated into

the mathematical models; for instance, tissue structures in

particular cancer types [11,12,13,14,15,16] and the evolution of

drug resistance in cancer cells [17,18,19] were considered.

Much effort has been devoted to elucidating the dynamics of

accumulating two (epi)genetic alterations in a population of a fixed

number of cells. The theory that reveals the dynamics of

accumulation of two specific mutations in a population is useful

for predicting the risk of emergence and the rate of progression of

cancer cells, and also for the kinetics of drug resistance. Moreover,

the theory can be extended to more complicated cases in which

more than two specific mutations play a role in malignant lesions.

In 2003, Komarova et al. [20] derived analytic solutions of

stochastic mutation-selection networks with an assumption that

most of the time, the cell population is homogeneous with respect

to relevant mutations. They defined stochastic tunneling as the

case in which cells with two mutations appear from a lineage of

cells harboring a single mutation; the latter eventually goes extinct

instead of reaching fixation. They performed a precise analysis of

the existence of stochastic tunnels and explicitly calculated the rate

of tunneling [20]. In 2004, Nowak et al. [21] calculated the

probability as function of time that at least one cell with two

inactivated alleles of a tumor suppressor gene has been generated.

They found three different kinetic laws: in small, intermediate, and

large populations, it took, respectively, two, one, and zero rate-
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limiting steps to inactivate a tumor suppressor. They also studied

the effect of chromosomal and other genetic instabilities. Small

lesions without genetic instability required a very long time to

inactivate the next TSG, whereas the same lesions with genetic

instability posed a much greater risk for cancer progression [21].

Iwasa et al. [22], in the same year, derived the explicit tunneling

rate for situations in which cells with one mutation were neutral or

disadvantageous as compared to wild type cells, with cells with two

mutations having the largest fitness. The analytical solutions

provided an excellent fit to exact stochastic computer simulations

[22]. In 2005, Weinreich and Chao [23] developed an analytical

expression for the critical population size that defines the

boundary between the regime of sequential fixation of two

mutations and that of simultaneous fixation in a Wright-Fisher

model; they also investigated the effect of recombination on this

phenomenon [23]. In 2008, Schweinsberg investigated the waiting

time for a large number of mutations to arise when the fitness

change conferred by each mutation is negligible; ie. when the

mutations are neutral [24]. Lynch studied the mean time to

fixation of two mutations and the effects of recombination on this

process in a large range of population sizes [25]. Weissman et al.

[26] and Altland et al. [27] analyzed how recombination affects

the expected time to achieve fixation of two mutations under the

assumption that intermediate cell types are disadvantageous.

In 2009, Weissman et al. [28] calculated the rate of stochastic

tunneling as a function of the mutation rates, the population size,

and the fitness of the intermediate population harboring only a

single mutation in the Wright-Fisher model. They found that

when intermediate populations were close to neutral as compared

to wild type cells, then stochastic tunneling easily emerged in large

populations. In small populations, however, stochastic tunneling

was much less likely to arise [28]. Later on, Proulx used

elementary methods of analyzing stochastic processes to derive

the probability of tunneling in the limit of large population sizes for

both the Moran and Wright-Fisher models. He found that the

probability of stochastic tunneling was twice as large in the

Wright-Fisher model as in the Moran model [29].

Finally, diffusion approximations also represent a useful method

for describing the evolutionary process of accumulating mutations

in a large population of cells under the assumption of weak

selection [30]. In 2009, Lehmann and Rousset [31] investigated

multi-locus fixation probabilities under arbitrary strengths of

selection in the Wright-Fisher model by using the tools of diffusion

approximations. They showed that such fixation probabilities

could be expressed in terms of selection coefficients weighted by

the mean first passages times of ancestral gene lineages within a

single ancestor. They then applied these results to investigate the

Hill-Robertson Interference, i.e. stochastic tunneling of cell

lineages [31].

Despite a wealth of forays into the dynamics of stochastic

tunneling of two mutations within populations of cells, several

critical questions remain. For instance, currently available

approaches do not provide accurate predictions for situations in

which mutation rates are large. Such scenarios, however, are

important when considering mutation accumulation in cancer cells

since many tumor types exhibit mutator phenotypes [32–37].

Furthermore, existing methods do not take into account all

possible fitness effects of the individual cell types – such as

increased fitness of cells with one mutation as compared to those

with zero or two mutations.

In this paper, we addressed these scenarios to provide a general

description of stochastic tunneling in a tumor cell population of

constant size. Such a model describes many situations arising

during tumorigenesis such as the dynamics of cancer initiation

from a cellular compartment of a healthy tissue as well as the

chronic phase of tumor progression [21,38]. We designed three

methods to calculate the probability of existence of a homoge-

neous population of cells, all of which harbor two mutations, at an

arbitrary time point. One method demonstrated an accurate fit

against all scenarios in numerical simulations, but had a large

computational cost. The second method showed a very good fit

with small computational cost; however, the predictions were not

accurate in cases in which cells with two mutations had the same

fitness as wild type cells. The last method produced accurate

results in the latter situation of neutral fitness. By utilizing the best

method for each parameter condition, we obtained an accurate

approximation for the probability of a homogeneous population of

cells with two mutations over time.

Methods

The mathematical model
Let us consider a population of N reproducing cells proliferating

according to the Moran process [39]. One elementary time step of

this process consists of a cell division and a cell death. For each

division event, a cell is chosen at random proportional to fitness;

the division event may produce a mutated daughter cell with a

small probability. For each death event, one cell is chosen at

random from the population. The total number of cells, N, is

constant over time. These cells may accumulate (epi)genetic

alterations and/or structural genomic changes; these are collec-

tively referred to as ‘‘mutations’’. We consider three types of cells:

those harboring no mutations, denoted as type-0 cells, those

harboring the first of a sequence of two mutations, denoted as

type-1 cells, and those harboring both mutations, denoted as type-

2 cells. Initially, the population consists entirely of type-0 cells;

these cells have relative fitness (i.e. growth rate) r0. During each

type-0 cell division, a type-1 cell may arise with probability equal

to the mutation rate u1. The fitness of type-1 cells is given by r1.

Finally, a type-2 cell may arise with probability u2 per type-1 cell

division and has fitness r2. We assume that there is no back

mutation because a mutation that exactly reverses the functional

change caused by a specific mutation is rare compared to a

mutation that causes a phenotypic change. Time is measured in

units of cell divisions. Eventually, a type-2 cells will appear and

may become dominant in the population; this event represents the

evolution of adaptive cells.

In previous studies [20,22], three states of a homogeneous

population were considered: states in which all cells in the

population are of type-0, type-1 or type-2 (Figure 1a). The

authors then approximated the dynamics of fixation and tunneling

in a heterogeneous population by using a fixation probability and

a tunneling rate. This approximation, however, neglects the time

from the appearance of a mutated cell to its fixation, as well as the

effects of any additional mutational events during the time until

fixation; this choice was made due to the observation that the

waiting time of new mutation is usually much longer than the time

of fixation in the parameter regimes considered. In some situations

arising during tumorigenesis, however, these effects cannot be

neglected – especially when mutation rates are large. In those

cases, the previously derived approximation does not provide an

accurate fit to the exact solution of the system. We thus aimed to

consider the evolutionary dynamics of two mutations arising in a

heterogeneous population using the methods described in the

following (Figure 1b).

Stochastic Tunneling of Two Mutations
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Monte-Carlo simulations
We first performed Monte-Carlos simulations of the model

describe above. Denote the number of type-0, type-1, and type-2

cells by n0, n1, and n2, respectively. Time is measured in cell cycles.

During each time unit, one cell division and one cell death event

occur to maintain a constant total number of cells. During one

time step, the probability of a cell division of each cell type is given

by

Pr½(n0,n1,n2)?(n0z1,n1,n2)�~ r0n0(1{u1)

r0n0zr1n1zr2n2

Pr½(n0,n1,n2)?(n0,n1z1,n2)�~ r0n0u1zr1n1(1{u2)

r0n0zr1n1zr2n2
,

Pr½(n0,n1,n2)?(n0,n1,n2z1)�~ r1n1u2zr2n2

r0n0zr1n1zr2n2

while the probability of a cell death of each cell type is given by

Pr½(n0,n1,n2)?(n0{1,n1,n2)�~ n0

N

Pr½(n0,n1,n2)?(n0,n1{1,n2)�~ n1

N
:

Pr½(n0,n1,n2)?(n0,n1,n2{1)�~ n2

N

The initial condition is given by n0~N and n1~n2~0. We

performed 100,000 runs for each parameter set and obtained the

fraction of cases in which the population consists entirely of type-2

cells at a given time.

A novel approach
We extended our previously obtained results [22] to accurately

describe situations in which mutation rates are large by

considering the detailed transitions between states within a

heterogeneous population. Denote by X0(t), X1(t), and X2(t),
respectively, the probabilities at time t that the system consists

exclusively of type-0, type-1, and type-2 cells. Then the dynamics

of the population can be described by the forward Kolmogorov

differential equations:

dX0

dt
~{aX0{bX0, ð1aÞ

dX1

dt
~aX0{cX1, ð1bÞ

dX2

dt
~cX1zbX0: ð1cÞ

The rate at which the population transitions from type-0 to

type-1, a, is given by

a~Nu1r1: ð2Þ

Figure 1. Schematic illustration of the model. Panel a shows the previously published approach to describing the evolutionary dynamics of two
mutations in a fixed-size population of cells; only the transitions between homogeneous populations are considered. Panel b displays our novel
approach, which encompasses considering the transitions in a heterogeneous population in detail.
doi:10.1371/journal.pone.0065724.g001
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Here r1 denotes the fixation probability of one type-1 cell in a

population of N-1 type-0 cells and given by

r1~

1{r0(1{u1)=(r1zr0u1)ð Þ
.

1{ r0(1{u1)=(r1zr0u1)ð ÞN
� �

:
ð3Þ

We have included the effect of the mutation rate in the fixation

probability because, in situations when u1 is very large, additional

mutations can occur during the fixation of the former lineage. If

u1~0, then r1~ 1{r0=r1ð Þ
.

1{ r0=r1ð ÞN
� �

, which was derived

previously [20].

The tunneling rate, i.e. the rate at which the population

transitions from type-0 to type-2 without the fixation of type-1

cells, b, is given by

b~Nu1(1{V1{r1): ð4Þ

Here Vi denotes the probability of non-appearance or extinction

of a new type-2 lineage from i type-1 cells. With V0~1 and

VN~0, Vi can numerically be calculated from the following

equation:

{r1u2r3Viz r1(1{u2)(Viz1{Vi)zr0(Vi{1{Vi)½ �
i(N{i)

ir1(1{u2)zr0(N{i)
~0:

ð5Þ

Here r3~ 1{r0(1{u1)=(r2zr1u2)ð Þ
.

1{ r0(1{u1)=(r2zr1u2)ð ÞN
� �

.

In both equations of Vi and r3, we include mutational events,

which may increase or decrease the relative fitness of each cell

type. See [22] for a detailed derivation of Vi.

Next, let us consider the following quantity:

G(t)~Pr

type� 2 cells are fixed at time t
type� 1 cells are fixed in the

initial population

�����
 !

:

Then we have

X2(t)~

ðt
0

bX0(s)dsz

ðt
0

G(t{s)aX0(s)ds: ð6Þ

If we assume

G(t)~1{e{ct, ð7Þ

where c~Nu2(1{r1=r2)
�

1{(r1=r2)N
� �

, then we have

X1(t)~

ðt
0

e{c(t{s)aX0(s)ds: ð8Þ

By taking the derivative of Eq. (6) and (8), we obtain Eq. (1).

Equation 1 no longer holds, however, when the second mutation

rate, u2, is very large since Equation 7 does not hold. Therefore, let

us next calculate G(t) in a heterogeneous population of type-1 and

type-2 cells.

Consider the N+1 states that are classified by the number of

type-2 cells, k = 0, 1, 2, …, N. Since we are interested in the

situation after the emergence of type-1 cells, the number of type-1

cells becomes N-k. Then the transition probabilities are given by

Pr k?kz1, in Dtð Þ~(N{k)Dt
(N{k)r1u2zr2k

(N{k)r1zr2k
~lkDt, ð9aÞ

Pr k?k{1, in Dtð Þ~kDt
(N{k)r1(1{u2)

(N{k)r1zr2k
~mkDt, ð9bÞ

Pr k?k, in Dtð Þ~1{Pr k?kz1, in Dtð Þ{Pr k?k{1, in Dtð Þ,

~1{lkDt{mkDt
ð9cÞ

for k = 1, 2, …, N-1. For k = 0, we have m0~0. Note that the

transition probability includes the second mutation rate, u2, which

is normally neglected when deriving the fixation probability in the

Moran process due to the assumption of a very small mutation

rate. Then we consider the following quantities:

qk(t)~Pr type� 2 cells are fixed at time tjð

initial number of type� 2 cells is kÞ,
ð10Þ

where k = 0, 1, 2, …., N. Hence we have

G(t)~q0(t): ð11Þ

By definition, we have the boundary condition, qN (t)~1, and the

initial condition, qk(0)~0 for k = 1, 2, 3, …, N-1. Then we obtain

the following backward equation:

qk(tzDt)~(1{lkDt{mkDt)qk(t)z

lkDtqkz1(t)zmkDtqk{1(t):
ð12Þ

By taking the limit when Dt?0, we have

dqk

dt
~lkqkz1(t){(lkzmk)qk(t)zmkqk{1(t)

for k~0,1,:::,N{1:

ð13Þ

Note that from Eq. (1a) and X0(0)~1, we have

X0(t)~exp½{(azb)t�. We set the second term of Eq. (6) as

L(t)~

ðt
0

G(t{s)ae{(azb)sds~

ðt
0

G(z)ae{(azb)(t{z)dz: ð14Þ

Here L(0)~0 since G(0)~0. Finally, we have

X2(t)~

ðt
0

be{(azb)sdszL(t)~
b

azb
1{e{(azb)t
� �

zL(t): ð15Þ

By calculating the derivative of Eq. (14) we have

Stochastic Tunneling of Two Mutations
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dL

dt
~aG(t){(azb)L

~aq0(t){(azb)L:

ð16Þ

Eq. (15) provides good predictions for all ranges of mutation rates

and relative fitness values of mutated cells, except when type-0 and

type-2 cells are neutral (r0~r2) and the relative fitness of type-2

cells is smaller than that of type-0 cells (Figure S2). Although this

method works in a wide parameter region, in order to investigate

parameter regions where it does not accurately predict the exact

dynamics, we consider two alternative methods.

Systematic calculation of all transitions
Let us denote by (i,j) the state of the system in which the

numbers of type-1 and type-2 cells are i and j, respectively. The

state is confined within the following conditions: i§0, j§0, and

N{i{j§0. The system will eventually be absorbed into the state

(i,j)~(0,N), indicating that type-2 cells have reached fixation (i.e.,

100% frequency) within the population. The fixation probability

of type-2 cells from each state is then determined by using a

backward calculation. For i = 0, 1, 2, …, N, and j = 0, 1, 2, 3,…, N,

satisfying i+j#N, we consider the probability, W (i,j,t), that type-2

cells have reached fixation before time t, starting from state (i,j).
The boundary condition is given by

W (0,N,t)~1, ð17aÞ

while the initial condition is given by

W (i,j,0)~0 for (i,j)=(0,N), ð17bÞ

W (0,N,0)~1: ð17cÞ

Let us next consider the state transitions and derive the

recurrence formulas for W (i,j,t). Within a short time interval, Dt,
there exist six transitions:

[1] A transition from (i,j) to (iz1,j) occurs when a type-0 cell

dies and is replaced by a type-1 cell. There are two ways for this to

occur: (i) a type-0 cell may die and a type-1 cell may divide

(without mutating to give rise to a type-2 cell) or (ii) a type-0 cell

may die and a type-0 cell may divide and mutate into a new type-1

cell. Then the transition probability is given by

(N{i{j)DtB ir1(1{u2)z(N{i{j)r0u1½ �. Here (N{i{j)Dt
represents the probability of death of a type-0 cell during a short

time interval, B ir1(1{u2)z(N{i{j)r0u1½ � represents the prob-

ability of increasing the number of type-1 cells, and

B~
1

(N{i{j)r0zir1zjr2
gives the inverse of the total reaction

rate.

[2] A transition from (i,j) to (i{1,j) occurs when a type-1 cell

dies and is replaced by a type-0 cell. The probability of this event is

given by iDtB(N{i{j)r0(1{u1).

[3] A transition from (i,j) to (i,jz1) occurs when a type-0 cell

dies and either a type-2 cell divides or a type-1 cell divides with a

mutation, giving rise to a new type-2 cell. The transition

probability of this event is given by (N{i{j)DtB jr2zir1u2ð Þ.
[4] A transition from (i,j) to (i,j{1) occurs when a type-2 cell

dies and is replaced by type-0 cell. This probability is this event

given by jDtB(N{i{j)r0(1{u1).

[5] A transition from (i,j) to (iz1,j{1) occurs when a type-2

cell dies and either a type-1 cell divides without a mutation or a

type-0 cell divides with a mutation. The transition probability for

this event is given by jDtB ir1(1{u2)z(N{i{j)r0u1½ �.
[6] A transition from (i,j) to (i{1,jz1) occurs when a type-1

cell dies and either a type-2 cell divides or a type-1 cell divides with

a mutation. The transition probability for this event is given by

iDtB jr2zir1u2ð Þ.
Furthermore, there is a possibility that no transition occurs

during a short time interval; the probability of no event occurring

is given by one minus the sum of all the transition probabilities

outlined above.

Considering these transitions between states, we have the

following recurrence formula:

W i,j; tzDtð Þ~ N{i{jð ÞDtB ir1(1{u2)z N{i{jð Þr0u1½ �

W iz1,j; tð Þ

ziDtB N{i{jð Þr0(1{u1)W i{1,j; tð Þ

z N{i{jð ÞDtB jr2zir1u2ð ÞW i,jz1; tð Þ

zjDtB N{i{jð Þr0(1{u1)W i,j{1; tð Þ

zjDtB ir1(1{u2)z N{i{jð Þr0u1½ �

W iz1,j{1; tð Þ

ziDtB jr2zir1u2ð ÞW i{1,jz1; tð Þ

z 1{½sum of all the transition probabilities�ð Þ

W i,j; tð Þ:

ð18Þ

The left hand side of Eq. (18) denotes the fixation probability of

a type-2 cell within the time interval Dt, given that the initial state

is (i,j). The right hand side is composed of the paths according to

the type of event occurring during the time interval of length Dt.

By calculating the limit when Dt?0, we have

dW

dt
i,j; tð Þ~ N{i{jð ÞB ir1(1{u2)z N{i{jð Þr0u1½ �

W iz1,j; tð Þ{W i,j; tð Þð Þ

ziB N{i{jð Þr0(1{u1) W i{1,j; tð Þ{W i,j; tð Þð Þ

z N{i{jð ÞB jr2zir1u2ð Þ

W i,jz1; tð Þ{W i,j; tð Þð Þ

zjB N{i{jð Þr0(1{u1) W i,j{1; tð Þ{W i,j; tð Þð Þ

zjB ir1(1{u2)z N{i{jð Þr0u1½ �

W iz1,j{1; tð Þ{W i,j; tð Þð Þ

ziB jr2zir1u2ð Þ W i{1,jz1; tð Þ{W i,j; tð Þð Þ:

ð19Þ

Using the initial condition Eq. (17b) and Eq. (17c), and the

boundary condition Eq. (17a), we can numerically determine

W (0,0; t), which represents the fixation probability of type-2 cells

until time t in a population starting from N type-0 cells (Figure
S1). Although this method provides accurate results, the time

necessary for the numerical calculation, i.e. the number of

equations, increases in a factorial way as the population size

Stochastic Tunneling of Two Mutations
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increases; on the other hand, it increases linearly in the first

method. Therefore this method is not suitable for the determina-

tion of the dynamics in a large population.

A simulation approach for the neutral case (r0~r2)
An analytical formula describing the behavior of a system may

serve several goals. One important goal is the ability to quickly

obtain a prediction of the expected outcomes of a process, without

the need for actually performing the process – no matter whether

it is an experimental process or a Monte-Carlo simulation

representing a large computational burden. This goal can be also

achieved by approximating the time-consuming Monte-Caro

simulation by another Monte-Carlo simulation that is much less

computationally expensive. Even though the two simulations

differ, the faster one may still serve as a good approximation of the

slower one. Note that the use of the Wright-Fisher model in this

context solely serves to increase the computational speed of our

simulation, and is thus meant as an approximation to the Moran

model. The Wright-Fisher model was not introduced to study an

alternative population model, but instead was used as an

approximation to the model under investigation (the Moran

model) only.

Here we present the use of the tunneling process in the Wright-

Fisher framework as an approximation for the tunneling process in

the Moran framework. In the Moran framework, every generation

is composed of O(N) random steps, while in the Wright-Fisher

framework, the number of randomized steps per generation is

independent of N. Instead, it depends only on the number of

distinct cell types because there is a need only to generate the

number of offspring each type will have in the next generation,

and this can be done collectively.

We performed the Wright-Fisher Monte-Carlo simulation in the

following way. At a given time t the state of the system is described

by the vector n(t), where n0 is the number of type-0 cells, n1 is the

number of type-1 cells, and n2 is the number of type-2 cells. At

every generation time step, the current population generates the

next generation denoted by [m0,m1,m2] from a multinomial

distribution, with a probability vector

~pp~ n0
:r0,n1

:r1,n2
:r2½ �
�P

i

ni
:ri. From the new offspring of type-0

cells, a binomially distributed number, with parameters m0 and u1,

mutate and become type-1 cells, and from the offspring of type-1

cells, a binomially distributed number, with parameters m1 and u2,

mutate and become type-2 cells. The process starts with N0 cells of

type-0 and stops when one cell type reaches fixation or when the

process reaches the maximal time. For a given set of parameter

values, 100,000 replicates of the Monte-Carlo simulation were

performed and the fixation probability was estimated as the

fraction of cases in which type-2 cells reached fixation by time t. In

order to compare the Wright-Fisher process to the Moran process,

the population size N0 was then rescaled with the standard scaling

of dividing by the standard deviation of the number of offspring

each individual cell has, which is
ffiffiffi
2
p

in the Moran process. Thus

the population size used in the Wright-Fisher process is

NWF ~N
� ffiffiffi

2
p

.

Since the first method performs well for the non-neutral case,

r0=r2, we applied the Wright-Fisher approximation only for the

neutral case, r0~r2. In general, the Wright-Fisher process has a

similar fixation probability as the Moran process, and thus it can

serve as a good approximation of the Moran model. In situations

in which the fixation probability is very small, the difference

between the two processes increases, thus rendering this approx-

imation less exact; however, in these situations the approaches

outlined above lead to accurate predictions.

Results

We investigated the quality of fit of the approximations to the

numerical results of the exact stochastic computer simulations.

Figure 2 displays the fit between the first approximation and

Monte-Carlo simulation results in a wide parameter region

(Figure 2). However, when the fitness value of type-2 cells is

the same as that of type-0 cells, this approximation does not

provide accurate predictions (Figure S1). We consider this

parameter region in greater detail later. The comprehensive

analysis showed that the probability of type-2 fixation increases

when mutation rates are large and the fitness of type-2 cells is

large.

Moreover, we found that there exists an optimal value of the

fitness of type-1 cells that maximizes the fixation probability of

type-2 cells at a given time point. If the fitness of type-2 cells is the

same as that of type-0 cells and if the mutation rates are small,

then the optimal value for the fitness of type-1 cells becomes 1

(Figure 2c). If the first mutation rate is very large, then a

disadvantageous effect of the first mutation leads to the highest

probability of type-2 fixation (Figure 2a). If the second mutation

rate is very large, then an advantageous effect of the first mutation

results in the highest probability of type-2 fixation (Figure 2b–c).

If the fitness of type-2 cells is larger than that of type-0 cells, the

optimal fitness of type-1 cells is between that of type-0 and type-2

cells in most cases (Figure 2d–f). However, when the first

mutation rate is very large and the second mutation rate is very

small, then a disadvantageous first mutation again leads to the

highest probability of type-2 fixation (Figure 2d).

Furthermore, when the second mutation rate is very large and

the first mutation rate is low, the optimal fitness of type-1 cells

becomes even larger than that of type-2 cells (Figure 2d–f). Even

though the fitness of type-2 cells is expected to be smaller than that

of type-0 cells, fixation may still occur when the population size is

small (Figure 2g–i). When type-2 cells are advantageous

compared to type-0 cells, the tendency of the optimal fitness of

type-1 cells does not depend on different values of the population

size (Figure 2j–m). When time increases, then the fixation

probability of population with two mutations also increases (data

not shown).

We next investigated the predictions of the alternative method,

which determines all transitions between states. Using the initial

condition Eq. (17b) and Eq. (17c) and the boundary condition Eq.

(17a), we numerically determined W (0,0; t), which represents the

fixation probability of type-2 cells until time t in a population

starting from N type-0 cells. Figure 3 and Figure S2 display the

fit of W (0,0; t) against results from direct computer simulations of

the Moran model in a wide parameter region of small population

sizes. The predictions provide an accurate fit to the simulation

results.

Furthermore, we performed computational simulations using

the Wright-Fisher framework to obtain the approximate results of

Moran model (see alternative method 2 above). Figure 4 displays

the fit between the results of the Wright-Fisher model and those of

the Moran model. This method provides accurate predictions for

cases in which the fitness of type-2 cells is the same as the fitness of

type-0 cells.

We also investigated the parameter regimes in which the

‘‘stochastic tunneling’’ becomes important (Figure 5). Comparing

the results by the direct simulation to forward Kolmogorov

differential equation without tunneling term (Eq. 1 in [22] with
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Figure 2. Results of our method. The figure shows the dependence of the probability that type-2 cells are fixed at time t on various parameters.
Results by Eq. (15) are indicated by curves and those from direct computer simulations are shown by dots. The results of numerical calculations are
connected and shown as a curve. Parameter values are r0~1, ; (a–i) N~10 and t~100; (a–c) r2~1:0; (d–f) r2~2:0; (g–i) r2~0:5; (a), (d), and (g)
u1~0:1; (b), (e), and (h) u1~0:01; and (c), (f), and (i) u1~0:001. (a–i) Circles and thin curves represent u2~0:1, triangles and dotted lines represent
u2~0:01, and stars and bold lines represent u2~0:001. (j–m) N~1000, t~300 and r2~2:0; (j) circles and thin curves represent u1~0:0001 and

Stochastic Tunneling of Two Mutations
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R = 0), we found two parameter regions for stochastic tunneling (i)

when the fitness of type-1 cells is smaller than that of type-0 cells

and fitness of type-2 is the largest and (ii) when the fitness of type-1

cells is larger than that of type-0 and the fitness of type-2 cells is

slightly smaller than that of type-1 cells (Figure 5a). In the figure,

the non-red region represents bad fit (more than 20% overesti-

mation or underestimation) of approximations against simulation

results. We also showed the comparison between (i) the simulation

results and tunneling formula in the previous paper (Eq. 1 in [22]),

and (ii) the simulation results and our new formula (Eq. 15)

(Figure 5b–c). In the region where r1w1 and r2&r1, the new

approximation works better than the previous formula, but when

r1wr2 the new one underestimates the simulation results and the

old one fits the simulation results more accurately.

Finally, we investigated the improvement of our new approx-

imation over existing predictions of the fixation probability of

type-2 cells at time t (Figure 6). First, from direct computer

simulations and for each parameter set, we obtained the time at

which the fixation probability of type-2 cells is 0.5. We then used

these quantities for comparison with the predictions of existing

approaches. Figure 6 shows the predictions of our formula (Eq.

15) and that by Iwasa et al. [22] (Eq. 1 and Eq. 6). We found that,

when the total number of cells was small (Figure 6a–h), both

formulas showed good predictions except when both mutation

rates were large (Figure 6a and 6e). In that case, our new

formula worked better than the previous one [22]. When the total

number of cells was large (Figure 6i–p), the previous formula did

not work well. Also, when both fitness values of type-1 and type-2

were larger than 1, the new formula showed a better fit than the

previous one.

We also investigated the accuracy of four other published

approaches: those by Komarova et al. [20] (Section 3.2), Nowak et

al. [21] (Eq. 6), Weissman et al. [28] (Eq. 25) and Proulx [29] (Eq.

11) (Figure S3). These four formulas did not exhibit as good a fit

u2~0:1, triangles and dotted lines represent u1~0:0001 and u2~0:001; (k) circles and thin curves represent u1~0:0001 and u2~0:01, triangles and
dotted lines represent u1~0:0001 and u2~0:0001; (l) circles and thin curves represent u1~0:001 and u2~0:1, triangles and dotted lines represent
u1~0:001 and u2~0:01, and stars and bold lines represent u1~0:001 and u2~0:001; and (m) triangles and dotted lines represent u1~0:01 and
u2~0:1, and stars and bold lines represent u1~0:01 and u2~0:01.
doi:10.1371/journal.pone.0065724.g002

Figure 3. Precise predictions of the fixation probability of type-2 cells by systematic calculations of all transitions. The figure shows
the dependence of the probability that type-2 cells are fixed at time t on various parameters. Results by systematic calculations, W(0,0,t), are indicated
in curves and those from direct computer simulations are shown by dots. Parameter values are r0~1 and t~100; N~10; (a–c) r2~1:0; (d–f) r2~2:0;
(g–i) r2~0:5; (a), (d), and (g) u1~0:1; (b), (e), and (h) u1~0:01; and (c), (f), and (i) u1~0:001. Circles and thin curves represent u2~0:1, triangles and
dotted lines represent u2~0:01, and stars and bold lines represent u2~0:001.
doi:10.1371/journal.pone.0065724.g003
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against the results obtained by direct computer simulations as our

work. Since Komarova et al. [20] considered the probability of the

first appearance of type-2 cells at time t, and not the fixation of

type-2 cells, their equation always overestimates the probability of

fixation (Figure S3a–h). The predictions by Nowak et al. [21]

displayed a good fit in a certain parameter region (Figure S3i–p).

Especially when the total cell number is large and the fitness of

type-1 cells is smaller than that of type-0 cells, their predictions fit

the results by direct computer simulations for a certain range of

mutation rates. Overall, however, their predictions did not work

well because they also did not consider the fixation of type-2 cells,

but their appearance. Weissman et al. [28] performed a

comprehensive study of the tunneling rate and the expected time

until a mutant with k mutations appears in asexually reproducing

populations. The case of k = 2 represents the same condition as in

our current study. In their paper [28], the authors show the

tunneling rate as Eq. 25; we included their tunneling rate in the

tunneling term, b, in Eq. 1 in our formula (b~Nu1p1, where p1 is

Figure 4. Results from a Wright-Fisher approximation. The figure shows the dependence of the probability that type-2 cells are fixed at time t
on various parameters. Results by a Wright-Fisher framework are indicated by curves and those from direct computer simulations are shown by dots.
Parameter values are r0~r2~1 and t~100; (a–c) N~10; (d–f) N~50; (g–i) N~100; (a), (d), and (g) u1~0:1; (b), (e), and (h) u1~0:01; and (c), (f), and
(i) u1~0:001. (a–i) Circles and thin curves represent u2~0:1, triangles and dotted lines represent u2~0:01, and stars and bold lines represent
u2~0:001. (j and k) N~1000; (j) circles and thin curves represent u1~0:0001 and u2~0:1, triangles and dotted lines represent u1~0:0001 and
u2~0:001; (k) circles and thin curves represent u1~0:0001 and u2~0:01, triangles and dotted lines represent u1~0:0001 and u2~0:0001.
doi:10.1371/journal.pone.0065724.g004
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given by Eq. 25 in [28]). We found that their approach did not

provide a very accurate fit to results obtained from exact computer

simulations (Figure S3q–x). Finally, the predictions by Proulx

also did not exhibit a good fit (Figure S3y–F).

In summary, our new approach (Eq. 15) displayed the best fit

against the direct computer simulations amongst all formulas

investigated (Figure 6). However, we still need to perform

systematic calculations of all transitions (Eq. 19) or direct computer

simulations when the mutation rates and the population size are

large and the fitness of type-1 is close to that of type-0 cells (r1&r0)

(Figure 6a and i–l). Moreover, the new formula does not work

well when (i) type-1 cells are disadvantageous and the mutation

rates and the population size are large (Figure 6i); and when (ii)

type-1 cells are advantageous, mutation rates are small and the

population size is large (Figure 6l). In such parameter regions, the

systematic calculation of all transitions (Eq. 19) or direct computer

simulations are necessary.

Discussion

In this paper, we have performed a comprehensive analysis of

the fixation probability of cells harboring two mutations; these

mutations are accumulated sequentially in cells within a popula-

tion of fixed size. Although the evolutionary dynamics of cells

acquiring one or two mutations has been studied for decades, this

work represents the first investigation of the fixation probabilities

in the Moran model in a wide parameter region including large

mutation rates and a disadvantageous fitness of cells harboring

both mutations. A consideration of the risk of a cell population

harboring two mutations, as well as the fixation probability of such

cells, is important for situations arising during tumorigenesis such

as the inactivation of tumor suppressor genes. When the time until

fixation of type-2 cells is not negligible, the latter becomes more

informative than the former. This situation occurs when the fitness

of type-2 cells is not sufficiently advantageous or mutation rates are

very large and it is not negligible [32,33]. Our approach considers

an approximation to the tunneling rate – the rate of transition

from a population consisting entirely of type-0 cells to a population

consisting entirely of type-2 cells, which represents an extension of

our previous study [22]. This approach is computationally less

expensive and provided good predictions for situations in which

type-2 cells are advantageous as compared to type-0 cells. Note

that we used large mutation rates in our analyses, at a range of

1024 , u , 1021; this choice was made since experimental

Figure 5. The region of tunneling. The figure shows a comparison between the simulation results and (panel a) Eq. (1) in reference [22] with R = 0,
(panel b) the tunneling formula in the previous paper (Eq. 1 in [22]), and (panel c) our new formula (Eq. 15). The color represents the fit between
simulation results and each formula. The deviation is within 20% in a red region, from 20% to 40% overestimation in a light blue region, from 20% to
40% underestimation in a dark blue region, more than 40% overestimation in a white region, and more than 40% underestimation in a black region.
Parameter values are r0~1, t~200, N~100, u1~5:10{4 and u2~10{3 .
doi:10.1371/journal.pone.0065724.g005
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evidence suggests that the mutation rate per base per cell division

could increase up to these values due to phenomena such as

chromosomal instability and microsatellite instability [33,34].

We then investigated an approach considering all possible states

of the population, consisting of all three cell types, and calculating

all transitions among these states provided accurate predictions as

tested by direct computer simulations. However, the time to

calculate these predictions increases as the population size expands

because the number of equations increases in a factorial way, and

this method is thus infeasible to perform for large populations. For

situations in which type-2 cells are neutral as compared to type-0

cells, we adopted the Wright-Fisher framework to obtain

computationally faster approximations of the results from the

Moran model because the first method does not provide accurate

predictions in this parameter region.

These results are useful for considering the dynamics of

mutation accumulation during cancer initiation, progression, and

the emergence of resistance. A detailed kinetic understanding of

the processes leading to cells that harbor a certain number of

mutations can provide greater insights into tumorigenesis as well

as allow predictions for the mutational composition of a tumor at

certain time points. Furthermore, such a theory allows for a study

of the circumstances that maximize the rate of evolution, i.e. the

rate of mutation accumulation in cell populations. When

investigating the optimum fitness of type-1 cells that maximizes

the probability that a cell with two mutations has reached fixation

within a population of cells, we found that, in a wide parameter

region, the optimal fitness of type-1 cells is disadvantageous as

compared to type-0 and type-2 cells when the first mutation rate is

very large (Figure 2a, d, g). When the first mutation rate is large,

then a large fraction of type-0 cell divisions contributes to an

increase of type-1 cells by mutational events. This phenomenon

could arise because once a mutated cell (according to our notation,

a type-1 cell) appears, the clone it produces needs to undergo a

large number of cell divisions to reach fixation (i.e. 100%

frequency) in the population. This number of cell divisions equals

at least the size of total population. During these cell divisions, the

non-mutated cells (type-0 cells) experience a much larger number

of cell divisions than type-1 cells because the initial number of

type-0 cells is much larger than that of type-1 cells when the latter

has just been produced. Then, during these cell divisions,

additional mutations can emerge and will contribute to the

increase of the number of type-1 cells.

Moreover several biological observations support the existence

of this phenomenon. It is well known that genetic instability

contributes to tumorigenesis; the rate of chromosomal loss or gain

in genetically unstable cells has been measured to be about 0.01

per cell division [33]. Furthermore, mutations at different loci

could result in the same phenotype of a new mutant because these

mutations may affect the same signaling pathway in the cell [40],

which leads to a high mutation rate for generating a particular

phenotype. Finally, epigenetic changes may also occur at the same

sites as genetic mutations, thus increasing the rates of alterations of

Figure 6. Predictions of the fixation probability of type-2 cells by different approaches. All predictions were divided by 0.5. When the
ratio between prediction and 0.5 is 1, the color is red and signifies an accurate fit between the formula and the simulation result. When the ratio is
much larger than 1, the color is blue and black and represents an overestimation of the formula. When the ratio is much smaller than 1, the color is
light blue and signifies an underestimation of the formula. In the white region, we did not investigate the accuracy of the formulas because the time
for the type-2 cell fixation became too long. The predictions by our approach (Eq. 15) are shown in panel a–d and i–l, and those by Iwasa et al. [22] are
shown in panel e–h and m–p. Parameter values are r0~1:0, (a–h) N~100; (i–p) N~10000; (a,e,i,m) u1~u2~0:01; (b,f,j,n) u1~0:01, u2~0:0001;
(c,g,k,o) u1~0:0001, u2~0:01; and (d,h,l,p) u1~u2~0:0001. Time was chosen to obtain a probability of type-2 fixation of 0.5 for each parameter set.
doi:10.1371/journal.pone.0065724.g006
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that particular locus. Similarly to genetic instability, epigenetic

instability can thus also lead to large mutation rates [41].

Therefore, the relative fitness of type-1 cells as compared to

type-0 cells is effectively advantageous due to the high mutation

rate, even though the numerical value of type-1 cell fitness is

smaller than type-0 cell fitness. Once type-1 cells become

dominant in the population, a small fitness value of type-1 cells

maximizes the chance of type-2 cells to reach fixation in a

population of type-1 cells. Moreover, when the second mutation

rate is very large, the optimal fitness of type-1 cells is even larger

than that of type-2 cells (Figure 2d–f). A large fitness value of

type-1 cells enhances the increase of type-1 cells in a population of

type-0 cells. In the process of reaching fixation of type-2 cells in a

population of type-1 cells, a large mutation rate enhances the

abundance of type-2 cells. These phenomena could arise due to

the reasons described in the previous paragraph. However, the

effects of additional mutations arising during the fixation process,

i.e. while the cell population increases in abundance, are thus very

important for the dynamics of mutation accumulation in a

population of cells; such effects have not previously been described

in detail.

Moreover, we investigated parameter regions in which ‘‘sto-

chastic tunneling’’ occurs. In regimes in which r1v1 and r2w1,

the equation without a tunneling term underestimates the

simulation results (Figure 5a). Interestingly, we found that even

when r1w1 and r2vr1, tunneling occurs, which had not been

considered as being part of the tunneling regime previously. We

confirmed that when r1w1 and r1&r2, the new approximation

provides more accurate predictions than the previous formulas,

but when the fitness of type-2 is sufficiently smaller than that of

type-1, the previous approach is better (Figure 5b and c).

In human tumors, the total number of cells is expected to be

much larger than 1,000 cells, which is the parameter used for most

of our studies. The reasons we considered relatively small

population sizes are as follows: (i) Our model is not necessarily

meant to consider only large, late-stage tumors with population

sizes of the order of 109 to 1012 cells. The model is thus designed to

describe small, constant-size populations in which sequential

mutations arise, and we describe the dynamics with which this

process occurs. There are only few estimates for the population

structure and cell numbers within healthy human tissues; for

instance, a crypt in the human colon contains about 2,000 cells,

which are replenished by a small number of stem cells (4–6) [42].

Since only the mutations arising in stem cells can be maintained

indefinitely within the tissue without being ‘‘washed out’’ of the

system by differentiation, it is the number of stem cells that

represents the effective population size. (ii) In many tumor types,

there exists a cellular differentiation hierarchy of tumor cells,

subdividing the tumor into ‘‘cancer stem cells’’ and ‘‘cancer

differentiated cells’’ [43]. It has been estimated that only about one

in a million tumor cells are true stem cells in tumor types that

adhere to this model [44]. Since only those tumor stem cells have

unlimited self-renewal capacity, the accumulation of mutations

needs to be considered in only this population to study the

evolutionary dynamics of the entire tumor. For those reasons and

for the computational speed of our analyses, we considered

relatively small population sizes.

Our findings provide new insights into the evolutionary

dynamics of cancer cells. We derived a theory of the accumulation

of two mutations in a population of fixed size, and found that the

frequency of mutational events determines the optimum fitness

landscape for cancer cells in search of accumulating multiple

mutations. Once plausible parameter values have been estimated,

we are now able to obtain the fixation probability of population

with two mutations at any time point. Particularly when mutations

frequently occur in a cancer cell population, such as in the

presence of genomic instability [32,33], the effects of multiple

mutational events during a short time interval need to be

considered to obtain an accurate understanding of the dynamics

of cancer cells. Although we considered a single intermediate

population with one mutation, two mutations may cause two types

of intermediate populations; models including such extensions will

be considered in the future. Moreover, our work can be extended

to investigate the emergence of a larger number of mutations, as

well as a population subdivision into multiple compartments or

niches; these niches may harbor cells that proliferate indepen-

dently of cells in neighboring niches, or there may be migration of

cells from one compartment to the next. In addition, we can

consider time-dependent rates of mutation, cell division and death

in addition to more complicated population structures. Such

studies are ongoing and will provide further insight into the

somatic evolution of cancer.

Supporting Information

Figure S1 Results of our approach. The figure shows the

dependence of the probability that type-2 cells are fixed in the

population of cells at time t on various parameters. Results by Eq.

(15) are indicated by curves and those from direct computer

simulations are shown by dots. Parameter values are r0~1:0 and

t~100; (a–g) N~50; (h–m) N~100; (a–c, h–j) r2~1:0; (d–f, k–m)

r2~2:0; (g) r2~0:5; (a), (d), (g), (h), and (k) u1~0:1; (b), (e), (i), and

(l) u1~0:01; and (c), (f), (j), and (m) u1~0:001. Circles and thin

curves represent u2~0:1, triangles and dotted lines represent

u2~0:01, and stars and bold lines represent u2~0:001.

(TIFF)

Figure S2 Precise predictions of the fixation probability
of type-2 cells by systematic calculations of all transi-
tions. The figure shows the dependence of the probability that

type-2 cells are fixed at time t on various parameters. Results by

systematic calculations, W(0,0,t), are indicated by curves and those

from direct computer simulations are shown by dots. Parameter

values are r0~1:0 and t~100; (a–g) N~50; (h–m) N~100; (a–c,

h–j) r2~1:0; (d–f, k–m) r2~2:0; (g) r2~0:5; (a), (d), (g), (h), and (k)

u1~0:1; (b), (e), (i), and (l) u1~0:01; and (c), (f), (j), and (m)

u1~0:001. Circles and thin curves represent u2~0:1, triangles

and dotted lines represent u2~0:01, and stars and bold lines

represent u2~0:001.

(TIFF)

Figure S3 Predictions of the fixation probability of type-
2 cells by different approaches. This figure shows the results

obtained using different approaches to calculate the fixation

probability. The parameter values were chosen such that we

obtained 0.5 for the fixation probability and the predictions by the

formulas were divided by 0.5. When the ratio between prediction

and 0.5 is 1, the color is red and signifies an accurate fit between

the formula and the simulation result. When the ratio is much

larger than 1, the color is blue and black and represents an

overestimation of the formula. When the ratio is much smaller

than 1, the color is light blue and signifies an underestimation of

the formula. In the white region, we did not investigate the

accuracy of the formulas because the time for the type-2 cell

fixation became too long. In panels j, l, and p, when r1 is around

1.0, the predictions underestimate the simulation results and the

white region between 0 and 0.1 appears. The predictions by the

formula in Komarova et al. [20], in Nowak et al. [21], in

Weissman et al. [28], and in Proulx [29] are shown in panel a–h in
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i–p, in q–x and in y-F, respectively. The color scheme in panel i–p

was changed in order to be able to distinguish the underestimation

by the formula from the low probability of fixation. Parameter

values are r0~1:0, N~100 (a–d, i–l, q–t, y-B); N~10000 (e–h,

m–p, u–x, C–F); u1~u2~0:01 (a,e,i,m,q,u,y,C); u1~0:01,

u2~0:0001;(b,f,j,n,r,v,z,D); u1~0:0001, u2~0:01 (c,g,k,o,s,-

w,A,E); and u1~u2~0:0001 (d,h,l,p,t,x,B,F).

(TIFF)
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