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Chronic myeloid leukemia (CML) is associated with the Philadelphia
chromosome, which arises by a reciprocal translocation between
chromosomes 9 and 22 and harbors the BCR-ABL fusion oncogene.
It is unknown whether any other mutations are needed for the
chronic phase of the disease. The CML incidence increases as a
function of age with an exponent of �3. A slope of 3 could indicate
that there are two mutations, in addition to the Philadelphia
translocation, that have not yet been discovered. In this work, we
explore an alternative hypothesis: We study a model of cancer
initiation requiring only a single mutation. A mutated cell has a net
reproductive advantage over normal cells and, therefore, might
give rise to clonal expansion. The cancer is detected with a
probability that is proportional to the size of the mutated cell
clone. This model has three waiting times: (i) the time until a
mutated cell is produced, (ii) the time of clonal expansion, and (iii)
the time until the clone is detected. Surprisingly, this simple
process can give rise to cancer incidence curves with exponents up
to 3. Therefore, the CML incidence data are consistent with the
hypothesis that the Philadelphia translocation alone is sufficient to
cause chronic phase CML.

cancer incidence � mathematical biology � stochastic dynamics

Chronic myeloid leukemia (CML) is a malignant clonal disorder
of the hematopoietic system that leads to increased numbers of

myelocytes, erythrocytes, and thrombocytes in peripheral blood (1,
2). The molecular hallmark of CML is the Philadelphia chromo-
some, first described as shortened chromosome 22 in 1960 (3) and
then as a reciprocal t(9;22) translocation in 1973 (4). This abnormal
chromosome is found in cells from the myeloid, erythroid,
megakaryocytic, and B lymphoid lineages, indicating the presence
of a ‘‘cancer stem cell’’ that is capable of producing several types of
differentiated cancer cells (2). The Philadelphia chromosome is
present in 95% of patients. The remaining 5% have complex or
variant translocations that have the same result: fusion of the
breakpoint cluster region (BCR) gene on chromosome 22 to
the Ableson leukemia virus (ABL) gene on chromosome 9. The
chimeric oncogene BCR-ABL encodes a constitutively active cy-
toplasmic tyrosine kinase. This protein activates growth and dif-
ferentiation pathways in hematopoietic cells; its effectors include
RAS, RAF, MYC, JUN, STAT, and phosphatidylinositol 3-kinase
(1). BCR-ABL initiates a process to transform hematopoietic cells
such that their growth and survival become independent of cyto-
kines (5).

The question of whether BCR-ABL is necessary and sufficient to
cause CML has been addressed in different ways. Several labora-
tories could reproduce a CML-like disease in mice expressing the
BCR-ABL oncogene alone (6–8) or in combination with v-abl (9).
Exposure to ionizing irradiation was shown to increase the risk of
acquiring CML, but disease usually develops only after a prolonged
latent period (10); this finding could indicate that several mutations
are necessary for CML, but it also could mean that the Philadel-
phia-positive cell clone has a slow rate of expansion. Finally, �30%
of healthy individuals express the BCR-ABL oncogene at very low
levels (11, 12). This observation, however, does not prove that
additional genetic changes are necessary for CML because it can

alternatively be explained by the expression of BCR-ABL in
non-self-renewing differentiated cells rather than hematopoietic
stem cells. In the latter case, the continuous production of healthy
hematopoietic cells will eventually replace the Philadelphia-positive
cell clone and the disease will be ‘‘washed out’’ of the system (13).
Hence, the experimental evidence of how many mutations are
necessary to cause CML is inconclusive.

The multistep theory of carcinogenesis was inspired by the
observation that the cancer incidence increases as a higher order
function of age. In the 1950s, Nordling, Armitage, and Doll (14, 15)
pointed out that the cancer incidence data could be explained by an
increasing somatic mutation rate with age, or by the requirement of
several events to cause cancer (16). In 1957, a simple deterministic
model of two mutations was shown to produce incidence curves
with slope six if the intermediate mutants lead to clonal expansion
(17). Later, Moolgavkar et al. (16, 18, 19) introduced modeling of
incidence curves based on multistate branching processes including
cell proliferation and death.

Based on these insights, many mathematical models have been
developed that investigate the number of mutations needed to
cause particular kinds of cancer (19–22). A model fitted to the
age-specific incidence of colorectal cancer proposes that two rare
events and one high-frequency event suffice to initiate clonal
expansion of the mutated stem cell, and only one more mutation is
needed to give rise to an adenomatous polyp (19). The age-specific
incidence of CML was used to calibrate a multistage model and
predicts that three stem cell mutations are necessary for the chronic
phase of the disease (20). These models neglect the population size
and structure of the cells that are prone to accumulating mutations.
However, the population genetics of susceptible cells must be
considered if meaningful conclusions shall be drawn. For example,
depending on the effective population size as compared with the
mutation rate, it can take two, one, or even zero rate-limiting hits
to accumulate two genetic alterations (23–26). The number of
rate-limiting hits also can be larger than the actual number of
mutations because of time delays due to clonal expansion (17).
Therefore, the number of mutations necessary to cause a particular
type of cancer cannot simply be read off the age-specific incidence
data, and mathematical analyses must take into account population
size and structure.

In the following, we offer a population genetics analysis of the
dynamics of cancer initiation and its epidemiological consequences.
Our model is motivated by CML but does not exclusively apply to
this disease; rather, it is a general approach to studying many
different types of cancer. We use CML as a specific example to show
that a single mutation model can generate cancer incidence curves
with an exponent of up to 3.
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Results and Discussion
Assume that a population of N (hematopoietic stem) cells prolif-
erate according to the Moran process (27, 28): Initially, all cells are
wild type. Cells divide every � days. At each time step, a cell is
chosen for reproduction proportional to fitness. The newly pro-
duced daughter cell replaces another randomly chosen cell (Fig. 1).
Hence, the population size remains strictly constant. A wild-type
cell gives rise to a mutated cell with probability u per cell division.
Back mutation is neglected. A mutated cell has relative fitness r: if
r � 1, then the mutation is neutral and the cell has the same growth
rate as a wild-type cell; if r � 1, the mutant is advantageous, and if
r � 1, the mutant is disadvantageous as compared with wild-type
cells. We assume that the probability to diagnose the disease is
linearly proportional to the number of mutated cells in the popu-
lation. If there are x1 mutant cells, the rate of detection is qx1. We
perform exact numerical simulations of this process and compare
the results with analytic approximations.

In Methods, we show that the probability of detecting the disease
before time t is given by

P�t� ��
0

t �1 � �1 �
ecz � 1

N�1 � 1�r��
�qN/c� e�b�t�z�bdz. [1]

Here, b � Nu(1 � 1�r)�� and c � (r � 1)��. The stochastic process
is characterized by three waiting times: (i) the waiting time until
production of the first successful mutated cell is given by 1�b; (ii)
the time for clonal expansion of its lineage is given by ln[N(1 �
1�r)]�c, and (iii) the time until detection of the disease is given by
1�qN. This stochastic process can give rise to incidence curves with
exponents up to 3. Define t0 as the age at which we are interested
in the slope of the incidence; for example, t0 � 50 years. The factor
b is always much less than the inverse of t0 because otherwise, almost
everybody would be diagnosed with cancer. Patients are diagnosed
with a probability proportional to their number of leukemic stem
cells, and if this probability is small, then the average time to
detection might be �100 years. If qN �� 1�t0 and c �� 1�t0, then
the incidence increases with an exponent of 1. In this case, the
waiting time is dominated by the time it takes to produce the first
successful mutant, and the time needed for clonal expansion and

detection is negligible and, hence, does not contribute to the slope.
If qN �� 1�t0 and c �� 1�t0, then the slope is 2 � �, where � is
between 0 and 1. Finally, if qN �� 1�t0 and c �� 1�t0, then the slope
can take a value of 3. This contribution is only important if the time
for clonal expansion is sufficiently long, i.e., if the mutated cell clone
has a small fitness advantage. Therefore, a simple one-mutation
model can give rise to incidence curves with an exponent of up to
3. Fig. 2 shows the exact stochastic simulation and Eq. 1 shows
exponents 1–3.

The age-specific incidence data for CML were obtained from the
Surveillance, Epidemiology, and End Results (SEER) registry,
which covers �10% of the U.S. population (www.seer.cancer.gov).
In total, 5,256 CML cases were observed between 1973 and 2002,
and these cases were recorded in age classes of five years (Table 1,
columns 1 and 2). To calculate the probability to get CML per year
from this data, some adjustments are made. First, the cases re-

a

b

c

Fig. 2. Simulation and theory. The figure shows the results of the exact
stochastic computer simulation (triangles) and Eq. 1 (lines). Parameter values
are mutation rate u � 10�9, population size N � 1,000, relative fitness of
mutated cells r � 1.1, mean cell generation time � � 1 day, and probability of
detection q�N � � � 0.1 for an exponent of 1 (a); u � 10�5, N � 2,000, r � 1.001,
� � 100, and � � 2 	 10�5 for an exponent of 2 (b); and u � 10�6, N � 2,000,
r � 1.01, � � 40, and � � 2 	 10�5 for an exponent of 3 (c).

1. Choose a cell for 
reproduction pro-
portional to fitness

2. Cell division

(possibly with mutation)

3. Remove a cell at random

4. Add the new cell

Fig. 1. The Moran process. Initially, all N cells are wild type and have a
relative growth rate of 1. At each time step, a cell is chosen for reproduction
proportional to fitness, and its daughter cell replaces another randomly
chosen cell. The total number of cells remains strictly constant. Wild-type cells
give rise to mutated cells at rate u per cell division. Mutated cells have a
relative growth rate r. Cells divide every � days.
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corded in SEER have to be normalized to account for the number
of cases per year. In 2000, there were �4,400 CML cases (29),
hence, each SEER entry is multiplied with 4,400�5,256 (Table 1,
column 3). This operation gives the number of CML cases per year
per age class. To obtain the probability to get CML per age class per
year, the number of cases has to be normalized by the number of
susceptible people. Hence, we divide the cases by the U.S. Census
data from 2000 (Table 1, column 4) and get probabilities pi to be
diagnosed with CML per year of age. Finally, these probabilities pi
are used to calculate the probabilities Pk to be diagnosed with CML
anytime before age k (measured in years). We have

Pk � 1 � �
i�1

k

�1 � pi�

(Table 1, column 5). The resulting incidence curve is a nearly
straight line on a doubly logarithmic plot with slope 2.86.

We compare these data with the direct computer simulation and
with Eq. 1 and find that our simple one-mutation model can be fit
to the CML incidence curve (Fig. 3). Hence, the Philadelphia
chromosome alone might be sufficient to cause chronic phase
CML.

In this work, we have shown that a simple one-mutation model
can give rise to cancer incidence curves with an exponent up to 3.
We assume that the susceptible cells proliferate according to a
stochastic process. The probability of diagnosis of the disease
increases linearly with the number of mutated cells. We compare
exact simulations of this process with an analytical formula for the
cumulative probability of being diagnosed until a certain age. The
stochastic process is characterized by three waiting times: the time
until the first successful mutant is produced, the time of clonal
expansion, and the time until detection of the disease. If the time
until production of the first successful mutant is the only dominant-
waiting time, then the resulting incidence data increase with expo-
nent 1. Depending on the magnitude of the other two waiting times,
epidemiological data with exponents up to 3 can be obtained. These
results, together with previous work on the dynamics of tumor

suppressor gene inactivation (23–26), suggest that the incidence
curves of cancer cannot be used to estimate the number of
mutations necessary to cause the disease. Population size, mutation
rates, cell division times, and fitness values all interact to determine
the number of rate-limiting hits a mutation causes, and this number
can be larger or smaller than the actual number of mutations. Thus,
a meaningful mathematical analysis of cancer incidence must take
the population genetics of the susceptible cells into account.

As a specific example, we have studied the age-specific incidence
data of CML, which was obtained from the SEER registry. We
calculate the cumulative probability of developing CML from the
SEER cases and find that the incidence has a slope of 2.86 on a
doubly logarithmic plane. We fit this slope with the one-mutation
model and identify appropriate parameter values. Therefore, the
hypothesis that the Philadelphia chromosome alone is sufficient to
cause chronic phase CML is consistent with the observed incidence
curve (16, 30). However, further experimental efforts must be made
to firmly establish whether BCR-ABL is sufficient to cause chronic
phase CML.

Methods
We consider a population of N cells by following the Moran process
with a mean cell generation time of �. Initially all cells are wild type.
A mutant cell is produced with probability u per cell division and
has a relative fitness r. We assume that r � 1. Diagnosis of the

Table 1. CML incidence data

Age
classes,
years

Cases in SEER
(1973–2002)

Cases
per year

U.S. standard
population

Adjusted
cumulative
probability

1–4 20 17 15,191,619 0.0000055
5–9 22 18 19,919,840 0.0000102
10–14 27 23 20,056,779 0.0000159
15–19 50 42 19,819,518 0.0000264
20–24 92 77 18,257,225 0.0000475
25–29 147 123 17,722,067 0.0000823
30–34 189 158 19,511,370 0.0001228
35–39 225 188 22,179,956 0.0001653
40–44 241 202 22,479,229 0.0002103
45–49 281 235 19,805,793 0.0002698
50–54 351 294 17,224,359 0.0003552
55–59 436 365 13,307,234 0.0004925
60–64 508 425 10,654,272 0.0006922
65–69 569 476 9,409,940 0.0009455
70–74 611 511 8,725,574 0.0012388
75–79 635 532 7,414,559 0.0015973
80–84 465 389 4,900,234 0.0019944
85� 379 317 4,259,173 0.0023666

Shown are the number of CML cases in the SEER registry (1973–2002) for
age classes of five years (columns 1 and 2), cases per year (column 3), and the
U.S. Census data from 2000 (column 4) that is used to calculate the cumulative
probability per year to be diagnosed with CML until a given age class (column
5). Further explanations are given in the text.

a

b

Fig. 3. CML incidence. The figure shows the numerical simulation of Eq. 1
(line) and the adjusted cumulative CML incidence data from Table 1, column
5 (circles). Parameter values are u � 3 	 10�8, N � 105, r � 1.01, � � 60, and � �
10�3 (a) and 5 	 10�10, N � 106, r � 1.02, � � 100, and � � 0.1 (b).
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disease occurs as a stochastic event described as a continuous-time
Markovian transition model. The probability of detection increases
proportionally to the number of mutant cells: If there are x1 mutant
cells, the rate of detection is qx1. Let P(t) be the probability that the
cancer is detected before time t; it is the cumulative incidence of
cancer. The incidence curves of many cancers (apart from child-
hood cancers) are approximately straight lines on a doubly loga-
rithmic plot.

The stochastic process can be calculated as follows: at a random
time, a mutation occurs that eventually will become fixed in the
population. The appearance of the first successful mutant is a
random event occurring at rate b � Nu1(1 �1�r)��. This rate is the
product of the expected number of mutants produced per unit of
time and the probability of nonextinction of the cell lineage. An
advantageous mutation may go extinct because of the stochasticity
caused by the small population size, but once the mutant cell
number increases to sufficiently many, the lineage grows determin-
istically, and extinction can be neglected. We approximate the
clonal expansion of mutant cells by the logistic equation

dx
da

� cx�1 � x�, with x�0� � 1�N . [2]

Here, a is the time since the mutation occurred, x(a) is the
frequency of mutants in the population at that time where 0 �
x(a) � 1, and c � (r � 1)��. This equation implies that the frequency
of mutants increases as x(a) � 1�(1 � (N � 1)exp[�ca]).

The probability of cancer detection per unit time is given by qNx.
Hence, the cumulative risk of cancer detection at or before time t
is given by

qN�
0

t

x�a�da,

if the mutant arises at time t � 0 and its lineage grows until time t
after the deterministic growth rule given by Eq. 2. The time of
appearance of the first successful mutant, m, is given by a negative
exponential distribution, b � Nu1(1 �1�r)��. This stochasticity is
much greater than the stochasticity caused by the clonal expansion;
the latter is approximated by Eq. 2. The derivation of the following
formula neglects the stochasticity related to clonal expansion.

The risk of detection at or before time t is given by

qN�
0

t�m

x�a�da.

There is a small probability that the first successful mutant arises
exceptionally early (small m); for this unlucky patient, the risk is
much higher than for the average person, and it is those unlucky
patients that will be diagnosed first. Therefore, we have to average
the risk with respect to m. The probability of detection for a
particular patient who has a successful mutation event at m is
given by

1 � exp� � qN�
0

t�m

x�a�da� , [3]

and the averaged risk of diagnosis is given by

P�t� ��
0

t 	1 � exp� � qN�
0

t�m da
1 � �N � 1�exp
 � ca�� 


� e�bmbdm . [4]

Here, the frequency of the mutant cells conditional to fixation is
given by the deterministic model, Eq. 2. However, some trajectories
go extinct, and, hence, the deterministic model is an underestima-
tion for the trajectory of clonal growth conditional to fixation. For
a more accurate approximation, we use the initial condition x(0) �
1�[N(1 � 1�r)] in Eq. 2. Hence, we have

P�t�

��
0

t 	1 � exp��qN�
0

t�m da
1 � �N�1 � 1�r� � 1�exp
�ca�� 


� e�bmbdm . [5]

If the integral is calculated with respect to a, we have

P�t� ��
0

t 	1 � exp��
qN
c

ln� 1 �
ecz � 1

N�1 � 1�r�
� � 
 e�b�t�z�bdz ,

[6]

which also can be written as Eq. 1 in Results.
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