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Abstract
Most human cancer types result from the accumulation of multiple genetic and epigenetic
alterations in a single cell. Once the first change (or changes) have arisen, tumorigenesis is
initiated and the subsequent emergence of additional alterations drives progression to more
aggressive and ultimately invasive phenotypes. Elucidation of the dynamics of cancer
initiation is of importance for an understanding of tumor evolution and cancer incidence data.
In this paper, we develop a novel mathematical framework to study the processes of cancer
initiation. Cells at risk of accumulating oncogenic mutations are organized into small
compartments of cells and proliferate according to a stochastic process. During each cell
division, an (epi)genetic alteration may arise which leads to a random fitness change, drawn
from a probability distribution. Cancer is initiated when a cell gains a fitness sufficiently high
to escape from the homeostatic mechanisms of the cell compartment. To investigate cancer
initiation during a human lifetime, a ‘race’ between this fitness process and the aging process
of the patient is considered; the latter is modeled as a second stochastic Markov process in an
aging dimension. This model allows us to investigate the dynamics of cancer initiation and its
dependence on the mutational fitness distribution. Our framework also provides a
methodology to assess the effects of different life expectancy distributions on lifetime cancer
incidence. We apply this methodology to colorectal tumorigenesis while considering life
expectancy data of the US population to inform the dynamics of the aging process. We study
how the probability of cancer initiation prior to death, the time until cancer initiation, and the
mutational profile of the cancer-initiating cell depends on the shape of the mutational fitness
distribution and life expectancy of the population.

1. Introduction

Tissues of multi-cellular organisms are organized into
morphologically stable compartments or niches [1, 2]. Such
compartments are made up of separate clones of cells, which
proliferate to fulfill their organ-specific tasks [3, 4]. In healthy
tissues, compartment sizes are stabilized by homeostatic
mechanisms which induce compensatory regulatory responses
via cellular signaling, apoptosis, and other processes [5].
During each cellular replication, a genetic or epigenetic
alteration may arise. Many of those changes do not alter
the reproductive fitness of the cell and are selectively neutral

1 These authors contributed equally to this work.
2 Author to whom any correspondence should be addressed.

[6]. Some alterations, however, provide the cell with a
fitness advantage due to increased proliferation capabilities,
decreased death, enhanced migration and invasion, or the
ability to induce angiogenesis [7]. Once a cell has evolved
a sufficiently aggressive phenotype, it can escape from
homeostatic control mechanisms and initiate tumorigenesis
[8–14]. During the expansion of this initiated clone, additional
genetic and/or epigenetic changes are accumulated that drive
cancer progression and lead to more malignant and ultimately
invasive phenotypes [7].

While tumorigenesis has classically been defined as a
disease resulting from the accumulation of genetic alterations
[15], it is becoming increasingly apparent that epigenetic
modifications are similarly important for the initiation and
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progression of human cancer [16]. Patterns of DNA
methylation and chromatin structure are significantly altered in
cancer cells and include genome-wide losses of, and regional
gains in, DNA methylation. Aberrant promoter methylation,
for instance, is associated with the loss of gene function that
can provide a selective advantage to tumor cells, as do genetic
alterations. For example, the von Hippel–Lindau (VHL) gene,
which causes familial renal cancer if mutated in the germ line,
is often epigenetically silenced in the sporadic form of this
tumor type [17]. Similarly, the breast cancer 1, early onset
(BRCA1) and serine/threonine kinase 11 (STK11) genes are
often epigenetically inactivated in sporadic cases of breast
and colon cancer, respectively, while they predispose to these
cancer types in carriers of a germ line mutation [18, 19].
In addition to gene silencing events that are associated with
methylation changes, methylation patterns can also influence
tumorigenesis by other mechanisms; cytosine methylation,
for instance, can cause spontaneous hydrolytic deamination
of cytosine and lead to C–T transitions [20]. This enhanced
mutagenesis might lead to many gene alterations observed in
tumors—as many as 50% of inactivating point mutations in the
coding region of the human TP53 tumor suppressor gene in
somatic cells occur at methylated cytosines [21]. Epigenetic
alterations therefore cannot be neglected in the study of cancer.

Due to its importance for an understanding of
tumorigenesis, the dynamics of cancer initiation have been
the subject of several mathematical investigations. These
studies considered cancer initiation to occur when a single cell
has accumulated n specific alterations [22–27]. The fitness
effects of these alterations were assumed to be either neutral
or advantageous; the latter was realized as an additive jump
in the growth rate of the mutated cell. Several authors studied
the situation in which the accumulation of two alterations
is sufficient to initiate tumorigenesis [22–25]; cells were
considered to proliferate according to the Moran model in a
population of fixed size [28]. Later on, scenarios in which
n � 2 mutations are necessary for cancer initiation were
investigated [26, 27]. These contributions are part of a
literature of mathematical approaches to cancer initiation and
progression [29–51].

In this paper, we propose a novel mathematical model of
cancer initiation. Unlike earlier efforts, we do not consider
the situation in which cancer is initiated once a specified
number of genetic alterations has been accumulated; rather,
cancer initiation occurs as soon as the fitness of a cell
passes a threshold value. Once this threshold is reached,
the cell can escape from homeostatic control and initiates
clonal expansion. In particular, we model a mechanism
for the breakdown of homeostasis in a normally fixed-
size compartment of cells via the accumulation of random
mutational fitness changes emerging during cell replication.
The fitness changes conferred by (epi)genetic alterations
are modeled as random variates selected from a mutational
fitness landscape. The fitness threshold necessary for cancer
initiation can then be reached via a large number of mutations
each conferring small fitness changes, a few mutations each
conferring large fitness effects, or a mixture of large and
small effects. We then investigate the dynamics of cancer

initiation conditioned on the event that initiation occurs prior
to death of the patient due to causes other than the cancer
type of interest. This conditioning is addressed by adding
a second dimension representing an aging process to the
model. This framework is used to determine the probability of
cancer initiation prior to death as well as the expected waiting
time until cancer initiation. Furthermore, we investigate the
expected number of neutral and non-neutral mutations that
are present in the cancer-initiating clone. This quantity is of
clinical interest since it provides insight into the genotype of
the cancer-initiating cell and thus the genotypic composition
and potentially the drug sensitivity of the resulting tumor.
Our mathematical framework sheds light onto the effects
of the shape and characteristics of the mutational fitness
landscape on the dynamics of cancer initiation, and provides
a methodology to assess the consequences of different life
expectancy distributions on lifetime cancer incidence and the
mutational composition of cancer-initiating cells.

2. The model

Consider a compartment of N cells that proliferate according to
a stochastic Moran process (see the appendix for a discussion
of this process) [28, 52]. This compartment consists of those
cells that are at risk of accumulating the (epi)genetic alterations
leading to cancer initiation. If only tissue-specific stem cells
live long enough to accumulate the necessary changes, then
the population is made up of stem cells [53]; alternatively, the
compartment additionally contains progenitor cells [50, 54].
Since healthy tissues are subdivided into small compartments
of cells [1, 2], N is small. Initially, all cells are unmutated
and have relative fitness 1. The time intervals between
reproduction events are independent, identically distributed
exponential random variables with mean 1/N . During each
reproduction event, one cell is chosen at random to die, and
one cell is chosen to reproduce according to its relative fitness.
The population size is strictly constant. The probability of a
specific cell being chosen for reproduction during an event is
determined by the contribution of its fitness to the total fitness
of the population; if there is a single cell of fitness s in a
population of N −1 cells of fitness 1, then the cell with fitness
s is chosen to reproduce with probability s/[s + (N − 1)].
Here fitness is defined as the relative reproductive success of
cells.

Mutational fitness distribution fψ . During each cell division
event, an (epi)genetic alteration may occur with probability
u � 1; thus, alterations arise in the compartment of
cells at rate Nu. The fitness effects of individual
alterations are random variates drawn from a probability
distribution, fψ , which represents a mutational fitness
landscape. This distribution fψ may be state-dependent
and thus vary according to the fitness of the parent cell
(e.g. f x

ψ is dependent on the fitness x of the parent cell).
Figure 1 shows a schematic of this process for a state-
independent distribution fψ . This flexible framework allows
us to study the effects of mutational fitness landscapes on the
dynamics of cancer initiation.
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Figure 1. A schematic representation of the stochastic process
governing cellular fitness. We consider a population of N cells
residing in a compartment or niche of fixed size. These cells
replicate according to a stochastic Moran process. During each
elementary time step of the process, a cell is chosen at random
proportional to fitness to divide and its offspring replaces another
randomly chosen cell. During each cell division, a genetic or
epigenetic alteration arises with probability u. Each alteration may
confer a random additive fitness change to the cell. The parent cell,
on the left, thus gives rise to a daughter cell with the same fitness, x,
with probability 1 − u (upper right). With probability u, the parent
cell produces a mutated offspring with fitness x + ψ , where ψ is a
random additive fitness change selected according to the mutational
fitness distribution fψ (lower right). If a cell within the
compartment gains a sufficiently large fitness value, then
tumorigenesis is initiated.

Dynamics in fitness space. Suppose the population consists
of two types of cells at time t = 0: N − 1 normal cells and
one cell carrying a single mutation. Define the waiting time
until a cell in this population accumulates a second mutation
as Tmut and the time until homogenization (i.e. until the cell
carrying the mutation reaches zero or 100% frequency in the
population) as Thom. Then we have

P(Tmut < Thom) � 3Nu(log N + γ ), (1)

where γ is the Euler–Mascheroni constant. In other words, if
3Nu(log N + γ ) ≈ 0, a cell harboring a mutation is far more
likely to reach fixation in the compartment or die out before
a second mutation arises. See the appendix for the proof
of equation (1). Therefore, when u � 1/N2, the periods
of time during which the compartment is not homogeneous
comprise a negligible amount of time. As the population size
and/or the mutation rate increase during tumor progression,
more complex dynamics emerge [55]; this scenario, however,
is likely not applicable to situations of cancer initiation since
in healthy tissues, compartment sizes and mutation rates are
small. For the parameter ranges of interest for the study
of cancer initiation, a cell compartment is almost always
homogeneous.

Based on these considerations, the process describing
the evolution of fitness values in a compartment of cells
is approximated by a Markov process Z(·), where Z(t)

represents the fitness of the homogeneous compartment at
time t. The process Z jumps whenever a cell harboring a novel

non-neutral mutation reaches fixation in the compartment, and
takes values in the space of all possible fitness values dictated
by the fitness landscape. By equation (1), this process closely
approximates the behavior of cellular fitness values in a small
compartment for the vast majority of time. Note that by
focusing on the times when the process is homogeneous, the
state space of the system is significantly reduced, thus allowing
for more feasible computational analysis.

Consider the fitness values a and b, for some 0 � a < b,
such that a compartment of cells remains in a homeostatic state
for fitnesses within the range [a, b]; thus, Z(t) ∈ [a, b] for all
times t. Once a cell in the compartment gains a fitness greater
than the threshold b, it escapes from homeostasis and cancer is
initiated. The fitness value a is defined as a reflecting boundary
for Z; any cell with fitness below a is immediately replaced by
a cell with fitness a. For computational purposes, we consider
the process Z living on a discretized state space on the range
[a, b]. Since we consider a homeostatic cell compartment
before initiation of tumorigenesis, a natural choice for the
parameters is a = 1 − 1/N and b = 1 + 1/N since these
values signify the boundaries for neutral evolution [56].

Let us now consider in detail the dynamics of Z in fitness
space. We introduce the mutation kernel M(·, ·), where M(x,
y) represents the probability that a cell with fitness x produces
a daughter cell with fitness y (i.e. M(x, y) = f x

ψ(y − x)). If
y > x, then the fitness of the daughter cell is advantageous
as compared to the fitness of its parent cell; if y < x, it is
disadvantageous, and if y = x, it is neutral. Since neutral
mutations are allowed to occur, M(x, x) can be non-zero. If
a single cell of fitness y arises in a population of N − 1 cells
of fitness x, the probability that the cell with fitness y reaches
fixation in the population is given by

ρx,y = 1 − x/y

1 − (x/y)N
. (2)

This expression is called the fixation probability and can
easily be found by first step analysis. By symmetry, we have
ρx,x = 1/N . The intensity matrix for the Markov process Z is
then defined as

Q(x, y) = Nuρx,yM(x, y),

for y < b. This expression becomes Q(x, y) = NuM(x, y)

when y � b. The reflecting behavior at the lower boundary
is realized through the mutation kernel M. By definition, we
have

Q(x, x) = −
∑
y �=x

Q(x, y).

Since the process stops as soon as one cell gains a fitness value
greater than b, the states x � b are absorbing, so Q(x, y) = 0
for all y and x � b. The summation is over all y in the discrete
fitness space.

Modeling the lifetime of a patient. The Moran model
dynamics described by the coarse-grained process Z represent
the change in the fitness values of cells in the compartment
over time. In order to model the dynamics of cancer initiation
during a human lifetime, a ‘race’ between this fitness process
Z and the aging process of the patient is considered. To this
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Figure 2. Sample path simulations of the two-dimensional
stochastic process. We consider a stochastic process governing the
evolution of fitness values of cells within the compartment (see
figure 1) coupled with a stochastic process representing aging and
death of the patient. The figure shows two sample path simulations
of this two-dimensional process. The fitness of cells within the
compartment is shown on the horizontal axis, and the lifetime of the
patient is displayed on the vertical axis. If the trajectory hits the
right boundary before reaching the upper border, then cancer
initiation occurs before death of the patient (sample path (1)); if the
trajectory hits the top boundary before reaching the right border,
then death occurs before cancer initiation (sample path (2)). The
fitness values bounding the area of interest are dictated by the
cutoffs for neutral evolution [56].

end, we introduce a second stochastic process, L(t), which
is a continuous-time Markov chain with an absorbing state
representing death of the patient. Thus this process, L, hits
the absorbing state with probability 1 and the first passage
time of this event represents the age of the patient at death.
The transition probabilities of this Markov chain can be tuned
to match mortality data for the population of interest. We
fit the dynamics of the process L to qualitatively describe the
current life expectancy in the United States [57].

To address a similar problem, Liu and Lin [58] utilized a
Coxian phase-type distribution to construct an aging process
to fit life expectancy data. We follow a simplified version
of this approach and define L to be a Coxian process with
d states. In particular, the process L(t) is initialized at
state 1 and takes values in the state space {1, . . . , d}. If
L(t) = � < d, it jumps monodirectionally to state � + 1 at
rate 1, and the final state d is an absorbing state. The time
for the process to hit the absorbing state is described by a
Gamma(d − 1, 1) distribution. The transition intensity matrix
for this process is (S)i,j = Si,j , which satisfies Si,i = −Si,i+1

and is constant along the diagonal. Let us denote this value
along the main diagonal by S instead of unity, since changing
the diagonal allows for flexibility in the choice of time scales
with respect to the replication rate of cells in the compartment.
Figure 2 shows that death of a patient occurs when the process
L makes d − 1 upward steps; note that the time between each
step is an exponential random variable with mean 1. The

Gamma distribution provides a good qualitative approximation
for the lifetime distribution of a population. When modeling
the fraction of people that survive longer than x years via
P(G > x), where G is a Gamma(81,1) random variable, then
this tail probability stays relatively flat until around 68 years,
at which point it begins a sharp decay toward zero.

In summary, we have designed a model of cancer initiation
during a human lifetime using a two-dimensional Markov
process. The first dimension of this process, Z, represents
the fitness of cells at risk of accumulating the mutations
initiating tumorigenesis; these cells are organized into small
compartments or niches of a constant size. The second
dimension L represents the aging process of a patient. The state
of the process Z is governed by the more detailed dynamics
of a Moran process at the cellular level, and the process L
is chosen so that its absorption time, which has a phase-type
distribution φ, matches mortality data. This model has several
parameters: the mutation rate u, the lifetime distribution
φ(t), the number of cells in the compartment N, and the
mutational fitness distribution fψ . This model is then used
to determine the dynamics of the event that cancer initiation
occurs prior to death, i.e. that the right boundary of Z is reached
(corresponding to one cell reaching a fitness value greater than
or equal to the boundary value a) prior to absorption in the
L-direction. Figure 2 shows a diagram of this process and two
possible sample paths. All paths initiate at (Z = 1, L = 1)

and sample path (1) demonstrates a trajectory in which cancer
initiation occurs prior to death; such paths, however, comprise
only a fraction of all possible outcomes. Sample path (2)
visualizes a trajectory in which death occurs prior to cancer
initiation. Note that cancer initiation is not equivalent to
diagnosis of the disease, so that the initiation statistics cannot
be compared to cancer incidence data.

3. Analysis

The stochastic model outlined above is used to determine
several quantities: (i) the probability of cancer initiation prior
to the time of death; (ii) the waiting time until cancer initiation
prior to death, and (iii) the expected number of neutral and
non-neutral mutations present in the cancer-initiating cell,
conditional to cancer initiation occurring before death. The
estimates for these quantities are obtained in the form of the
solution to simple linear systems in order to keep the analysis
applicable to general mutation kernels M. These estimates are
later used to study the effect of the mutation kernel and of
lifetime distributions on the dynamics of cancer initiation.

3.1. The probability of cancer initiation prior to death

For a given state in the two-dimensional space (x, r), let I(x,
r) denote the probability of Z(t) reaching a fitness value
above b (i.e. initiating cancer) before L(t) reaches the
absorbing state d (i.e. death), starting from the initial condition
Z(0) = x, L(0) = r . For the process Z, there can be a
transition of the form x → y, and for the process L(t), there
can be a transition of the form r → s. Thus when the current
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state of the two processes is (x, r), then, the next jump v has
the following probability distribution:

P (v = (y − x, 0)) = Nuρx,yM(x, y)

−Q(x, x) − S

.= PZ(x, y|r),

P (v = (0, s − r)) = S

−Q(x, x) − S

.= PL(r, s|x),

for any y �= x in the fitness space and any s ∈ {1, . . . , d},
s �= r .

By first step analysis, we obtain a linear system that the
probabilities I(x, r) satisfy:

I (x, r) =
∑

y

I (y, r)PZ(x, y|r) +
∑

s

I (x, s)PL(r, s|x). (3)

We also have the boundary conditions I (x, d) = 0 for all
x ∈ [a, b] and I (b, r) = 1 for r ∈ [0, d). This linear system
can easily be solved to obtain I(x, r). Cancer initiation is
then defined as the event that the fitness of one cell reaches
a = 1 + 1/N before death of the patient; the probability
of initiation prior to death is pi ≡ I (1, 1). The transition
probabilities for the compound process (Z,L) conditioned
upon initiation prior to death are given by

P̃Z(x, y|r) .= PZ(x, y|r) I (y, r)

I (x, r)
(4)

and

P̃L(r, s|x)
.= PL(r, s|x)

I (x, s)

I (x, r)
. (5)

3.2. The waiting time until cancer initiation

Let τ represent the time of cancer initiation and σ the time at
which the process L is absorbed, i.e. the patient dies. Denote
the time until the first jump of the process (Z,L) by T1. Then
we have

E(x,r)[θ
T1 ] = E(x,r)[θ

T1 |τ < σ ] = −S − Q(x, x)

−S − Q(x, x) − log θ
.

This result is important because of the following:

E(x,r)[θ
τ |(Z(T1), L(T1)) = (y, r)] = E(x,r)[θ

T1 ]E(y,r)[θ
τ ].

This expression results from the independence of the duration
of the first jump time and all subsequent jump times. The
generating function for the conditioned initiation time starting
from the state (x, r) is defined as

G(x, r, θ) = E(x,r)[θ
τ |τ < σ ]. (6)

Then, performing first step analysis, we obtain the linear
system

G(x, r, θ) = −S − Q(x, x)

−S − Q(x, x) − log θ

×
(∑

y

P̃Z(x, y|r)G(y, r, θ)+
∑

s

P̃L(r, s|x)G(x, s, θ)

)
.

The boundary condition is G(b, r, θ) = 1.
We perform a simpler calculation to determine the mean

waiting time until cancer initiation. Define w(x, r) to be
the expected time until initiation starting from the state

(x, r), conditioned on initiation prior to death: w(x, r) =
E(x,r)[τ |τ < σ ]. Then we have

w(x, r) =
∑

y

P̃Z(x, y|r)w(r, y) +
∑

s

P̃L(r, s|x)w(x, s)

+
1

−Q(x, x) − S
(7)

with boundary condition w(b, r) = 0.

3.3. The number of neutral mutations in the cancer-initiating
cell

An accurate understanding of the genomic composition of the
cell that leads to clonal expansion and cancer initiation may
aid in the identification of drug targets. Furthermore, it helps
to elucidate the distribution of advantageous and passenger
(selectively neutral) mutations in cancer. Let us first consider
the number of neutral mutations that have been accumulated in
the compartment before cancer is initiated. Denote the number
of neutral mutations present in the compartment at time t by
m(t). Next we compute the function

μ(x, r) = E(x,r) [m(τ)|τ < σ ] . (8)

Thus, μ represents the number of neutral mutations
accumulated in the cancer-initiating cell conditional to cancer
initiation occurring before death of the patient.

Between jumps of the two-dimensional process (Z,L), a
random number of neutral mutations can reach fixation within
the compartment of cells. Let Tj and Tj+1 be the jump times
of (Z,L), and for simplicity denote (Z(Tj ), L(Tj )) = Xj .
During the transition from Xj to Xj+1, the compartment can
accumulate Yj (Xj ) neutral mutations. Define

η(x, r) = uM(x, x)

uM(x, x) − Q(x, x) − S
.

The top of the fraction represents the rate at which neutral
mutations which eventually reach fixation arise within the
compartment, and the bottom of the fraction represents the
total rate at which fixating mutations arrive and the time
process changes. With this definition, Yj (x, r) is distributed
like a geometric random variable with

P(Yj (x, r) = n) = η(x, r)n (1 − η(x, r)) ,

which gives

E[Yj (x, r)] = η(x, r)

1 − η(x, r)
.

By conditioning on the first step, we obtain that μ(·, ·) satisfies
the following linear system for each possible fitness x in [a, b]:

μ(x, r) = η(x, r)

(1 − η(x, r))
+

∑
y

P̃Z(x, y|r)μ(y, r)

+
∑

s

P̃L(r, s|x)μ(x, s).

Note that μ(x, r) = 0 for those fitnesses that lie outside of
[a, b]. Therefore μ(·, ·) can be determined by solving the
linear system above.
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3.4. The number of non-neutral mutations in the
cancer-initiating cell

Let us next determine the mean number of advantageous and
disadvantageous mutations in the initiating cell. Let n(t) be the
number of non-neutral mutations present in the compartment
of cells at time t. Then, the number of non-neutral mutations
at initiation is given by

ν(x, r) = E(x,r)[n(τ)|τ < σ ],

where ν(x, r) satisfies the system

ν(x, r) =
∑
y �=x

P̃Z(x, y|r) (ν(y, r) + 1) +
∑

s

P̃L(r, s|x)ν(x, s)

with boundary condition ν(b, r) = 0. The expected number
of advantageous or disadvantageous mutations present can be
obtained in a similar fashion. For example, by defining na(t)

to be the number of advantageous mutations present at time t,
the number of advantageous mutations present at initiation is
given by

νa(x, r) = E(x,r)[na(τ )|τ < σ ],

and νa(x, r) satisfies the linear system

νa(x, r) =
∑
y>x

P̃Z(x, y|r) (νa(y, r) + 1)

+
∑
y<x

P̃Z(x, y|r)νa(y, r) +
∑

s

P̃L(r, s|x)νa(x, s), (9)

where the boundary condition is again νa(b, r) = 0.

4. Application of the model to colorectal cancer
initiation

Let us now apply this mathematical framework to colorectal
cancer as a specific example. Colorectal tumors progress
through four distinct clinical stages: dysplastic crypts,
small benign tumors, malignant tumors invading surrounding
tissues, and finally metastatic cancer [11]. This progression
is driven by the accumulation of several genetic changes [59].
Mutations of the adenomatous polyposis coli (APC) gene are
considered the earliest and most prevalent genetic changes in
colorectal tumorigenesis [11]; other important contributors are
mutations in the KRAS and TP53 genes [11]. Colonic tumors
arise from the rapidly proliferating epithelium of the colon.
This epithelium is organized into Ncrypts = 107 compartments
of cells called crypts [60]. Each crypt contains about 1000–
4000 cells. Approximately 4–10 of those cells are stem cells,
residing at the base of each crypt [4, 61]. The progeny of stem
cells migrate up the crypt, continuing to divide until they reach
its mid-portion. Then they stop dividing and differentiate into
mature cells. When the cells reach the top of the crypt, they
undergo apoptosis and are engulfed by stromal cells or shed
into the gut lumen. The cell migration from the base to the top
of the crypt takes about 3–6 days [62].

To study the probability of cancer initiation from any
crypt, we estimate the probability of initiation from a single
crypt prior to death, pi . Then the number of crypts
containing cancer-initiating cells is binomially distributed with
parameters Ncrypts and pi . Taking a Poisson approximation,

the probability of cancer initiation prior to death from any
crypt becomes approximately 1 − exp[−piNcrypts], and the
average number of crypts containing cancer-initiating cells
emerging prior to death is Ncrypts × pi . Note that if pi

is of order 10−6 or greater, the probability of having at
least one cancer-initiated crypt before death is 1. If pi

is on the order of 10−8 or less, the probability of having
at least one such crypt before death is much less than 1.
Unfortunately no data are available on the frequency of
cancer-initiated crypts in the population since these crypts are
generally too small to be detected by routine colonoscopies, but
slightly larger growths—adenomatous polyps—are observed
in approximately 50% of people above age 70 [63–65]. These
statistics can be used to guide parameter choices for the
mutational fitness distribution.

For the purpose of our mathematical model, we consider
a compartment size of N = 10 colonic stem cells and a
stem cell division frequency of approximately once per week
[66, 67]. The overall mutation rate—giving rise to neutral,
advantageous or deleterious mutations—is about u = 0.001
per cell division, since there are 3 × 109 base pairs in the
human genome and the per base pair mutation rate is about
10−11–10−12 [68]. There are no estimates for the shape of
the mutational fitness distribution for human colonic epithelial
cells. Therefore, to investigate the dependence of the dynamics
of cancer initiation on the mutational fitness distribution fψ ,
we construct a general family of fitness distributions with a
mode at zero. For simplicity, assume that the mutational fitness
distribution is state independent: fψ = f x

ψ . The general form
of the mutational distribution is then given by

P(ψ = k�) = cαk, k ∈ N,

and

P(ψ = −k�) = cβk, k ∈ N,

where c is a normalization constant. In practice, we use a
truncated approximation of this unbounded distribution. The
point mass at the origin represents neutral mutations, such as
alterations in non-coding DNA. The parameter � represents
the fitness space discretization, which is set as � = 0.004.
This distribution thus has two key shape parameters: α,
which controls the decay rate on the right (i.e. weight on
advantageous mutations), and β, which controls the decay
rate on the left (i.e. weight on deleterious mutations). When
α and β are set to 1, the distribution is uniform. Note that
a larger probability of neutral mutations can be added by
considering a mixture of this distribution with a point mass at
0. Figure 3 illustrates this family of distributions. An increase
in the shape parameter β while holding α constant results in a
more slowly decaying deleterious tail of the distribution; this
leads to a higher percentage of disadvantageous mutations with
more negative fitness jumps possible. Similarly, an increase
in α while holding β constant results in a higher percentage
of advantageous mutations with larger positive fitness jumps
possible (distribution not shown). This general form of
fitness distributions is next used to determine the consequences
of changing the distribution on the dynamics of cancer
initiation.
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Figure 3. The mutational fitness distribution. The stochastic process governing the evolution of fitness values of cells within a compartment
depends on the shape of the fitness distribution conferred by mutations. For simplicity, we consider a general family of fitness distributions
determined by the shape parameters α and β, which govern the decay of advantageous and deleterious mutations, respectively. This flexible
setup allows us to study the effects of varying the mutational fitness distribution on the dynamics of cancer initiation. As specific examples,
the figure displays the probability density function of fψ for α = 0.5 and β = 0.4, 0.5, 0.6.

4.1. Effects of varying the mutational fitness distribution, fψ

Let us now investigate the results of modifying the shape
parameters of the mutational fitness distribution on the
dynamics of cancer initiation from a single compartment of
cells. Throughout this section, we consider an aging process
L whose properties are qualitatively fitted to the US mortality
data [57], with d = 82 states.

We first study the consequences of varying the decay rates,
α and β, of the positive and negative tails of the mutational
fitness distribution fψ on the probability of cancer initiation.
Figures 4(a) and (b) display the probability of initiation
before death, pi , as the shape parameters α and β are varied;
here pi is determined by solving equation (3) for I (1, 1).
Figure 4(a) shows the probability of cancer initiation as a
function of α, for different values of β; note that as α increases,
the probability of initiation is enhanced since the frequency and
fitness advantages of beneficial mutations increase. Similarly,
as β increases (figure 4(b)), the probability of cancer initiation
decreases. The incidence of human tumors provides some
clues as to the relative magnitude of α and β. Based on
the frequency of adenomatous polyps in the US population
(≈50%) [63–65], the probability of harboring a cancer-
initiated crypt before death is estimated to be between 50
and 90%. Thus it is unlikely that pi � 10−7, since this choice
would result in an unrealistically high probability of cancer
initiation. Therefore, it is unlikely that α � β, corresponding
to a vast majority of mutations being advantageous, because
the probability of cancer initiation would also be unrealistically
high for this regime.

Let us now investigate the expected time until cancer
initiation conditional upon initiation occurring prior to death.

This quantity is found by solving for w(1, 1) in equation (7)
and corresponds to the age of a patient at the time of
cancer initiation. Note again that this quantity is not
synonymous to the age of a patient at diagnosis with a tumor.
Figures 4(c) and (d) show the conditional expected time of
cancer initiation as a function of varying α (figure 4(c))
and β (figure 4(d)). The dynamics of this system display
complex nonlinear behaviors; when α is large, the initiation
time declines sharply, since a mutational fitness distribution
placing more mass on advantageous mutations results in faster
cancer initiation. In this regime, increasing β results in a larger
conditional initiation time since increasing mass is placed
on disadvantageous mutations, and therefore more time is
required for cancer initiation. However, for small values
of α, a larger β results in exactly the opposite behavior—
shorter average conditional initiation times. This observation
is counterintuitive, since distributions with large β (and hence
mostly disadvantageous mutations) are expected to result in
a longer initiation time as in the case of large α. Similar
dynamics can be observed in figure 4(d), where the initiation
time, τinit, is shown as a function of varying β for several
values of α. When β is small, the probability of initiation is
high and increasing α results in smaller initiation times; when
β is large, increasing α results in the opposite effect.

Figures 4(c) and (d) demonstrate that these interesting
dynamics occur in regimes that coincide with small cancer
initiation probabilities (see figures 4(a) and (b)), suggesting
that the decrease in the conditional initiation time is caused by
a selection effect on the sample paths due to the conditioning
event. This regime includes the biologically relevant range in
which the probability of initiation is realistically small (e.g.
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(a) (b)

(c) (d )

Figure 4. The probability of and time until cancer initiation prior to death. (a) and (b) The panels display the probability of cancer initiation
from a single compartment of cells, pi , before death of the patient due to causes other than the cancer type of interest. The panels are plotted
on a semilogarithmic plane for clarity. The probability of cancer initiation increases with α and decreases with β. (c) and (d) The panels
display the expected time of cancer initiation, conditioned on initiation occurring before death of the patient. (a) and (c) We vary the shape
parameter α, which governs the decay rate on the right of the distribution (i.e. advantageous mutations). (b) and (d) We vary the shape
parameter β, which governs the decay rate on the left of the distribution (i.e. deleterious mutations). The aging process L is fit to US life
expectancy data [57] and parameters are u = 0.001 and N = 10.

approximately 10−7) for a single compartment of cells. Thus
we hypothesize that in the regime in which the probability of
initiation, pi , is small, the sample paths that result in initiation
are the relatively rare paths in which the average advantageous
mutational fitness jump is high, resulting in a low initiation
time. As β increases, the probability of initiation decreases
so this selection effect is enhanced. In other words, paths
reaching cancer initiation in this low pi regime experience
fewer, but more beneficial, advantageous mutations as the
mutational fitness distribution is skewed more to the left (i.e.
as β increases).

To investigate this behavior in greater detail, let us next
examine the conditional average number of advantageous
and disadvantageous mutations that reach 100% frequency
in the population prior to cancer initiation. This quantity
is given by equation (9). Figure 5(a) shows the conditional
average number of advantageous mutations as a function of

increasing α. At high values of α (corresponding to a high pi

regime), increasing β results in more advantageous mutations,
whereas at low values of α (corresponding to a low pi regime),
increasing β results in fewer advantageous mutations. This
observation agrees with our hypothesis that the rare sample
paths that reach initiation in the low pi regime experience
fewer but stronger advantageous mutations as β increases. To
test this hypothesis, we performed Monte Carlo simulations
of the two-dimensional process (Z,L) conditioned upon
initiation to evaluate the average fitness advantage of beneficial
mutations. We investigated low pi regimes and observed that
as β increases, the distribution of average fitness changes of
advantageous mutations shifts to the right (figure 5(b)). For
parameters in the high pi regime (i.e. high α), this phenomenon
does not occur (data not shown). This observation, together
with the analysis of the expected number of advantageous
mutations in the initiating cell, independently confirms the
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(a)

(b)

(c)

Figure 5. Advantageous mutations in the cancer-initiating cell. (a) The panel displays the expected number of advantageous mutations in
the cell that reaches the fitness threshold 1 + 1/N and initiates tumorigenesis; these numbers of mutations are conditioned on cancer
initiation occurring before death of the patient due to causes other than the cancer type of interest. We vary α, for β = 0.4, 0.5, 0.6, and
display the expected number of advantageous mutations in the cancer-initiating cell. The aging process L is fit to US life expectancy data
[57] and parameters are u = 0.001 and N = 10. (b) The panel shows the empirical density (histogram) of the average fitness change of
advantageous mutations that reach fixation in the compartment of cells prior to cancer initiation, conditioned on initiation occurring before
death. Parameter values are α = 0.15 and β = 0.3 (top), α = 0.15 and β = 0.5 (middle), and α = 0.15 and β = 0.7 (bottom). The other
parameters are as in (a). (c) The panel shows the conditional expected number of advantageous, neutral and disadvantageous mutations that
have reached fixation in the compartment prior to cancer initiation. The mode of the lifetime distribution φmode is varied. Parameters are
u = 0.001 α = 0.25, β = 0.5 and N = 10.

hypothesis that in the regime of low pi , conditioning on
initiation prior to death results in the selection of rare sample
paths with fewer, and more beneficial, advantageous mutations
as β increases.

In summary, in the biologically relevant regime with
a relatively small probability of cancer initiation before
death (approximately 10−7 per compartment), the dynamics
of initiation display interesting dependences on the shape
parameters of the mutational fitness distribution fψ . As the
parameter β increases and the distribution is skewed toward
deleterious mutations, the average number of advantageous
mutations and the average time until initiation both decrease,
somewhat counterintuitively. This behavior occurs due to the
strong selection effect of conditioning on cancer initiation
prior to death; very few sample paths reach the event of

cancer initiation, and these paths have selectively fewer, but
effectively stronger, advantageous mutations. Therefore, an
explicit consideration of the temporal axis (and conditioning
on initiation occurring prior to death) reveals counterintuitive,
qualitatively different dynamics that would not be observed in
models without this essential feature. Determining the shape
characteristics of the mutational fitness distribution would
elucidate key properties of the dynamics of emergence and
genotype of colorectal cancer-initiating cells. Toward this
end, our analyses suggest that it is unlikely that α � β (i.e.
many more advantageous than disadvantageous mutations) in
the mutational fitness distribution of stem cells in the colonic
crypt, since this regime would lead to unrealistically high
cancer initiation probabilities. Additionally, in the parameter
space in which the probability of initiation is plausibly small,
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Table 1. The effects of the life expectancy distribution on cancer
initiation. The table displays the probability of cancer initiation
prior to death of the patient for a varying mode of the lifetime
distribution, φmode. Three mutational fitness distributions are
considered: α < β, α = β, and α > β. As the life expectancy
increases, the probability of cancer initiation before death also
increases. Furthermore, the ratio of α to β significantly impacts the
initiation probability; when β > α, disadvantageous mutations are
more frequent than advantageous mutations, and the probability of a
cell accumulating fitness 1 + 1/N (i.e. cancer initiation) is low.
When β < α, advantageous mutations are more frequent and thus
the probability of initiation is enhanced. The mode of the data fitting
current US life expectancy data is φmode = 80. Parameters used are
u = 0.001 and N = 10.

we expect approximately O(10) advantageous mutations in the
initiating cell (figure 5(a)); recall, however, that the scenario
studied is bounded by the fitness values of neutral evolution,
and therefore advantageous mutations confer a fitness increase
to the cell but are not considered true ‘driver’ mutations.
This methodology, however, can be adapted to situations with
arbitrary value b, thereby encompassing true driver mutations.

4.2. Effects of varying the mode of the lifetime distribution

Let us now investigate the sensitivity of the dynamics of
colon cancer initiation to the life expectancy distribution.
Since lifetime distributions vary between different countries,
socioeconomic classes and races; this methodology can
provide insight into the differing cancer incidence rates among
these populations. To investigate this dependence, we retain
the same phase-type Gamma distribution structure for the
lifetime distribution, but vary the mode, φmode, and consider
the effects of longer and shorter overall life expectancies on
the probability of cancer initiation. Table 1 displays the
probability of cancer initiation prior to death for a range of
values of φmode. The data in table 1 are shown for three
mutational fitness distributions where α < β (corresponding
to more disadvantageous mutations), α = β (corresponding
to a symmetric distribution), and α > β (corresponding to
more advantageous mutations). The mode of the data fitting
current US life expectancy data is φmode = 80. As the
life expectancy increases, the probability of cancer initiation
before death increases subexponentially. Furthermore, the
ratio of α to β significantly impacts the initiation probability;
when β > α, disadvantageous mutations are more frequent
than advantageous mutations, and the probability of a cell
accumulating fitness 1 + 1/N (i.e. cancer initiation) is

Figure 6. The effects of the mutation rate on cancer initiation. The
figure shows the probability of cancer initiation prior to death of the
patient for varying mutation rate u. Two values for the mode of the
lifetime distribution are shown: φmode = 50, 80. Parameters are
α = 0.4, β = 0.6 and N = 10.

low. When β < α, advantageous mutations are more
frequent and thus the probability of initiation is increased.
These results suggest that the probability of cancer initiation
is highly sensitive to the mutational fitness distribution
and, in particular, to the ratio of beneficial to deleterious
mutations.

We also determined the conditional expected number of
neutral and non-neutral mutations that reached fixation in the
population prior to cancer initiation. Figure 5(c) shows the
conditional expected number of advantageous, neutral, and
disadvantageous mutants in the initiating cell. As the mode of
the lifetime distribution increases, the average number of each
type of mutation increases linearly. In addition, the ratio of the
conditional expected number of neutral to conditional expected
number of advantageous/disadvantageous mutations appears
invariant to φmode. Note that the number of disadvantageous,
neutral, and advantageous mutations in the initiating cell does
not correspond to the frequencies of these mutations in the
mutational fitness distribution fψ . For example, figure 5(c)
demonstrates that the frequency of neutral mutations in the
total mutation incidence is approximately 30–35%; however,
the mutational fitness distribution, fψ , used in this example
places approximately 40% of its mass on neutral mutations.
This difference is once again an effect of conditioning; sample
paths in the set in which cancer initiation occurs prior to
death exhibit a different mutational fitness distribution than
the original distribution. This observation also demonstrates
the necessity of explicitly considering a temporal process
and conditioning on cancer initiation prior to death, since
this difference would not be observed in models without this
feature. We conclude that colon cancer incidence is predicted
to be lower in patient populations with lower life expectancies;
in those cases in which tumorigenesis is initiated, fewer
passenger mutations are present in the cancer-initiating
cell as compared to cases in populations with larger life
expectancies.
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4.3. Sensitivity to the mutation rate

Finally, let us investigate the sensitivity of the probability of
colon cancer initiation prior to death to the mutation rate u.
Figure 6 shows the probability of initiation as a function of
the mutation rate in the setting β > α. The probability of
cancer initiation decreases super-exponentially as the mutation
rate decreases. This functional dependence is studied for
two different values of φmode; the super-exponential decay
is similar in both scenarios, but the curves are shifted by
a constant. Thus we expect that patient populations with
higher mutation rates accordingly have a higher colon cancer
incidence; this observation is consistent with increased cancer
incidence after exposure to radiation and other carcinogens.

5. Discussion

In this paper, we have introduced a novel stochastic model
to investigate the dynamics of cancer initiation prior to the
death of the patient. In the context of this model, cancer
initiation occurs when a single cell within a small fixed-size
compartment of cells acquires the characteristics necessary to
initiate clonal expansion of cells. We have introduced several
novel features with this model.

(1) Genetic and epigenetic alterations confer random fitness
changes to the cell.

(2) Cancer initiation is a fitness-dependent event—once a cell
gains a sufficiently large fitness, clonal expansion ensues.

(3) The stochastic process governing the evolution of cellular
fitness is coupled with a temporal aging process to
determine the dynamics of cancer initiation prior to death
of the individual.

These features are unlike earlier models of cancer
initiation [22–27]; in these models, cancer initiation was
assumed to occur as soon as a single cell has accumulated a
specific number and type of mutations, which were considered
to confer fixed fitness effects on cells. Furthermore, these
earlier models did not couple the dynamics of mutations arising
in populations of cells with the processes of aging and death
of individuals. Without incorporating the latter dynamics,
however, the consideration of cancer initiation is incomplete.

We have studied a Moran process describing a
compartment of cells in which genetic and epigenetic
alterations confer random fitness changes which are variates
drawn from a mutational fitness distribution. This approach
allows for the inclusion of all possible (epi)genetic alterations
arising in proliferating cells rather than a single class of
mutations. We considered a spectrum of mutational fitness
effects, from mutations which are positively selected during
tumorigenesis to passenger mutations which are selectively
neutral, and deleterious alterations which confer a fitness cost
to the cell. The consideration of non-advantageous mutations
is important because most alterations have the potential to
affect the evolutionary dynamics of cancer initiation, even
though they may not play a direct and causative role in
carcinogenesis. For instance, the accumulation of mutations
can alter the fitness of a cell and thus affect the likelihood
and timing of cancer initiation. We have introduced a second

dimension to the process of cancer initiation to ensure that the
dynamics are dictated by tumors that initiate within a human
lifetime. This goal is achieved by modeling the lifetime of a
patient as the first passage time of a simple continuous-time
Markov chain in an aging dimension, and investigating the
conditioned dynamics on the set for which cancer initiation
occurs before patient death. The explicit consideration of the
temporal axis and conditioning on cancer initiation occurring
prior to death reveals counterintuitive, qualitatively different
dynamics that would not be observed in models without this
essential feature.

We then examined the dynamics of colon cancer initiation
as a specific example. We utilized parameter values dictated
by the geometry of colonic crypts, the number of colonic
stem cells, and the mutation rate estimated for human cells.
Furthermore, we considered the life expectancy data of the
US population to inform the dynamics of the aging process.
Since no estimates of the shape of the mutational fitness
distribution are available, we chose a specific parametric
family of distributions representing a broad class that includes
exponential decay and uniform distributions. We then
studied how the probability of cancer initiation prior to
death, the time until cancer initiation, and the mutational
profile of the cancer-initiating cell depends on the shape of
the mutational fitness distribution, the life expectancy data,
and the mutation rate. We observed qualitatively different
dynamics in parameter regimes where the probability of
cancer initiation is low as compared to those biologically
unrealistic scenarios in which tumorigenesis is initiated often
and quickly. In particular, tumors that are initiated in the
regime of low initiation probabilities experience fewer, but
more beneficial, advantageous mutations as the mutational
fitness distribution is skewed more toward disadvantageous
alterations. This behavior arises due to the strong selection
effect of conditioning on cancer initiation prior to death; very
few evolutionary trajectories lead to initiation before the death
of the patient, and these trajectories accumulate fewer but
selectively stronger advantageous mutations. Furthermore,
this analysis demonstrated that human populations with shorter
average life expectancies have fewer cases of cancer initiation;
in those cases in which tumorigenesis is initiated, fewer
passenger mutations are present in the cancer-initiating cell.
Note that passenger mutations are defined as those that do
not confer any fitness change to the cell; the number of
passenger mutations in the cancer-initiating cell as determined
using this model might differ from that identified by cancer
genome screens since the latter analyses might identify all
neutral and near-neutral mutations as ‘passengers’. This
number might then represent an overestimation of the number
of true (strictly neutral) passenger mutations. Note also
that the mutational distribution of the cancer-initiating cell
is substantially different from the originating distribution
of mutational fitness effects, exhibiting another differential
result of conditioning on cancer initiation prior to death.
This analysis could be extended to comparatively study the
dynamics of cancer initiation in populations with varying life
expectancy distributions, such as different countries, ethnic
groups or socio-economic classes. To perform such analyses,
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it is necessary to consider differential dynamics in Z as well
as the aging process L. In particular, certain populations
may have higher mutation rates due to behavior, diet and
other environmental factors which are in turn linked to life
expectancy.

This mathematical framework represents only one out
of many possibilities of modeling the processes leading to
cancer. For simplicity, we have neglected spatial effects
that could lead to different dynamics in separate areas
of the same compartment or tissue. We have therefore
considered colonic crypts to be independent from one another.
However, crypt division and replacement by neighboring
crypts may induce a complex local dependence between
cellular compartments; these issues will be explored in future
work. Furthermore, we have not considered interactions of
normal and mutated cells with the immune system; such
interactions may modulate the dynamics of cancer initiation
since certain cell types may be inhibited by immune system
cells. Also, we have not investigated the effects of temporally
or spatially varying fitness values of cells which could result
from their interactions with the microenvironment or other
cell types. Our work can further be extended to consider
a dependence between the dynamics of the fitness process
Z and the aging process L. Specifically, as a patient ages,
DNA repair mechanisms deteriorate, thus resulting in higher
mutation rates; consideration of such scenarios will be the
topic of future work. For an accurate understanding of
the dynamics of tumorigenesis in human populations, the
elucidation of mutational fitness distributions as well as cell
type-specific mutation rates is essential. The determination of
these parameters in experimental systems is an important goal
of the field and would contribute to the investigation of the
evolutionary dynamics of human cancer.
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Appendix.

A.1. Standard Moran process

The Moran process [28] is a standard tool for studying
populations that maintain a constant size N (see, e.g., [24, 69]).
In the traditional setting, two types of cells are considered—
cell types a and A—which have respective fitness values (i.e.
growth rates) f and 1. Reproduction events arrive according
to a Poisson process with rate N. If the number of type A cells
is j , then the probability that a type A cell will reproduce
during the next birth is given by j/[j +f (N −j)]. In addition,
after each birth event a cell is randomly chosen to die. The
Moran process is the Markov process that tracks the number
of type A (or a cells) cells over time.

A.2. Multi-type Moran process

As a departure from the Moran process described in the
previous subsection, we consider a fixed-size population of
cells containing greater than two types of cells. Each cell
has a fitness in the set F = {f1, . . . , fK}. The state of the
system at time t is described by Zt = (

Z1
t , . . . , Z

K
t

)
, where

Zk
t represents the number of cells with fitness fk at time t.

Reproduction events occur at the arrival times of a Poisson
process with rate N; these times are denoted by {Ti}i�1. Given
that the current state of the system is z = (z1, . . . , zK), during
the next reproduction event a cell of fitness fk will be chosen
to reproduce with probability

zkfk∑K
j=1 zjfj

,

and a cell is chosen at random to die. During each cell division
event, there is a probability u of producing a daughter cell
with a new fitness value which is chosen from a mutational
fitness distribution. Equation (1) states that this process can
be replaced with a simpler process which jumps between
homogeneous states (i.e. all cells in the compartment
have the same fitness). To investigate the accuracy of this
approximation, let us consider a system that starts in state z0,
where N −1 cells have fitness f and one cell has fitness f̂ . We
will use the following notation: Pz(·) .= P(·|Z0 = z). Then
we have

Lemma 1. Pz0(Tmut < Thom) � 3Nu(log N + γ ).

(Proof of Lemma 1.). Define N(t) to be the number of
replication events by time t, and let m(n) = 1 if a mutation
occurs at replication event n. Then note that

Pz0 (Tmut < Thom) =
∞∑

n=1

Pz0 (N(Tmut) = n,N(Thom) > n)

�
∞∑

n=1

Pz0 (N(Tmut) = n,N(Thom) > n − 1)

�
∞∑

n=1

Pz0 (m(n) = 1, N(Tmut) > n − 1, N(Thom) > n − 1)

= u

∞∑
n=1

Pz0 (N(Tmut) > n − 1, N(Thom) > n − 1)

� u

∞∑
n=1

Pz0 (N(Thom) > n − 1 | N(Tmut) > n − 1) .

Then a conditioning argument shows that

Pz0(ZT1 = z1|N(Tmut) > n − 1)

= 1

1 − u
P

(
ZT1 = z1|Z0 = z0

)
for all z1 such that

{
1 � k � K : zk

1 > 0
} ⊂ {

1 � k � K :
zk

0 > 0
}
. For all other z1 we have that

Pz0(ZT1 = z1|N(Tmut) > n − 1) = 0.
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Let P̃ (·) denote the probability measure associated with a
Moran process with only two types of cells and no further
mutation allowed. Then it follows that

Pz0(N(Thom) > n − 1|N(Tmut) > n − 1)

= P̃z0(N(Thom) > n − 1).

Thus it remains to bound Ẽz0(N(Thom)). This will be done by
following a similar approach as the proof of theorem 6.3 of
[69]. First let r = f̂ /f , then for each 1 � y � N − 1 define
Ny to be the number of visits of the Moran process to the state
y. During each visit of the process to the site y, By birth events
occur, where By is a geometric random variable with success
probability

ρy = y(N − y)(f̂ + f )

N
(
f̂ j + f (N − j)

) .

It follows that

Ẽz0(N(Thom)) = 1

ρy

N−1∑
y=1

Ez0Ny.

Using formula for Ez0Ny from the proof of theorem 6.3 of
[69], we arrive at

Ẽz0(N(Thom)) = N

N−1∑
y=1

(
rN−y − 1

rN − 1

)(
1

N − y
+

r

y

)
.

Note that for all r � 0, we have

rN−y − 1

rN − 1
� 1.

It then follows that

Ẽ(N(Thom)) � N

N−1∑
y=1

(
1

N − y
+

r

y

)

≈ (1 + fK)N(log N + γ )

where γ is the Euler–Mascheroni constant and we used the
approximation

N∑
j=1

1

j
≈ log N + γ.

The result follows by recalling that fK � 2.
��
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