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Abstract

Most human cancer types result from the accumulation of multiple genetic and epigenetic
alterations in a single cell. Once the first change (or changes) have arisen, tumorigenesis is
initiated and the subsequent emergence of additional alterations drives progression to more
aggressive and ultimately invasive phenotypes. Elucidation of the dynamics of cancer initiation is
of importance for an understanding of tumor evolution and cancer incidence data. In this paper, we
develop a novel mathematical framework to study the processes of cancer initiation. Cells at risk
of accumulating oncogenic mutations are organized into small compartments of cells and
proliferate according to a stochastic process. During each cell division, an (epi)genetic alteration
may arise which leads to a random fitness change, drawn from a probability distribution. Cancer is
initiated when a cell gains a fitness sufficiently high to escape from the homeostatic mechanisms
of the cell compartment. To investigate cancer initiation during a human lifetime, a ‘race’ between
this fitness process and the aging process of the patient is considered; the latter is modeled as a
second stochastic Markov process in an aging dimension. This model allows us to investigate the
dynamics of cancer initiation and its dependence on the mutational fitness distribution. Our
framework also provides a methodology to assess the effects of different life expectancy
distributions on lifetime cancer incidence. We apply this methodology to colorectal tumorigenesis
while considering life expectancy data of the US population to inform the dynamics of the aging
process. We study how the probability of cancer initiation prior to death, the time until cancer
initiation, and the mutational profile of the cancer-initiating cell depends on the shape of the
mutational fitness distribution and life expectancy of the population.

1. Introduction

Tissues of multi-cellular organisms are organized into morphologically stable compartments

or niches [1, 2]. Such compartments are made up of separate clones of cells, which
proliferate to fulfill their organ-specific tasks [3, 4]. In healthy tissues, compartment sizes
are stabilized by homeostatic mechanisms which induce compensatory regulatory responses
via cellular signaling, apoptosis, and other processes [5]. During each cellular replication, a
genetic or epigenetic alteration may arise. Many of those changes do not alter the
reproductive fitness of the cell and are selectively neutral [6]. Some alterations, however,
provide the cell with a fitness advantage due to increased proliferation capabilities,
decreased death, enhanced migration and invasion, or the ability to induce angiogenesis [7].
Once a cell has evolved a sufficiently aggressive phenotype, it can escape from homeostatic
control mechanisms and initiate tumorigenesis [8, 9, 10, 11, 12, 13, 14]. During the
expansion of this initiated clone, additional genetic and/or epigenetic changes are
accumulated that drive cancer progression and lead to more malignant and ultimately
invasive phenotypes [7].
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While tumorigenesis has classically been defined as a disease resulting from the
accumulation of genetic alterations [15], it is becoming increasingly apparent that epigenetic
modifications are similarly important for the initiation and progression of human cancer
[16]. Patterns of DNA methylation and chromatin structure are significantly altered in
cancer cells and include genome-wide losses of, and regional gains in, DNA methylation.
Aberrant promoter methylation, for instance, is associated with the loss of gene function that
can provide a selective advantage to tumor cells, as do genetic alterations. For example, the
von Hippel-Lindau (VHL) gene, which causes familial renal cancer if mutated in the germ
line, is often epigenetically silenced in the sporadic form of this tumor type [17]. Similarly,
the breast cancer 1, early onset (BRCAL) and serine/threonine kinase 11 (STK11) genes are
often epigenetically inactivated in sporadic cases of breast and colon cancer, respectively,
while they predispose to these cancer types in carriers of a germ line mutation [18, 19]. In
addition to gene silencing events that are associated with methylation changes, methylation
patterns can also influence tumorigenesis by other mechanisms; cytosine methylation, for
instance, can cause spontaneous hydrolytic deamination of cytosine and leadto Cto T
transitions [20]. This enhanced mutagenesis might lead to many gene alterations observed in
tumors — as many as 50% of inactivating point mutations in the coding region of the human
TP53 tumor suppressor gene in somatic cells occur at methylated cytosines [21]. Epigenetic
alterations therefore cannot be neglected in the study of cancer.

Due to its importance for an understanding of tumorigenesis, the dynamics of cancer
initiation have been the subject of several mathematical investigations. These studies
considered cancer initiation to occur when a single cell has accumulated 77 specific
alterations [22, 23, 24, 25, 26, 27]. The fitness effects of these alterations were assumed to
be either neutral or advantageous; the latter was realized as an additive jump in the growth
rate of the mutated cell. Several authors studied the situation in which the accumulation of
two alterations is sufficient to initiate tumorigenesis [22, 23, 24, 25]; cells were considered
to proliferate according to the Moran model in a population of fixed size [28]. Later on,
scenarios in which 7= 2 mutations are necessary for cancer initiation were investigated [26,
27]. These contributions are part of a literature of mathematical approaches to cancer
initiation and progression [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51].

In this paper, we propose a novel mathematical model of cancer intiation. Unlike earlier
efforts, we do not consider the situation in which cancer is initiated once a specified number
of genetic alterations has been accumulated; rather, cancer initiation occurs as soon as the
fitness of a cell passes a threshold value. Once this threshold is reached, the cell can escape
from homeostatic control and initiates clonal expansion. In particular, we model a
mechanism for the breakdown of homeostasis in a normally fixed-size compartment of cells
via the accumulation of random mutational fitness changes emerging during cell replication.
The fitness changes conferred by (epi)genetic alterations are modeled as random variates
selected from a mutational fitness landscape. The fitness threshold necessary for cancer
initiation can then be reached via a large number of mutations each conferring small fitness
changes, a few mutations each conferring large fitness effects, or a mixture of large and
small effects. We then investigate the dynamics of cancer initiation conditioned on the event
that initiation occurs prior to death of the patient due to causes other than the cancer type of
interest. This conditioning is addressed by adding a second dimension representing an aging
process to the model. This framework is used to determine the probability of cancer
initiation prior to death as well as the expected waiting time until cancer initiation.
Furthermore, we investigate the expected number of neutral and non-neutral mutations that
are present in the cancer-initiating clone. This quantity is of clinical interest since it provides
insight into the genotype of the cancer-initiating cell and thus the genotypic compaosition and
potentially the drug sensitivity of the resulting tumor. Our mathematical framework sheds
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light onto the effects of the shape and characteristics of the mutational fitness landscape on
the dynamics of cancer initiation, and provides a methodology to assess the consequences of
different life expectancy distributions on lifetime cancer incidence and the mutational
composition of cancer-initiating cells.

2. The Model

Consider a compartment of A/cells that proliferate according to a stochastic Moran process
(see the Appendix for a discussion of this process) [28, 52]. This compartment consists of
those cells that are at risk of accumulating the mutations leading to cancer initiation. If only
tissue-specific stem cells live long enough to accumulate the necessary changes, then the
population is made up of stem cells [53]; alternatively, the compartment additionally
contains progenitor cells [50, 54]. Since healthy tissues are subdivided into small
compartments of cells [1, 2], Mis small. Initially, all cells are unmutated and have relative
fitness 1. The time intervals between reproduction events are independent, identically
distributed exponential random variables with mean 1/A. During each reproduction event,
one cell is chosen at random to die, and one cell is chosen to reproduce according to its
relative fitness. The population size is strictly constant. The probability of a specific cell
being chosen for reproduction during an event is determined by the contribution of its fitness
to the total fitness of the population; if there is a single cell of fitness sin a population of //
— 1 cells of fitness 1, then the cell with fitness s is chosen to reproduce with probability s/[s
+ (V- 1)]. Here fitness is defined as the relative reproductive success of cells.

Mutational fitness distribution fy,

During each cell division event, an (epi)genetic alteration may occur with probability v < 1;
thus alterations arise in the compartment of cells at rate AMu. The fitness effects of individual
alterations are random variates drawn from a probability distribution, 7, which represents a
mutational fitness landscape. This distribution 7, may be state-dependent and thus vary
according to the fitness of the parent cell (e.g. /; is dependent on the fitness x of the parent
cell). Figure 1 shows a schematic of this process for a state-independent distribution 7. This
flexible framework allows us to study the effects of mutational fitness landscapes on the
dynamics of cancer initiation.

Dynamics in fithess space

Suppose the population consists of two types of cells at time £=0: A//— 1 normal cells and
one cell carrying a single mutation. Define the waiting time until a cell in this population
accumulates a second mutation as 7,,;and the time until homogenization (i.e., until the cell
carrying the mutation reaches zero or one hundred percent frequency in the population) as
Thom- Then we have

P (Trur < Thom) < 3Nu(log N+y), (1)

where y is the Euler-Mascheroni constant. In other words, if 3NVu(log N+ y) ~ 0, a cell
harboring a mutation is far more likely to reach fixation in the compartment or die out
before a second mutation arises. See the Appendix for the proof of equation (1). Therefore,
when ¢ <« 1/AZ, the periods of time during which the compartment is not homogeneous
comprise a negligible amount of time. As the population size and/or the mutation rate
increase during tumor progression, more complex dynamics emerge [55]; this scenario,
however, is likely not applicable to situations of cancer initiation since in healthy tissues,
compartment sizes and mutation rates are small. For the parameter ranges of interest for the
study of cancer initiation, a cell compartment is almost always homogeneous.
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Based on these considerations, the process describing the evolution of fitness values in a
compartment of cells is approximated by a Markov process ), where (9 represents the
fitness of the homogeneous compartment at time £ The process Zjumps whenever a cell
harboring a novel non-neutral mutation reaches fixation in the compartment, and takes
values in the space of all possible fitness values dictated by the fitness landscape. By
equation (1), this process closely approximates the behavior of cellular fitness values in a
small compartment for the vast majority of time. Note that by focusing on the times when
the process is homogenous, the state space of the system is significantly reduced, thus
allowing for more feasible computational analysis.

Consider the fitness values aand b, for some 0 < a< b, such that a compartment of cells
remains in a homeostatic state for fitnesses within the range [&, 4]; thus Z(9) € [a, 4] for all
times ¢ Once a cell in the compartment gains a fitness greater than the threshold 4, it escapes
from homeostasis and cancer is initiated. The fitness value ais defined as a reflecting
boundary for Z; any cell with fitness below a is immediately replaced by a cell with fitness
a. For computational purposes, we consider the process Zliving on a discretized state space
on the range [&, 4]. Since we consider a homeostatic cell compartment before initiation of
tumorigenesis, a natural choice for the parametersis 4=1 - 1/Nand =1 + 1/Nsince these
values signify the boundaries for neutral evolution [56].

Let us now consider in detail the dynamics of Zin fitness space. We introduce the mutation
kernel M-, -), where M(x, ) represents the probability that a cell with fitness x produces a

daughter cell with fitness y (i.e. M (x,y) =/, (v — x)). If y> x, then the fitness of the daughter
cell is advantageous as compared to the fitness of its parent cell; if y< x, it is
disadvantageous, and if y= x; it is neutral. Since neutral mutations are allowed to occur,
M(x, X) can be non-zero. If a single cell of fitness yarises in a population of A//— 1 cells of
fitness x, the probability that the cell with fitness y reaches fixation in the population is
given by

1—x/y

@

This expression is called the fixation probability and can easily be found by first step
analysis. By symmetry, we have p, , = 1/N. The intensity matrix for the Markov process Z
is then defined as

O (x,y) =Nup,yM (x,y) ,

for y < b. This expression becomes Q(x, J) = NuM(x, ) when y = b. The reflecting behavior
at the lower boundary is realized through the mutation kernel M. By definition, we have

Qx0)=) 0.

y#X

Since the process stops as soon as one cell gains a fitness value greater than b, the states x>
bare absorbing, so Q(x, ) =0 for all yand x= b. The summation is over all yin the
discrete fitness space.

Modeling the lifetime of a patient

The Moran model dynamics described by the coarse-grained process Zrepresent the change
in the fitness values of cells in the compartment over time. In order to model the dynamics
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of cancer initiation during a human lifetime, a ‘race’ between this fitness process Zand the
aging process of the patient is considered. To this end, we introduce a second stochastic
process, L(#), which is a continuous-time Markov chain with an absorbing state representing
death of the patient. Thus this process, L, hits the absorbing state with probability one and
the first passage time of this event represents the age of the patient at death. The transition
probabilities of this Markov chain can be tuned to match mortality data for the population of
interest. We fit the dynamics of the process L to qualitatively describe the current life
expectancy in the United States [57].

To address a similar problem, Liu and Lin [58] utilized a Coxian phase-type distribution to
construct an aging process to fit life expectancy data. We follow a simplified version of this
approach, and define L to be a Coxian process with d'states. In particular, the process L(2) is
initialized at state 1 and takes values in the state space {1,...,d}. If L() = /< d, it jumps
monodirectionally to state /+ 1 at rate 1, and the final state ¢is an absorbing state. The time
for the process to hit the absorbing state is described by a Gamma(d'- 1, 1) distribution. The
transition intensity matrix for this process is (5);;= S; which satisfies S; ;= =S 41 and is
constant along the diagonal. Let us denote this value along the main diagonal by Sinstead of
unity, since changing the diagonal allows for flexibility in the choice of time scales with
respect to the replication rate of cells in the compartment. Figure 2 shows that death of a
patient occurs when the process L makes & - 1 upward steps; note that the time between
each step is an exponential random variable with mean 1. The Gamma distribution provides
a good qualitative approximation for the lifetime distribution of a population. When
modeling the fraction of people that survive longer than xyears via A G > x), where Gis a
Gamma(81,1) random variable, then this tail probability stays relatively flat until around 68
years, at which point it begins a sharp decay towards zero.

In summary, we have designed a model of cancer initiation during a human lifetime using
atwo-dimensional Markov process. The first dimension of this process, Z, represents the
fitness of cells at risk of accumulating the mutations initiating tumorigenesis; these cells are
organized into small compartments or niches of a constant size. The second dimension L
represents the aging process of a patient. The state of the process Zis governed by the more
detailed dynamics of a Moran process at the cellular level, and the process L is chosen so
that its absorption time, which has a phase-type distribution ¢, matches mortality data. This
model has several parameters: the mutation rate ¢, the lifetime distribution ¢(#, the number
of cells in the compartment /A, and the mutational fitness distribution 7,. This model is then
used to determine the dynamics of the event that cancer initiation occurs prior to death, i.e.
that the right boundary of Zis reached (corresponding to one cell reaching a fitness value
greater than or equal to the boundary value 4) prior to absorption in the L-direction. Figure 2
shows a diagram of this process and two possible sample paths. All paths initiate at (Z=1, L
= 1) and sample path (1) demonstrates a trajectory in which cancer initiation occurs prior to
death; such paths, however, comprise only a fraction of all possible outcomes. Sample path
(2) visualizes a trajectory in which death occurs prior to cancer initiation. Note that cancer
initiation is not equivalent to diagnosis of the disease, so that the initiation statistics cannot
be compared to cancer incidence data.

3. Analysis

The stochastic model outlined above is used to determine several quantities: (i) the
probability of cancer initiation prior to the time of death; (ii) the waiting time until cancer
initiation prior to death, and (iii) the expected number of neutral and non-neutral mutations
present in the cancer-initiating cell, conditional to cancer initiation occurring before death.
The estimates for these quantities are obtained in the form of the solution to simple linear
systems in order to keep the analysis applicable to general mutation kernels M. These
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estimates are later used to study the effect of the mutation kernel and of lifetime
distributions on the dynamics of cancer initiation.

3.1. The probability of cancer initiation prior to death

For a given state in the two dimensional space (x, 1), let /(x, r) denote the probability of Z(2)
reaching a fitness value above b (i.e. initiating cancer) before L(#) reaches the absorbing
state d(i.e. death), starting from the initial condition Z(0) = x, L(0) = r. For the process Z,
there can be a transition of the form x — yand for the process L(#), there can be a transition
of the form r— s. Thus when the current state of the two processes is (x, /), then conditional
on a jump occurring, the jump v has the following probability distribution:

P (v=(y - x,0) =225 = . (x,y),

P (v=(0,5 = ) ==greg=s = P, (510,

for any y# xin the fitness space and any s€ {1,...,a}, S£ r.

By first step analysis, we obtain a linear system that the probabilities /(x, 7) satisfy:

10,1)=) 10 P, () + ) T )P (rosl). g
y K

We also have the boundary conditions /(x, d) = 0 for all x€ [, 6] and Ab, r) = 1 for r€ [0,
d). This linear system can easily be solved to obtain /(x, 7). Cancer initiation is then defined
as the event that the fitness of one cell reaches a = 1+1//N before death of the patient; the
probability of initiation prior to death is p;= /1, 1). The transition probabilities for the
compound process (Z,L) conditioned upon initiation prior to death are given by

D . I(y’ r)

P, (x,ylr) = P, (x,ylr) Toon) (4)
and

N . I(x, 5)

PL(rvsl-x)_PL(r7S|x)](x’r)~ (5)

3.2. The waiting time until cancer initiation

Let zrepresent the time of cancer initiation, and o the time at which the process L is
absorbed, i.e. the patient dies. Denote the time until the first jump of the process (Z, L) by
71. Then we have

S -0 (x,x)
logf-S — Q(x,x)

E [QT' ] =E [HT‘ |T<0’] =

This result is important because of the following:

E[67)(Z (T1) . L(T1) = (. 1] =E [0 | Eq,.» [67].
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This expression results from the independence of the duration of the first jump time and all
subsequent jump times. The generating function for the conditioned initiation time starting
from state (x, /) is defined as

G (x,1,0) =E(» [ Ir<o]. (6)
Then, performing first step analysis, we obtain the linear system:

G (x,1,0)
s e (§Pz (x,yIr) G (v, ,6) +§P,‘ (r, slx) G (x, 5,0) .

The boundary condition is G(b, r, 6) = 1.

We perform a simpler calculation to determine the mean waiting time until cancer initiation.
Define m(x, ) to be the expected time until initiation starting from the state (x, /),
conditioned on initiation prior to death: w (x, r) =E,, [ tlr<c]. Then we have

- < 1
w (x, r) :ZPZ (X, yll”) w (r, y) +ZP" (r, slx) w (x, S) +m )
y s

with boundary condition (6, r) = 0.

3.3. The number of neutral mutations in the cancer-initiating cell

An accurate understanding of the genomic composition of the cell that leads to clonal
expansion and cancer initiation may aid in the identification of drug targets. Furthermore, it
helps to elucidate the distribution of advantageous and passenger (selectively neutral)
mutations in cancer. Let us first consider the number of neutral mutations that have been
accumulated in the compartment before cancer is initiated. Denote the number of neutral
mutations present in the compartment at time by m(#). Next we compute the function

1(x, ) =B [m@lr<o]. (g

Thus, w represents the number of neutral mutations accumulated in the cancer-initiating cell
conditional to cancer initiation occuring before death of the patient.

Between jumps of the two-dimensional process (Z, L), a random number of neutral
mutations can reach fixation within the compartment of cells. Let 7;and 751 be the jump
times of (Z, L), and for simplicity denote (Z(7)), L(7))) = X During the transition from X
to X1, the compartment can accumulate Y; (X)) neutral mutations. Define

uM (x, x)
uM (x,x) — Q(x,x) =S~

n(x,r) =

The top of the fraction represents the rate at which neutral mutations which eventually reach
fixation arise within the compartment, and the bottom of the fraction represents the total rate
at which fixating mutations arrive and the time process changes. With this definition, Y{x,
1) is distributed like a geometric random variable with

P (Y;(x,r)=n) =n(x," (1 = n(x,r)),
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which gives

n(x,7)
E [YJ ()C, r)] ZW.

By conditioning on the first step, we obtain that x(:, -) satisfies the following linear system
for each possible fitness xin [a, 4]:

n(x,r)

KD = )

+ D P, MO, + Y P, (s p(x,5).
y s

Note that u(x, /) = 0 for those fitnesses that lie outside of [a, 4]. Therefore u(:, -) can be
determined by solving the linear system above.

3.4. The number of non-neutral mutations in the cancer-initiating cell

Let us next determine the mean number of advantageous and disadvantageous mutations in
the intiating cell. Let /7(? be the number of non-neutral mutations present in the
compartment of cells at time £ Then, the number of non-neutral mutations at initiation is
given by

v(x,7)=E [0 (1) |T<0],

where V(x, /) satisfies the system

v(x,r) ZZPZ (x,ylr) v (y, r) +1) +ZI~JL (r, slx) v (x,s)

Ex s

with boundary condition V6, r) = 0. The expected number of advantageous or
disadvantageous mutations present can be obtained in a similar fashion. For example, by
defining n4(# to be the number of advantageous mutations present at time ¢ the number of
advantageous mutations present at initiation is given by

Vo (x,r) =E (x,r) [n, (1) |T<07]

and v4(x, 1) satisfies the linear system

va (6, )= X P, () a3 r) + 1)+ 3 P, (5,311 va (v,7)

y>x y<x

+Z}~’L (r, s|x) va (x,5), ©

where the boundary condition is again v, 1) = 0.

4. Application of the model to colorectal cancer initiation

Let us now apply this mathematical framework to colorectal cancer as a specific example.
Colorectal tumors progress through four distinct clinical stages: dysplastic crypts, small
benign tumors, malignant tumors invading surrounding tissues, and finally metastatic cancer
[11]. This progression is driven by the accumulation of several genetic changes [59].
Mutations of the adenomatous polyposis coli (APC) gene are considered the earliest and
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most prevalent genetic changes in colorectal tumorigenesis [11]; other important
contributors are mutations in the KRAS and TP53 genes [11]. Colonic tumors arise from the
rapidly proliferating epithelium of the colon. This epithelium is organized into Ny prs = 107
compartments of cells called crypts [60]. Each crypt contains about 1000 - 4000 cells.
Approximately 4 - 10 of those cells are stem cells, residing at the base of each crypt [4, 61].
The progeny of stem cells migrate up the crypt, continuing to divide until they reach its mid-
portion. Then they stop dividing and differentiate into mature cells. When the cells reach the
top of the crypt, they undergo apoptosis and are engulfed by stromal cells or shed into the
gut lumen. The cell migration from the base to the top of the crypt takes about 3 - 6 days
[62].

To study the probability of cancer initiation from any crypt, we estimate the probability of
initiation from a single crypt prior to death, p;. Then the number of crypts containing cancer-
initiating cells is binomially distributed with parameters Ny, and pj. Taking a Poisson
approximation, the probability of cancer initiation prior to death from any crypt becomes
approximately 1 — exp[-piNgnprsl, and the average number of crypts containing cancer-
initiating cells emerging prior to death is Ay,  pj. Note that if pjis of order 1078 or
greater, the probability of having at least one cancer-initiated crypt before death is 1. If p;is
on the order of 1078 or less, the probability of having at least one such crypt before death is
much less than 1. Unfortunately no data is available on the frequency of cancer-initiated
crypts in the population since these crypts are generally too small to be detected by routine
colonoscopies, but slightly larger growths — adenomatous polyps — are observed in
approximately 50% of people above age 70 [63, 64, 65]. These statistics can be used to
guide parameter choices for the mutational fitness distribution.

For the purpose of our mathematical model, we consider a compartment size of /=10
colonic stem cells and a stem cell division frequency of approximately once per week [66,
67]. The overall mutation rate — giving rise to neutral, advantageous or deleterious mutations
— is about &= 0.001 per cell division, since there are 3 - 10° base pairs in the human genome
and the per base pair mutation rate is about 10711 to 10712 [68]. There are no estimates for
the shape of the mutational fitness distribution for human colonic epithelial cells. Therefore,
to investigate the dependence of the dynamics of cancer initiation on the mutational fitness
distribution 7, we construct a general family of fitness distributions with a mode at zero.

For simplicity, assume that the mutational fitness distribution is state independent: fy=1.
The general form of the mutational distribution is then given by

P (y=kA)=ca*, keN,

and

P(=—-kA) =B, keN,

where cis a normalization constant. In practice, we use a truncated approximation of this
unbounded distribution. The point mass at the origin represents neutral mutations, such as
alterations in non-coding DNA. The parameter A represents the fitness space discretization,
which is set as A = 0.004. This distribution thus has two key shape parameters: a, which
controls the decay rate on the right (i.e. advantageous mutations), and g, which controls the
decay rate on the left (i.e. deleterious mutations). When a and S are set to 1, the distribution
is uniform. Note that a larger probability of neutral mutations can be added by considering a
mixture of this distribution with a point mass at 0. Figure 3 illustrates this family of
distributions. An increase in the shape parameter g while holding a constant results in a
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more slowly decaying deleterious tail of the distribution; this leads to a higher percentage of
disadvantageous mutations with more negative fitness jumps possible. Similarly, an increase
in a while holding S constant results in a higher percentage of advantageous mutations with
larger positive fitness jumps possible (distribution not shown). This general form of fitness
distributions is next used to determine the consequences of changing the distribution on the
dynamics of cancer initiation.

4.1. Effects of varying the mutational fitness distribution, fy,

Let us now investigate the results of modifying the shape parameters of the mutational
fitness distribution on the dynamics of cancer initiation from a single compartment of cells.
Throughout this section, we consider an aging process L whose properties are qualitatively
fitted to the US mortality data [57], with &= 82 states.

We first study the consequences of varying the decay rates, a and g, of the positive and
negative tails of the mutational fitness distribution 7, on the probability of cancer initiation.
Figure 4a and b displays the probability of initiation before death, p;, as the shape
parameters a and S are varied; here p;is determined by solving equation (3) for A1, 1). Fig.
4a shows the probability of cancer initiation as a function of a, for different values of g;
note that as a increases, the probability of initiation is enhanced since the frequency and
fitness advantages of beneficial mutations increase. Similarly, as gincreases (Fig. 4b), the
probability of cancer initiation decreases. The incidence of human tumors provides some
clues as to the relative magnitude of a and 8. Based on the frequency of adenomatous
polyps in the US population (* 50%) [63, 64, 65], the probability of harboring a cancer-
initiated crypt before death is estimated between 50 — 90%. Thus it is unlikely that p; >
1077, since this choice would result in an unrealistically high probability of cancer initiation.
Therefore, it is unlikely that a > g, corresponding to a vast majority of mutations being
advantageous, because the probability of cancer initiation would also be unrealistically high
for this regime.

Let us now investigate the expected time until cancer initiation conditional upon initiation
occurring prior to death. This quantity is found by solving for u(1, 1) in equation (7), and
corresponds to the age of a patient at the time of cancer initiation. Note again that this
quantity is not synonymous to the age of a patient at diagnosis with a tumor. Figure 4c and d
shows the conditional expected time of cancer initiation as a function of varying a (Fig. 4c)
and g (Fig. 4d). The dynamics of this system display complex nonlinear behaviors; when a
is large, the initiation time declines sharply, since a mutational fitness distribution placing
more mass on advantageous mutations results in faster cancer initiation. In this regime,
increasing Sresults in a larger conditional initiation time since increasing mass is placed on
disadvantageous mutations, and therefore more time is required for cancer initiation.
However, for small values of a, alarger Sresults in exactly the opposite behavior — shorter
average conditional initiation times. This observation is counterintuitive, since distributions
with large S (and hence mostly disadvantageous mutations) are expected to result in a longer
initiation time as in the case of large a. Similar dynamics can be observed in Fig. 4d, where
the initiation time, z;,; is shown as a function of varying g for several values of a. When g
is small, the probability of initiation is high and increasing a results in smaller initiation
times; when gis large, increasing a results in the opposite effect.

Figures 4c and d demonstrate that these interesting dynamics occur in regimes that coincide
with small cancer initiation probabilities (see Figures 4a and b), suggesting that the decrease
in the conditional initiation time is caused by a selection effect on the sample paths due to
the conditioning event. This regime includes the biologically relevant range in which the
probability of initiation is realistically small (e.g., approximately 10~7) for asingle
compartment of cells. Thus we hypothesize that in the regime in which the probability of
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initiation, p;, is small, the sample paths that result in initiation are the relatively rare paths in
which the average advantageous mutational fitness jump is high, resulting in a low initiation
time. As gincreases, the probability of initiation decreases so this selection effect is
enhanced. In other words, paths reaching cancer initiation in this low p; regime experience
fewer, but more beneficial, advantageous mutations as the mutational fitness distribution is
skewed more to the left (i.e. as gincreases).

To investigate this behavior in greater detail, let us next examine the conditional average
number of advantageous and disadvantageous mutations that reach 100% frequency in the
population prior to cancer initiation. This quantity is given by equation (9). Figure 5a shows
the conditional average number of advantageous mutations as a function of increasing a
(Fig. 5a). At high values of a (corresponding to a high p;regime), increasing S results in
more advantageous mutations, whereas at low values of a (corresponding to a low p;
regime), increasing B results in fewer advantageous mutations. This observation agrees with
our hypothesis that the rare sample paths that reach initiation in the low p,regime experience
fewer but stronger advantageous mutations as g increases. To test this hypothesis, we
performed Monte Carlo simulations of the two dimensional process (Z, L) conditioned upon
initiation to evaluate the average fitness advantage of beneficial mutations. We investigated
low p,regimes and observed that as g increases, the distribution of average fitness changes
of advantageous mutations shifts to the right (Fig. 5b). For parameters in the high p;regime
(i.e., high a), this phenomenon does not occur (data not shown). This observation, together
with the analysis of the expected number of advantageous mutations in the initiating cell,
independently confirm the hypothesis that in the regime of low p;, conditioning on initiation
prior to death results in the selection of rare sample paths with fewer, and more beneficial,
advantageous mutations as g increases.

In summary, in the biologically relevant regime with a relatively small probability of cancer
initiation before death (approximately 10~/ per compartment), the dynamics of initiation
display interesting dependencies on the shape parameters of the mutational fitness
distribution £,. As the parameter S increases and the distribution is skewed towards
deleterious mutations, the average number of advantageous mutations and the average time
until initiation both decrease, somewhat counterintuitively. This behavior occurs due to the
strong selection effect of conditioning on cancer initiation prior to death; very few sample
paths reach the event of cancer initiation, and these paths have selectively fewer, but
effectively stronger, advantageous mutations. Therefore, an explicit consideration of the
temporal axis (and conditioning on initiation occurring prior to death) reveals
counterintuitive, qualitatively different dynamics that would not be observed in models
without this essential feature. Determining the shape characteristics of the mutational fitness
distribution would elucidate key properties of the dynamics of emergence and genotype of
colorectal cancer-initiating cells. Towards this end, our analyses suggest that it is unlikely
that a > g (i.e. many more advantageous than disadvantageous mutations) in the mutational
fitness distribution of stem cells in the colonic crypt, since this regime would lead to
unrealistically high cancer initiation probabilities. Additionally, in the parameter space in
which the probability of initiation is plausibly small, we expect approximately O(10)
advantageous mutations in the initiating cell (Figure 5a); recall, however, that the scenario
studied is bounded by the fitness values of neutral evolution and therefore, advantageous
mutations confer a higher fitness to the cell but are not considered true ‘driver’ mutations.

4.2. Effects of varying the mode of the lifetime distribution

Let us now investigate the sensitivity of the dynamics of colon cancer initiation to the life
expectancy distribution. Since lifetime distributions vary between different countries,
socioeconomic classes and races, this methodology can provide insight into the differing
cancer incidence rates among these populations. To investigate this dependency, we retain
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the same phase-type Gamma distribution structure for the lifetime distribution, but vary the
mode, ¢mnoge and consider the effects of longer and shorter overall life expectancies on the
probability of cancer initiation. Table 1 displays the probability of cancer initiation prior to
death for a range of values of ¢,,04. The data in Table 1 is shown for three mutational
fitness distributions where a < g (corresponding to more disadvantageous mutations), a = 8
(corresponding to a symmetric distribution), and a > 8 (corresponding to more
advantageous mutations). The mode of the data fitting current US life expectancy data is
dmoce = 80. As the life expectancy increases, the probability of cancer initiation before death
increases subexponentially. Furthermore, the ratio of a to gsignificantly impacts the
initiation probability; when 8> a, disadvantageous mutations are more frequent than
advantageous mutations, and the probability of a cell accumulating fitness 1 + 1/ (i.e.
cancer initiation) is low. When g < a, advantageous mutations are more frequent and thus
the probability of initiation is increased. These results suggest that the probability of cancer
initiation is highly sensitive to the mutational fitness distribution, and in particular to the
ratio of beneficial to deleterious mutations.

We also determined the conditional expected number of neutral and non-neutral mutations
that reached fixation in the population prior to cancer initiation. Figure 5¢ shows the
conditional expected number of advantageous, neutral, and disadvantageous mutants in the
initiating cell. As the mode of the lifetime distribution increases, the average number of each
type of mutation increases linearly. In addition, the ratio of the conditional expected number
of neutral to conditional expected number of advantageous/disadvantageous mutations
appears invariant to ¢,,00. Note that the number of disadvantageous, neutral, and
advantageous mutations in the initiating cell does not correspond to the frequencies of these
mutations in the mutational fitness distribution £,. For example, Figure 5c demonstrates that
the frequency of neutral mutations in the total mutation incidence is approximately 30 —
35%; however, the mutational fitness distribution, 7,, used in this example places
approximately 40% of its mass on neutral mutations. This difference is once again an effect
of conditioning; sample paths in the set in which cancer initiation occurs prior to death
exhibit a different mutational fitness distribution than the original distribution. This
observation also demonstrates the necessity of explicitly considering a temporal process and
conditioning on cancer initiation prior to death, since this difference would not be observed
in models without this feature. We conclude that colon cancer incidence is predicted to be
lower in patient populations with lower life expectancies; in those cases in which
tumorigenesis is initiated, fewer passenger mutations are present in the cancer-initiating cell
as compared to cases in populations with larger life expectancies.

4.3. Sensitivity to the mutation rate

Finally, let us investigate the sensitivity of the probability of colon cancer initiation prior to
death to the mutation rate . Figure 6 shows the probability of initiation as a function of the
mutation rate in the setting > a. The probability of cancer initiation decreases super-
exponentially as the mutation rate decreases. This functional dependence is studied for two
different values of ¢,,,4 the super-exponential decay is similar in both scenarios, but the
curves are shifted by a constant. Thus we expect that patient populations with higher
mutation rates accordingly have a higher colon cancer incidence; this observation is
consistent with increased cancer incidence after exposure to radiation and other carcinogens.

5. Discussion

In this paper, we have introduced a novel stochastic model to investigate the dynamics of
cancer initiation prior to the death of the patient. In the context of this model, cancer
initiation occurs when a single cell within a small fixed-size compartment of cells acquires
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the characteristics necessary to initiate clonal expansion of cells. We have introduced several
novel features with this model:

i. Genetic and epigenetic alterations confer random fitness changes to the cell.

ii. Cancer initiation is a fitness-dependent event — once a cell gains a sufficiently large
fitness, clonal expansion ensues.

iii. The stochastic process governing the evolution of cellular fitness is coupled with a
temporal aging process to determine the dynamics of cancer initiation prior to death
of the individual.

These features are unlike earlier models of cancer initiation [22, 23, 24, 25, 26, 27]; in these
models, cancer initiation was assumed to occur as soon as a single cell has accumulated a
specific number and type of mutations, which were considered to confer fixed fitness effects
on cells. Furthermore, these earlier models did not couple the dynamics of mutations arising
in populations of cells with the processes of aging and death of individuals. Without
considering the latter dynamics, however, the consideration of cancer initiation is
incomplete.

We have considered a Moran process describing a compartment of cells in which genetic
and epigenetic alterations confer random fitness changes which are variates drawn from a
mutational fitness distribution. This approach allows for the inclusion of all possible
(epi)genetic alterations arising in proliferating cells rather than a single class of mutations.
We considered a spectrum of mutational fitness effects, from mutations which are positively
selected during tumorigenesis, to passenger mutations which are selectively neutral, and
deleterious alterations which confer a fitness cost to the cell. The consideration of non-
advantageous mutations is important because most alterations have the potential to affect the
evolutionary dynamics of cancer initiation, even though they may not play a direct and
causative role in carcinogenesis. For instance, the accumulation of mutations can alter the
fitness of a cell and thus affect the likelihood and timing of cancer initiation. We have
introduced a second dimension to the process of cancer initiation to ensure that the dynamics
are dictated by tumors that initiate within a human lifetime. This goal is achieved by
modeling the lifetime of a patient as the first passage time of a simple continuous-time
Markov chain in an aging dimension, and investigating the conditioned dynamics on the set
for which cancer initiation occurs before patient death. The explicit consideration of the
temporal axis and conditioning on cancer initiation occurring prior to death reveals
counterintuitive, qualitatively different dynamics that would not be observed in models
without this essential feature.

We then examined the dynamics of colon cancer initiation as a specific example. We
utilized parameter values dictated by the geometry of colonic crypts, the number of colonic
stem cells, and the mutation rate estimated for human cells. Furthermore, we considered the
life expectancy data of the US population to inform the dynamics of the aging process. Since
no estimates of the shape of the mutational fitness distribution are available, we chose a
specific parametric family of distributions representing a broad class of distributions that
includes exponential decay and uniform distributions. We then studied how the probability
of cancer initiation prior to death, the time until cancer initiation, and the mutational profile
of the cancer-initiating cell depends on the shape of the mutational fitness distribution, the
life expectancy distribution, and the mutation rate. We observed qualitatively different
dynamics in parameter regimes where the probability of cancer initiation is low as compared
to those biologically unrealistic scenarios in which tumorigenesis is initiated often and
quickly. In particular, we observed that tumors that are initiated in the regime of low
initiation probabilities experience fewer, but more beneficial, advantageous mutations as the
mutational fitness distribution is skewed more towards disadvantageous alterations. This
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behavior arises due to the strong selection effect of conditioning on cancer initiation prior to
death; very few evolutionary trajectories lead to initiation before the death of the patient, and
these trajectories accumulate fewer but selectively stronger advantageous mutations.
Furthermore, this analysis demonstrated that human populations with shorter average life
expectancies have fewer cases of cancer initiation; in those cases in which tumorigenesis is
initiated, fewer passenger mutations are present in the cancer-initiating cell. Note that
passenger mutations are defined as those that do not confer any fitness change to the cell;
the number of passenger mutations in the cancer-initiating cell we determine using this
model might differ from that identified by cancer genome screens since the latter analyses
might identify all neutral and near-neutral mutations as ‘passengers’. This number might
then represent an overestimation of the number of true (strictly neutral) passenger mutations.
Note also that the mutational distribution of the cancer-initiating cell is substantially
different from the originating distribution of mutational fitness effects, exhibiting another
differential result of conditioning on cancer initiation prior to death. This analysis could be
extended to comparatively study the dynamics of cancer initiation in populations with
varying life expectancy distributions, such as different countries, ethnic groups or socio-
economic classes. To perform such analyses, it is necessary to consider differential
dynamics in Zas well as the aging process L. In particular, certain populations may have
higher mutation rates due to behavior, diet and other environmental factors which are in turn
linked to life expectancy.

This mathematical framework represents only one out of many possibilities of modeling the
processes leading to cancer. For simplicity, we have neglected spatial effects that could lead
to different dynamics in separate areas of the same compartment or tissue. We have
therefore considered colonic crypts to be independent from one another. However, crypt
division and replacement by neighboring crypts may induce a complex local dependence
between cellular compartments; these issues will be explored in future work. Furthermore,
we have not considered interactions of normal and mutated cells with the immune system;
such interactions may modulate the dynamics of cancer initiation since certain cell types
may be inhibited by immune system cells. Also, we have not investigated the effects of
temporally or spatially varying fitness values of cells which could result from their
interactions with the microenvironment or other cell types. Our work can further be
extended to consider a dependency between the dynamics of the fitness process Zand the
aging process L. Specifically, as a patient ages, DNA repair mechanisms deteriorate, thus
resulting in higher mutation rates; consideration of such scenarios will be the topic of future
work. For an accurate understanding of the dynamics of tumorigenesis in human
populations, the elucidation of mutational fitness distributions as well as cell type-specific
mutation rates is essential. The determination of these parameters in experimental systems is
an important goal of the field and would contribute to the investigation of the evolutionary
dynamics of human cancer.
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6. Appendix

6.1. Standard Moran Process

The Moran process [28] is a standard tool for studying populations that maintain a constant
size N (see e.g., [24, 69]). In the traditional setting, two types of cells are considered — cell
types aand A — whichhave respective fitness values (i.e. growth rates) fand 1. Reproduction
events arrive according to a Poisson process with rate /. If the number of type A cells is J,
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then the probability that a type A cell will reproduce during the next birth is given by j[/ +
AN - J]. In addition, after each birth event a cell is randomly chosen to die. The Moran
process is the Markov process that tracks the number of type A (or acells) cells over time.

6.2. Multi-Type Moran Process

As a departure from the Moran process described in the previous subsection, we consider
afixed-size population of cells containing greater than two types of cells. Each cell may have

afitness in the set F={ 1, .. ., f, }. The state of the system at time ¢is described by

Z= (Zzl, e ,ZZK), where ZX represents the number of cells with fitness 7 at time ¢
Reproduction events occur at the arrival times of a Poisson process with rate AV, these times
are denoted by { 73} 1. Given that the current state of system is z= (2L,...,2%), during the
next reproduction event a cell of fitness 7, will be chosen to reproduce with probability

Zkfk
K
Zj:]z'/fj

and a cell is chosen at random to die. During each cell division event, there is a probability ¢
of producing a daughter cell with a new fitness value which is chosen from amutational
fitness distribution. Equation (1) states that this process can be replaced with a simpler
process which jumps between homogeneous states (i.e., all cells in the compartment have
the same fitness). To investigate the accuracy of this approximation, let us consider a system

that starts in state z, where /- 1 cells have fitness fand one cell has fitness 7. We will use
the following notation: P, (-) = P (-|Zo=z). Then we have

Lemmal
Po(Tmut< Thom) < 3Nu(log N+ y).

Proof of Lemma 1

Define M) to be the number of replication events by time ¢ and let m(n) = 1 if a mutation
occurs at replication event n. Then note that

PZO (Tt <Thom) = nglng (N (Typur) =1, N (Tpom) >1n)
< §le0 (N (Tynae) =1, N (o) > — 1)
< §]Pa. (1) =1, N (Ty) 1 — 1N (Thom) > — 1)
= u EIPZO (N (Tyua) 51 = 1, N (Thom) >n — 1)

u Z Pzg (N(Thom) >n — 1|N (Tmut) >n — 1) .

n=1

IA

Then a conditioning argument shows that

Pey (210N (T >0 —1) =P (2, =211 Z0=20)

for all z; such that {1 <k< K:z’l">0} c {1 <k< K:z'(;>0}. For all other z; we have that
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P, (Z,, =21 IN (Typu) >n — 1) =0.

Let p () denote the probability measure associated with a Moran process with only two
types of cells and no further mutation allowed. Then it follows that

PzO (N (Thom) >n — 1|N (Tmut) >n — 1) 2}310 (N(Thom) >n — 1) .

Thus it remains to bound £, (N (Thor))- This will be done by following a similar approach
as the proof of Thm 6.3 of [69]. First let .=/ f, then for each 1 < y< N - 1 define N, to be
the number of visits of the Moran process to the state ). During each visit of the process to
the site y; B),birth events occur, where B),is a geometric random variable with success
probability

YN =) (F+£)

Py=—""== N
N (fi+f (N =)

It follows that

N-1

~ 1
Ey (N (Thom) =— > Ex, Ny
Py =

Using formula for £,/ from the proof of Thm. 6.3 of [69], we arrive at

3 R L T
E (N (Thom)) =N; (W)(N —y+§)'

Note that for all 7= 0, we have

Ny -
1.
-1 7
It then follows that
i 1 r
EOV @) VY, (5 +5) = (£ N log o)
y=1

where y is the Euler-Mascheroni constant and we used the approximation

| =

N
Z - ~ log N+v.
j=1

~
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The result follows by recalling that fx < 2.

References

[1].
[2].
3].
[4].
[5].
[6].
[71.

[8].
[al.

Mintz B. Clonal basis of mammalian differentiation. Symp. Soc. Exp. Biol. 1971; 25:345-370.
[PubMed: 4940552]

Mintz B. Malignancy versus normal differentiation of stem cells as analyzed in genetically mosaic
animals. Adv. Pathobiol. 1977; 6:153-157. [PubMed: 899957]

Kovacs L, Potten CS. An estimation of proliferative population size in stomach, jejenum and colon
of dba-2 mice. Cell Tissue Kinet. 1973; 6:125-134. [PubMed: 4567865]

Bach SP, Renehan AG, Potten CS. Stem cells: the intestinal stem cell as a paradigm.
Carcinogenesis. 2000; 21:469-476. [PubMed: 10688867]

Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell. 1997;
88:347-354. [PubMed: 9039261]

Kimura M. Evolutionary rate at the molecular level. Nature. 1968; 217:624-626. [PubMed:
5637732]

Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100:57-70. [PubMed: 10647931]
Levine AJ. The tumor suppressor genes. A. Rev. Biochem. 1993; 62:623-651.

Mitelman, F.; Johansson, B.; Mertens, F. Catalog of chromosome aberrations in cancer. Wiley-
Liss; New York: 1994.

[10]. Kinzler KW, Vogelstein B. Gatekeepers and caretakers. Nature. 1997; 386:761-763. [PubMed:

9126728]

[11]. Kinzler, KW.; Vogelstein, B. The genetic basis of human cancer. McGraw-Hill; Toronto: 1998.
[12]. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;

396:643-649. [PubMed: 9872311]

[13]. Knudson AG. Two genetic hits to cancer. Nature Rev. Cancer. 2001; 1:156-162.
[14]. Hahn WC, Weinberg RA. Rules for making human tumor cells. New Eng. J. Med. 2002;

347:1593-1603. [PubMed: 12432047]

[15]. Vogelstein, B.; Kinzler, K. The genetic basis of human cancer. McGraw-Hill; 2002.
[16]. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nature Reviews

Genetics. 2002; 3:415-428.

[17]. Herman JG, et al. Silencing of the vhl tumor-suppressor gene by dna methylation in renal

carcinoma. Proc Natl Adac Sci USA. 1994; 91:9700-9704.

[18]. Esteller M, et al. Promoter hypermethylation and brcal inactivation in sporadic breast and

ovarian tumors. J Natl Cancer Inst. 2000; 92:564-569. [PubMed: 10749912]

[19]. Esteller M, et al. Epigenetic inactivation of Ikb1 in primary tumors associated with the peutz-

jeghers syndrome. Oncogene. 2000; 19:164-168. [PubMed: 10644993]

[20]. Coulondre C, Miller JH, Farabaugh P1J. Gilbert W. Molecular basis of base substitution hotspots

in escherichia coli. Nature. 1978; 274:775-780. [PubMed: 355893]

[21]. Pfeifer GP, Tang M, Denissenko MF. Mutation hotspots and dna methylation. Curr Top

Microbiol Immunol. 2000; 249:1-19. [PubMed: 10802935]

[22]. lwasa Y, Michor F, Komarova N, Nowak M. Population genetics of tumor suppressor genes.

Journal of Theoretical Biology. 2005; 233:15-23. [PubMed: 15615616]

[23]. Michor F, Iwasa Y, Nowak MA. Dynamics of cancer progression. Nature Reviews Cancer. 2004;

4:197-206.

[24]. Komarova, NL.; Wodarz, W. Computational Biology of Cancer. World Scientific; 2005.
[25]. Komarova NL, Sengupta A, Nowak MA. Mutation-selection networks of cancer initiation:

Tumor suppressor genes and chromosone instability. Journal of Theoretical Biology. 2003;
223:433-450. [PubMed: 12875822]

[26]. Schweinsberg J. Waiting for n mutations. Electronic Journal of Probability. 2008; 13:1442-1478.
[27]. Durrett R, Schmidt D, Schweinsberg J. A waiting time problem arising from the study of multi-

stage carcinogenesis. Annals of Applied Probability. 2009; 19:676-718.

Phys Biol. Author manuscript; available in PMC 2013 February 11.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Fooetal.

[28].
[29].

[30].

[31].

Page 18

Moran, PAP. The statistical processes of evolutionary theory. Clarendon Press; Oxford: 1962.
Charles D, Luce-Clausen E. The kinetics of papilloma formation in benzpyrene-treated mice.
Cancer Research. 1942; 2:261-263.

Fisher JC, Hollomon JH. A hypothesis for the origin of cancer foci. Cancer. 1951; 4:916-918.
[PubMed: 14879355]

Nordling CO. A new theory on cancer-inducing mechanism. Br. J. Cancer. 1953; 7:68-72.
[PubMed: 13051507]

[32]. Armitage P, Doll R. A two-stage theory of carcinogenesis in relation to the age distribution of

[33].

human cancer. Br. J. Cancer. 1957; 11

Fisher JC. Multiple-mutation theory of carcinogenesis. Nature. 1958; 181:651-652. [PubMed:
13517260]

[34]. Ashley DJ. Colonic ccncer arising in polyposis coli. Journal of Medical Genetics. 1969; 6:376—

[35].

[36].

378. [PubMed: 5365944]

Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci.
USA. 1971; 68:820-823. [PubMed: 5279523]

Bodmer W, Tomlinson I. Failure of programmed cell death and differentiation as causes of
tumors: some simple mathematical models. Proc. Natl. Acad. Sci. USA. 1995:11130-11134.
[PubMed: 7479951]

[37]. Tomlinson IP, Novelli MR, Bodmer WF. The mutation rate and cancer. Proc. Natl. Acad. Sci.

[38].
[39].
[40].

[41].

[42].

[43].
[44].

[45].

[46].

USA. 1996; 93:14800-14803. [PubMed: 8962135]

Maley CC, Forrest S. Exploring the relationship between neutral and selective mutations in
cancer. Artif. Life. 2001; 6:325-345. [PubMed: 11348585]

Nunney L. The population genetics of multistage carcinogenesis. Proc. Biol. Soc. 2003;
270:1183-1191.

Frank SA. Genetic predisposition to cancer - insights from population genetics. Nat. Rev.
Genetics. 2004; 5:764-772. [PubMed: 15510167]

Frank SA. Age-soecific incidence of inherited versus sporadic cancers: a test of the multistage
theory of carcinogenesis. Proc. Natl. Acad. Sci. USA. 2005; 102:1071-1075. [PubMed:
15657129]

Michor F, lwasa Y, Nowak MA. The age incidence of chronic myeloid leukemia can be
explained by a one-mutation model. Proc. Natl. Acad. Sci. USA. 2006; 103:14931-14934.
[PubMed: 17001000]

Michor F, Nowak MA, Iwasa Y. Stochastic dynamics of metastasis formation. J. Theor. Biol.
2006; 240:521-530. [PubMed: 16343545]

Michor F, lwasa Y. Dynamics of metastasis suppressor gene inactivation. J. Theor. Biol. 2006;
241:676-689. [PubMed: 16497335]

Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW, Velculescu VE, et al. Genetic
progression and the waiting time to cancer. PLoS Computational Biology. 2007; 3:225.
[PubMed: 17997597]

D’Onofrio A, Tomlinson IP. A nonlinear mathematical model of cell turnover, differentiation,
and tumorigenesis in the intestinal crypt. J. Theor Biol. 2007; 244:367-374. [PubMed:
17049944]

[47]. Johnston MD, Edwards CM, Bodmer WF, Maini PK, Chapman SJ. Mathematical modeling of

cell population dynamics int he colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci.
USA. 2007; 104:4008-4013. [PubMed: 17360468]

[48]. Wodarz D, Komarova NL. Can loss of apoptosis protect against cancer? Trends Genet. 2007;

23:232-237. [PubMed: 17382429]

[49]. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, et al. Comparative lesion

[50].

sequencing provides insights into tumor evolution. Proc. Natl. Acad. Sci. USA. 2008; 105:4283-
4288. [PubMed: 18337506]

Haeno H, Levine RL, Gilliland DG, Michor F. The cell of origin of hematopoietic malignancies.
Proc. Natl. Acad. Sci. USA. 2009; 106:16616-16621. [PubMed: 19805346]

Phys Biol. Author manuscript; available in PMC 2013 February 11.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Fooetal.

[51].

[52].
[53].

[54].

[55].
[56].
[57].
[58].
[59].
[60].
[61].
[62].
[63].
[64].
[65].

[66].

[67].

[68].
[69].

Page 19

Durrett R, Foo J, Leder K, Mayberry J, Michor F. Evolutionary dynamics of tumor progression
with random fitness values. Theor Popul Biol. 2010; 78:54-66. [PubMed: 20488197]

Wodarz, D.; Komarova, N. Computational Biology of Cancer. World Scientific; 2005.

Reya T, Morrison S, Clarke M, Weissman I. Stem cells, cancer, and cancer stem cells. Nature.
2001; 414:105-111. [PubMed: 11689955]

Huntly BJP, Shigematsu H, DEguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, et al. Moz-tif2,
but not ber-abl, confers properties of leukemic stem cells to committed murine hematopoietic
progenitors. Cancer Cel. 2004; 6:587-696.

lwasa Y, Michor F, Nowak M. Stochastic tunnels in evolutionary dynamics. Genetics. 2004;
166:1571-1579. [PubMed: 15082570]

Crow, JF.; Kimura, M. An Introduction to Population Genetics Theory. Harper and Row; 1970.
Arias E. United States life tables, 2004. National Vital Statistics Reports. 2007; 56(9)

Lin XS, Liu X. Markov aging process and phase-type law of mortality. North American Actuarial
Journal. 2007; 11(4)

Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990; 61:759-767.
[PubMed: 2188735]

Frank SA, Nowak M. Problems of somatic mutation and cancer. BioEssays. 2004; 26:291-299.
[PubMed: 14988930]

Yatabe Y, Tavare S, Shibata D. Investigating stem cells in human colon by using methylation
patterns. Proc. Natl. Acad. Sci. USA. 2001; 98:10839-10844. [PubMed: 11517339]

Lipkin M, Sherlock PJ, Bell B. Generation time of epithelial cells in the human colon. Nature.
1962; 195

Lieberman D. Cost effectiveness of colon cancer screening. Am. J. Gastroenterol. 1991; 33:1789.
[PubMed: 1962624]

Jass JR, Stewart SM. Evolution of hereditary non-polyposis colorectal cancer. Gut. 1992; 33:783.
[PubMed: 1624160]

Ransohoff D, Lang C. Stem cells, cancer, and cancer stem cells. N. Engl. J. Med. 1991, 325:37.
[PubMed: 1810273]

Nicolas P, Kim K-M, Shibata D, Tavare S. The stem cell population of the human colon crypt:
Analysis via methylation patterns. PLoS Computational Biology. 2007; 3:628. [PubMed:
17335343]

Kim K-M, Shibata D. Methylation reveals a niche: stem cell succession in human colon crypts.
Oncogene. 2002; 21:5441-5449. [PubMed: 12154406]

Kunkel TA, Bebenek K. Dna replication fidelity. Annu Rev Biochem. 2000; 69:487-529.
Durrett, R. Probability Models for DNA Sequence Evolution. Springer; 2008.

Phys Biol. Author manuscript; available in PMC 2013 February 11.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Fooetal.

Page 20

Daughter cell,
Fitness x

Parent cell, Mutational fitness

Fitness x \ wtribution fw
u / >

Daughter cell,
Fitness x + @

Figure 1. A schematic representation of the stochastic process gover ning cellular fitness

We consider a population of A/ cells residing in a compartment or niche of fixed size. These
cells replicate according to a stochastic Moran process. During each elementary time step of
the process, a cell is chosen at random proportional to fitness to divide and its offspring
replaces another randomly chosen cell. During each cell division, a genetic or epigenetic
alteration arises with probability . Each alteration may confer a random additive fitness
change to the cell. The parent cell, on the left, thus gives rise to a daughter cell with the
same fitness, x, with probability 1 — ¢ (upper right). With probability ¢, the parent cell
produces a mutated offspring with fitness x+ y, where y is a random additive fitness
change selected according to the mutational fitness distribution 7, (lower right). If a cell
within the compartment gains a sufficiently large fitness value, then tumorigenesis is
initiated.
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We consider a stochastic process governing the evolution of fitness values of cells within the
compartment (see Fig. 1) coupled with a stochastic process representing aging and death of
the patient. The figure shows two sample path simulations of this two-dimensional process.
The fitness of cells within the compartment is shown on the horizontal axis, and the lifetime
of the patient is displayed on the vertical axis. If the trajectory hits the right boundary before
reaching the upper border, then cancer initiation occurs before death of the patient (sample
path (1)); if the trajectory hits the top boundary before reaching the right border, then death
occurs before cancer initiation (sample path (2)). The fitness values bounding the area of
interest are dictated by the cutoffs for neutral evolution [56].

Phys Biol. Author manuscript; available in PMC 2013 February 11.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Fooetal.

. . T T ‘
——a=0.5, $=0.5
l a=0.5, p=0.7
~— 4=0.5,$=0.85
03l [. a
0.25 | \ -
.. 02f \ A
%
2 [
Q
[ f |
% 015 |
I \
I
i/ H
0.1f ' -
/110
/I \
ran| 14
0.05 yZamm\\
Vs 14
S L
S / \
0 IPPSOEeST 0 el P Y 1 \\:x,.‘_._. n I
-0.05 -004 -003 -002 -001 0 001 002 003 004 005

Fitness change

Figure 3. The mutational fitness distribution

The stochastic process governing the evolution of fitness values of cells within a
compartment depends on the shape of the fitness distribution conferred by mutations. For
simplicity, we consider a general family of fitness distributions determined by the shape
parameters a and B, which govern the decay of advantageous and deleterious mutations,
respectively. This flexible setup allows us to study the effects of varying the mutational
fitness distribution on the dynamics of cancer initiation. As specific examples, the figure
displays the probability density function of 7, for a =0.5and =04, 0.5, 0.6.
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Figure 4. The probability of and time until cancer initiation prior to death

(@) and (b) The panels display the probability of cancer initiation from a single compartment
of cells, pj, before death of the patient due to causes other than the cancer type of interest.
The panels are plotted on a semilogarithmic plane for clarity. The probability of cancer
initiation increases with a and decreases with g. (c) and (d) The panels display the expected
time of cancer initiation, conditioned on initiation occurring before death of the patient. (a)
and (c) We vary the shape parameter a, which governs the decay rate on the right of the
distribution (i.e. advantageous mutations). (b) and (d) We vary the shape parameter g, which
governs the decay rate on the left of the distribution (i.e. deleterious mutations). The aging
process L is fit to US life expectancy data [57] and parameters are ¢ = 0.001 and /= 10.
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Figure 5. Advantageous mutationsin the cancer -initiating cell

(a) The panel displays the expected humber of advantageous mutations in the cell that
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reaches the fitness threshold 1 + 1/ and initiates tumorigenesis; these numbers of mutations
are conditioned on cancer initiation occurring before death of the patient due to causes other
than the cancer type of interest. We vary a, for 8= 0.4, 0.5, 0.6, and display the expected
number of advantageous mutations in the cancer initiating cell. The aging process L is fit to
US life expectancy data [57] and parameters are = 0.001 and A= 10. (b) The panel shows
the empirical density (histogram) of the average fitness change of advantageous mutations
that reach fixation in the compartment of cells prior to cancer initiation, conditioned on
initiation occurring before death. Parameter values are a = 0.15 and 8= 0.3(top), @ = 0.15
and B = 0.5(middle), and a = 0.15 and g = 0.7(bottom). The otherparameters are as in (a).

(c) The panel showsthe conditional expected number of advantageous, neutral and

disadvantageous mutations that have reached fixation in the compartment prior to cancer
initiation. The mode of the lifetime distribution @04 is varied. Parameters are ¢= 0.001, a
=0.25, =0.5and /= 10.

Phys Biol. Author manuscript; available in PMC 2013 February 11.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Fooetal. Page 25

10 T T T T T
—*—M=50 R
- —%—M=80 i — /"))’,,,'-xé
10° ¢ o — |
H /,)‘"
10 x ‘/’x -

Probability of initiation before death

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
Mutation rate per cell division

Figure 6. The effects of the mutation rate on cancer initiation

The figure shows the probability of cancer initiation prior to death of the patient for varying
mutation rate . Two values for the mode of the lifetime distribution are shown: ¢,z = 50,
80. Parameters are @ = 0.4, f=0.6 and NV = 10.
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Table 1
The effects of the life expectancy distribution on cancer initiation

The table displays the probability of cancer initiation prior to death of the patient for a varying mode of the
lifetime distribution, ¢,,0q. Three mutational fitness distributions are considered: a < 8, a = g, and a > B. As
the life expectancy increases, the probability of cancer initiation before death also increases. Furthermore, the
ratio of a to Ssignificantly impacts the initiation probability; when 8> a, disadvantageous mutations are
more frequent than advantageous mutations, and the probability of a cell accumulating fitness 1 + 1/ (i.e.
cancer initiation) is low. When 8 < a, advantageous mutations are more frequent and thus the probability of
initiation is enhanced. The mode of the data fitting current US life expectancy data is ¢,,;04. = 80. Parameters
used are ¢#=0.001 and /= 10.

¢ mode | @=0.25,8=05 | a=03,6=03 | a=05 =025
45 4.0450e-10 1.0608e-06 1.5979e-02
50 6.3142¢-10 1.9604e-06 2.4384e-02
55 9.3832¢-10 3.4264e-06 3.5433¢-02
60 1.3372e-09 5.7100e-06 4.9395¢-02
65 1.8381e-09 9.1313¢-06 6.6441e-02
70 2 4486e-09 1 4086e-05 8.6642¢-02
75 3.1736e-09 2.1050e-05 1.0996e-01
80 4.0147e-09 3.0584e-05 13627e-01
85 4.9705¢-09 4.3330e-05 1.6533e-01
2 6.0369-09 6.0017-05 1.9686e-01
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