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SUMMARY

Intra-tumor heterogeneity (ITH) of human tumors is important for tumor progression, treatment response, and
drug resistance. However, the spatial distribution of ITH remains incompletely understood. Here, we present
spatial analysis of ITH in lung adenocarcinomas from 147 patients using multi-region mass spectrometry of
>5,000 regions, single-cell copy number sequencing of !2,000 single cells, and cyclic immunofluorescence
of >10 million cells. We identified two distinct spatial patterns among tumors, termed clustered and random
geographic diversification (GD). These patterns were observed in the same samples using both proteomic
and genomic data. The random proteomic GD pattern, which is characterized by decreased cell adhesion
and lower levels of tumor-interacting endothelial cells, was significantly associated with increased risk of
recurrence or death in two independent patient cohorts. Our study presents comprehensive spatial mapping
of ITH in lung adenocarcinoma and provides insights into the mechanisms and clinical consequences of GD.

INTRODUCTION

Lung cancer is the most common type of cancer and the leading
cause of cancer death worldwide.1 Lung adenocarcinoma, the
most frequent subtype of non-small cell lung cancer (NSCLC), is
characterized by heterogeneity among individual tumors2 and
between regions in a single tumor.3 The heterogeneity between
regions, termed intra-tumor heterogeneity (ITH), has been shown
to contribute to treatment failure and drug resistance through the
expansion of pre-existing resistant subclones and their deriva-
tives.4–7 For example, EGFR T790M-positive cells are observed
in response to the treatment of NSCLCwith EGFR tyrosine kinase
inhibitors.7 Furthermore, several studies have shown that certain

patterns of ITH, mostly measured in terms of the subclonal alter-
ation burden, are associated with poor clinical outcomes in multi-
ple cancer types including NSCLC.3,8–10 Previous studies have
attempted to decode the spatial patterns of such heterogeneity
using multi-region profiling.3,11–15 However, the small number of
regions analyzedper tumor limits the conclusions of these studies.
This caveat has resulted in major gaps in our understanding of
spatial tumor heterogeneity and its contribution to tumor progres-
sion and the organization of the tumor-immune ecosystem,16–18

which is particularly important in light of the recent success of
immune checkpoint blockade.19

Here, we present a large-scale, integrative analysis of ITH and
its spatial organization in lung adenocarcinoma based on
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multiple orthogonal methods that are able to profile multiple re-
gions and/or single cells across a tumor sample while preserving
their spatial context. These analyses include multi-region
MALDI-TOF (matrix-assisted laser desorption ionization-time of
flight) of !5,000 regional spectra from 147 patients in two inde-
pendent cohorts (Figure 1A), CyCIF (cyclic immunofluorescence)
of >10 million cells from 12 patient samples (Figure 1A), and
multi-region single-cell copy number sequencing of !2,000 sin-
gle cells from 51 regions of 7 patient samples (Figure 1C). These
data aim to elucidate the extent of ITH and its spatial pattern in
both proteomic and genomic spaces in lung adenocarcinoma
and to explore how such spatial heterogeneity variation across
patients is associated with the tumor microenvironment and
copy number variation, and how it influences clinical outcomes.

RESULTS

Multi-region MALDI-TOF analysis of lung
adenocarcinomas
To study spatial heterogeneity of lung adenocarcinomas in the
proteomic space, we sectioned resected frozen human lung
adenocarcinoma specimens and collected paired neighboring
sections for each biopsied specimen—one for the identification
of histologic patterns of tumor cells or normal alveolar and bron-
chial epithelial tissues, and one for MALDI-TOF profiling. Intratu-
moral histologic subtypes that could be identified included
lepidic, acinar, papillary, micropapillary, solid, complex gland,
and cribriform types.20 Areas from these various intratumoral

histologic subtypes were selected for mass spectrometry
profiling such that each site yielded a spectral profile and its
geographic location within the tumor section (Figure 1A). All tu-
mor sections were obtained from the largest cross-sections of
a given tumor, and the best effort was made to sample the entire
section for unambiguous representatives of the seven classic
histologic categories mentioned above.20 An example of a histo-
logic annotation is shown in Figure 2A. In the discovery cohort,
we collected 4,007 regions of interest (ROIs) (diameter 200 mm)
from 95 patients, with an average of 30 tumor spectra and 12
normal spectra per patient (Figure 2B). Furthermore, three
mesenchymal stem cell (MSC) and three basal stem cell samples
were profiled to obtain stem cell protein expression profiles as a
reference for further analysis, since the molecular distance of a
cancer sample from stem cells was found to be associated
with worse outcome in multiple cancer types.21 A range of
110–935 spectra was profiled for each sample across different
histologic subtypes (Figure S1A). For each regional sample, a
total of 525 protein peaks were identified, and the signal inten-
sities of the peaks were integrated to capture the expression
levels of individual proteins (see STAR Methods and Figure 1A).
Distance matrix-based principal-component analysis (PCA)

demonstrated a continuous trajectory in proteomic space from
normal lung tissue to tumor to stem cells, the latter being farthest
away from normal lung tissue (Figure S1B). There was no clear
separation between different histologic subtypes, neither in a
single patient nor when all patients were considered as a set
(Figures S1B and S1C); this was also true for transcriptomes in

A

B

C

Figure 1. Overview of methods used to investigate intra-tumor spatial heterogeneity in this study
(A) Overview of multi-region MALDI-TOF.

(B) Overview of cyclic immunofluorescence.

(C) Overview of multi-region single-cell copy number sequencing.
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Figure 2. Proteomic spatial heterogeneity in lung adenocarcinoma
(A) Example of histologic annotation and sample profiling.

(B) Number of normal and tumor spectra profiled in patients from the discovery cohort.

(C) Proposed patterns of intra-tumor GD.

(legend continued on next page)
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The Cancer Genome Atlas dataset.2 There were no notable
proteins that showed histology-specific expression. However,
clear differences were observed between tumor and normal tis-
sues with regard to their differentially expressed proteins, and
these gave rise to an intermediate cluster (Figures S1D and
S1E) that contained a large proportion of normal samples
and low-grade histologies, and a low proportion of more clini-
cally aggressive histologies except for micropapillary (Pearson’s
correlation coefficient = "0.72; p < 0.05).20 When the trajectory
of samples was further investigated relative to MSC and normal
differentiated tissues in PCA space, the most aggressive histol-
ogies (such as solid) clustered with MSCs, whereas the least-
aggressive subtypes (such as lepidic) clustered with normal
differentiated tissues (Figure S1B).

Proteomic ITH in lung adenocarcinoma
We next sought to investigate the extent of ITH in proteomic
space using MALDI data. The Shannon index (a measure of en-
tropy) has previously been used to quantify the degree of ITH in
tumors when the ‘‘species’’ (cells or samples with unique
features) are clearly identifiable.22 However, such species are
usually unobtainable in systematic studies of the whole tumor
proteome or transcriptome. We recently used mean cell-to-cell
distance for quantifying ITH based on single-cell RNA
sequencing (RNA-seq) data.23 Here, we defined a similar metric,
the scaled mean pairwise distance (sMPD), to quantify ITH
across regional samples from patient samples present in the
MALDI dataset (Figures S2A and S2B). To test the accuracy of
this metric in the setting of MALDI data, we performed a simula-
tion study to compare sMPD with the true ITH quantified by
Shannon or Simpson indices by using subclonal information
(see STAR Methods; subclonal information is blind to the
sMPD calculation). We obtained a high prediction accuracy of
sMPD (Figures S2C and S2D; receiver operating characteristic
area under the ROC curve ranging from 0.8 to 0.99). Down-sam-
pling analysis demonstrated that the sMPD is robust to sample
size (Figure S2E; all samples had an ITH rank change less than
10%when the sample size was larger than 10). We found a trend
between higher ITH, as quantified by sMPD, and increased risk
of patient death (Figure S2F; p = 0.063, log-rank test); this

association was non-significant when controlling for known clin-
icopathological risk factors (Tables S1 and S2; p = 1, Cox
proportional hazards model with continuous sMPD).
We next investigated the spatial organization of ITH—the

geographic diversification (GD) of samples in proteomic
space. A variety of approaches have been proposed to study
spatial patterns of the proteome and transcriptome.24,25 How-
ever, these methods were not designed to quantify intra-tumor
spatial heterogeneity by integrating all measured features in a
spatially resolved manner. We therefore designed a novel
analysis approach: we defined GD to be a measure of the as-
sociation between molecular features and geographic loca-
tions, quantified using the Mantel correlation test26 (see
STAR Methods). Tumors can have one of two GD patterns: a
clustered pattern, in which molecularly similar cells are clus-
tered together in space, or a random pattern, in which molec-
ularly similar cells are randomly distributed in space
(Figures 2C and S3A). When applied to our data, the Mantel
correlation test provides the extent of correlation and its signif-
icance between the pairwise molecular distances obtained
from protein expression patterns and the pairwise geographic
distances (Figure S3B). We again used down-sampling anal-
ysis to demonstrate the robustness of this metric (Figure S3C;
all samples had a GD rank change less than 10% when sample
size was larger than 20). We identified two groups of tumors:
those whose Mantel correlations were significantly positive
and those whose correlations were non-significantly different
from zero (p value cutoff: 0.01; Figure S3D). To compare our
findings with those obtained using an existing approach, we
clustered the ROIs within each tumor sample based on their
MALDI profile using PhenoGraph27 and visualized the spatial
distribution of different proteomic clusters (Figure S3E). We
found that ROIs from the same proteomic clusters tended to
be localized close to each other in clustered GD tumors, while
the ROIs from the different proteomic clusters tended to
intermix in random GD tumors. Quantification of this pattern
obtained using PhenoGraph showed a significant difference
between clustered and random GD tumors as defined by the
Mantel test (p = 0.00041, Wilcoxon test; Figure S3F). Together,
our observations demonstrate that tissues with similar protein

(D) Illustration of a clustered GD pattern (patient P137149). Left panel: geographic locations of regional samples and their nearest neighbors in proteomic space.

Right panel: scatterplot of geographic and molecular distances. Each dot represents a pairwise distance between two regional samples. R, Mantel correlation

coefficient; P, Mantel test p value.

(E) Illustration of a random GD tumor (patient P132654). Left panel: geographic locations of regional samples and their nearest neighbors in proteomic space.

Right panel: scatterplot of geographic and molecular distances. Each dot represents a pairwise distance between two regional samples. r, Mantel correlation

coefficient; P, Mantel test p value.

(F) Kaplan-Meier survival curves shown for patients with clustered and random GD patterns from the discovery cohort. Patients with random GD patterns had

significantly worse outcomes than those with clustered GD patterns. HR, hazard ratio; P, log-rank p value. Clustered and random GD patterns are defined in

Figure S3D. Multivariate Cox proportional hazards regression analysis with continuous GD score by controlling for clinicopathological risk factors are shown in

Table S3.

(G) Number of normal and tumor spectra profiled in patients from the validation cohort.

(H) Kaplan-Meier survival curves shown for patients with clustered and random GD patterns from the validation cohort. Patients with random GD patterns had

significantly worse outcomes than those with clustered GD patterns. HR, hazard ratio; P, log-rank p value. Clustered and random GD patterns are defined in

Figure S3F. Multivariate Cox proportional hazards regression analysis with continuous GD score by controlling clinicopathological risk factors are shown in

Table S5.

(I) Growth pattern presence in clustered and randomGD tumors. The y axis shows the base 2 logarithm of the odds ratio from Fisher’s exact test when comparing

the number of clustered and random tumors with at least one sample for the indicated growth patterns. Values < 0 indicate that random GD tumors are less likely

to have a region with the indicated growth pattern. The points represent estimates while the bars represent the 95% confidence interval. N.S., not significant.

(J) Grade of clustered and random GD tumors. Fisher’s exact test p value is shown.
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composition were spatially co-localized in clustered GD tu-
mors and more evenly distributed in random GD tumors.
Representative tumors from each group are shown in
Figures 2D and 2E. We then investigated overall survival times
of patients within these two groups, observing that the random
GD pattern was significantly associated with an increased risk
of patient death (Figure 2F; p = 0.008, log-rank test); this asso-
ciation was robust when controlling for clinicopathological risk
factors in a multivariate Cox proportional hazards regression
analysis, and was not dependent on the GD cutoff (Table S3;
p = 4.41E–08, hazard ratio (95% CI) = 3.17 (2.10–4.79), Cox
proportional hazards model with continuous GD).
To validate this finding, we performed MALDI TOF analysis on

a validation cohort of 52 additional patients (1,016 additional
ROIs with a diameter of 200 mm; Figures 2G, S3G, and S3H).
The validation cohort was generated after all analyses on the dis-
covery cohort were completed. In this validation cohort, we
focused on the patient progression-free survival (PFS) because
of the low number of death events, and detected the same trend
as in the discovery cohort between GD patterns and patient PFS
using Kaplan-Meier analysis (Figure 2H; p = 0.099, log rank test).
Multivariate Cox regression analysis further showed that the
random GD pattern was significantly associated with increased
risk of PFS after adjusting for known clinicopathological risk fac-
tors, andwas not dependent on the GD cutoff (Tables S4 and S5;
p = 0.0038, hazard ratio (95%CI) = 1.36 (1.10–1.67), Cox propor-
tional hazards model with continuous GD). Further analysis of
overall survival demonstrated that GD patterns were also signif-
icantly associated with patient death in a multivariate Cox
regression analysis even though the number of deaths was low
in this cohort (Tables S4 and S6; p = 0.017, hazard ratio
(95% CI) = 1.35 (1.05–1.73), Cox proportional hazards model
with continuous GD).

Sample covariates are associated with GD patterns
To gain further insight into the etiology of the observed spatial
patterns, we investigated the correlation between random GD
and sample covariates in the discovery cohort. Patients with
random GD tumors did not differ significantly in terms of
smoking history, type of adjuvant treatment, tumor size, stage,
or the number of regional tumor or normal samples. However,
the total number of regional samples from random GD tumors
was smaller (p = 0.012, Wilcoxon test; Figures S4A–S4E).
Furthermore, random GD tumors less frequently contained
samples with the acinar growth pattern (p = 0.001, Fisher’s
exact test; Figures 2I and S4F), and were more frequently
high grade (p = 0.02, Fisher’s exact test; Figure 2J). Out of
the total number of samples, the presence of acinar histology,
and grade, only grade was significantly associated with sur-
vival in univariate analysis (p = 0.03; Figures S4G–S4I). Impor-
tantly, the association between GD and survival remained sig-
nificant when grade was included as an additional variable in
the Cox proportional hazard’s model (p = 1.02E–7), while
grade was not significant (p = 0.94 and p = 0.52, grade 2
and 3 versus grade 1, respectively). These findings suggest
that GD is related to tumor grade, but that GD contains addi-
tional information relevant to outcome beyond the information
encoded by grade.

Intercellular heterogeneity in normal tissue adjacent to
tumor
A recent study revealed that normal tissue adjacent to tumor
(NAT) exhibits a transcriptional program intermediate between
normal tissue (that is distant from the tumor) and the tumor it-
self.28 Due to this observation, we sought to quantify intercellular
NAT heterogeneity in proteomic space. NAT was selected as
normal bronchioles or normal alveolar tissue within a distance
of 0.1–0.5 cm from the tumor and profiled as above. We did
not detect a significant association between tumor and NAT
samples in terms of ITH (Pearson’s r = 0.289, p = 0.0568;
Figure S5A) and GD (Pearson’s r = 0.07, p = 0.65; Figure S5B).
In addition, NAT GD was not significantly associated with overall
survival (Figure S5C).

Transcriptional programs associated with GD
We hypothesized that the different patterns of GD—clustered
versus random—observed in MALDI data might reflect different
degrees of cellular motility in these tumors. To test this hypothe-
sis and to study the transcriptional programs associated with
different GD patterns, we performed bulk RNA-seq on 53 tumors
from the discovery cohort. We found that cell-cell adhesion-
related pathways, such as cadherin binding (NES = "2.16;
q = 0.05), transmembrane transport (NES = "2.32; q = 0.04),
and extracellular matrix genes (NES = "2.27; q = 0.05) were
the top enriched gene sets, with significantly lower expression
in tumors of a random, as opposed to clustered, GD pattern
(Figure S6A; Table S7). Reduced expression of cadherin family
genes is related to a decrease in cell-cell adhesion and can pro-
mote cell migration and invasion,29 which might contribute to the
random GD pattern in tumors (Figure S6B). Alternatively,
reduced expression of cell adhesion markers in random GD tu-
mors could reflect a decrease in epithelial cell content in these
samples. However, detailed functional studies are required to
validate whether cell-cell adhesion pathway genes are indeed
associated with different GD patterns, and to determine the
mechanistic basis of this result, in a large sample set. In contrast,
random GD tumors showed an increased expression of genes
related to immune response pathways as the top regulated
gene sets (Figures S6C and S6D; Table S7), although this finding
was not statistically significant.
Since it has previously been demonstrated that immune infil-

tration is associated with patient outcome in primary
tumors,16,30,31 we hypothesized that immune activation may be
implicated in the formation of random GD tumors. To test this
hypothesis, we utilized the RNA-seq data to estimate the propor-
tion of various immune cell types by using a signature32,33 that
had previously been applied toNSCLC.31 This signature consists
of !60 marker genes whose expression levels measure 14
immune cell populations (see STAR Methods). The inferred pro-
portions of different immune cell types were correlated with
estimates based on CyCIF imaging of the same samples (see
next section; average Pearson’s r = 0.72, range from 0.32 to
0.95 for different immune cells; Figure S7A). We found that
none of the immune infiltrates, except neutrophils (p = 0.03, Wil-
coxon test), were associated with ITH (Figure S7B). In contrast,
the number of CD8+ T cells were significantly associated with
random GD tumors (Figure S7C; p = 0.036, Wilcoxon test),
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Figure 3. The tumor-immune landscape associated with proteomic spatial heterogeneity
(A) Example images of H&E and immunofluorescence of a representative patient biopsy.

(B) Example images of H&E and immunofluorescence of representative histological regions. First row, H&E image; second row, immunofluorescence image; third

row, single-cell quantification results; fourth row, cell type classification results; 2003 200 mm regions are shown, which represent the same sized regions as in

MALDI data.

(C) t-SNE plot on 5% of all single cells profiled by CyCIF. The upper panel shows the dimensional reduction results of all identified cells; t-SNE was performed on

all proteins except S100A11. The lower panel shows the dimensional reduction results of all identified immune cells; t-SNEwas performed on the immunemarkers

CD45, CD8A, CD3D, CD4, CD163, FOXP3, CD20, CMA1, CD11C, PD1, and GZMB.

(D) Inter- and intra-tumor heterogeneity with respect to immune cell infiltration. Upper panel: the proportion of different cell types in each tumor specimen. Lower

panel: the proportion of different immune cell types in each tumor specimen.

(legend continued on next page)
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with other infiltrating immune cells, such as B cells, natural killer
cells, and regulatory T cells showing the same trend albeit not
statistically significant. Further analysis showed that the propor-
tions of different immune cell types were not associated with
overall patient survival (Figure S8A; p > 0.05, Cox proportional
hazards model), indicating that GD is more significantly associ-
ated with overall survival than the extent of immune cell infiltra-
tion estimated from bulk RNA-seq data, even though GD may
be partly driven by immune cell composition.
To characterize the repertoire of T and B cell receptors in clus-

tered and random GD tumors, we applied the RNA-seq Immune
Analysis (RIMA) (https://kateyliu.github.io/RIMA/index.html)
pipeline to our bulk RNA-seq data.We found no significant differ-
ence in statistics quantifying the level of B cell somatic hyper-
mutation or T and B cell receptor diversity (p > 0.05, Wilcoxon
tests; Figures S9A and S9B). However, we found that random
GD tumors had a significantly higher fraction of B cell receptor
reads (p = 0.044, Wilcoxon test; Figure S9A), consistent with
our earlier result suggesting higher levels of B cell infiltration in
random GD tumors compared with clustered GD tumors. The
fraction of T cell receptor reads was higher in randomGD tumors
than clustered tumors, but the difference was not significant
(Figure S9B). Taken together, these results indicate that the for-
mation of randomGD tumors is associated with a combination of
repression of cell adhesion and increased immune infiltration.

Tumor cellular composition and microenvironmental
interactions
To further characterize tumor composition and spatial interac-
tions between tumor and microenvironmental cells, such as infil-
trating immune cells, endothelial cells, and mesenchymal cells,
we performed multiplexed tissue imaging by CyCIF using anti-
bodies against KERATIN, CD45, PCNA, CD8A, CD3D, CD4,
KI67, PD1, CD163, CD11C, FOXP3, CD20, VIM, CK7, GZMB,
CMA1, CD31, and S100A11 on 12 tumors from the discovery
cohort. We sectioned resected, formalin-fixed, paraffin-
embedded tumors and collected paired neighboring sections
for each biopsied specimen—one for conventional H&E staining
for histopathological analysis and one for CyCIF (Figure 1B).
Paired images were overlaid (Figures 3A and 3B), regions of in-
terest were identified based on histological patterns, and corre-
sponding cells in the CyCIF image were then segmented and
quantified based on whole-cell fluorescence intensity (see
STAR Methods). Since S100A11 expression was measured by
both CyCIF and MALDI, we used this marker to compare across
orthogonal methods and observed correlation between the two
methods across patients (Pearson’s r = 0.77, p = 0.0031;
Figure S10A).
To identify individual cell types based on staining patterns, we

adopted the following strategies: (1) epithelial and immune cells
were identified by gating intensity distributions of KERATIN and
CD45 protein levels (Figures S10B and S10C); (2) the complexity

of major immune populations was resolved by using a consensus
clustering method (see STAR Methods) of lineage-specific
markers (e.g., CD8A, CD3D, CD4, etc.; Figures S10D–S10G and
3C); and (3) other minor subpopulations (such as mesenchymal
cells, endothelial cells, and cytotoxic CD8+ T cells) were identified
by gating intensity distributions of specific markers (such as VIM,
CD31, and GZMB; Figure S10H). Cell type assignment was eval-
uated in local regions by comparison with the expression of all
markers, and examples are shown in Figure S11–S13. We
observed variability in the percentageof immunecells as a fraction
of all retained cells among tumors as well as between different re-
gions of a single tumor (Figures 3D and S14A). When investigating
the numbers of immune cells in regions with different histologic
grade, we found that the degree of immune infiltration was asso-
ciated with grade, such that high-grade/poorly differentiated his-
tologies were associatedwith a lower extent of immune infiltration
(Figures S14B and S14C); examples of different histological
regions are shown in Figure 3B.We also found that lepidic tumors
(which are lowgrade andwell differentiated) exhibited a lower pro-
liferation rate, as measured by PCNA staining, and a higher abun-
dance of macrophages compared with other histological
subtypes (p < 0.001, Wilcoxon test; Figures S14C and S14D).
To investigate the spatial pattern of immune infiltration and ITH,

we calculated the proportion of infiltrating immune cells (‘‘%Im-
mune’’) in each histological region. We then quantified the extent
of heterogeneity of %Immune across regions within each patient
to ascertain whether immune-related heterogeneity was corre-
lated with the extent of heterogeneity determined from MALDI
data (see STAR Methods). We found that proteomic GD was not
significantly associated with %Immune GD (Pearson’s r = 0.4,
p = 0.2). Similarly, the proportion of different immune cell types
and the total number of cells in different histological regions
were not associated with proteomic GD either (Pearson’s correla-
tion test, p > 0.1; Figure S14E). Furthermore, we found that prote-
omic GD was not significantly correlated with the percentage of
tumor-interacting immune cells (Pearson’s r = 0.31, p = 0.32; Fig-
ure S14F) or the percentage of epithelial cell-interacting immune
cells (Pearson’s r = 0.087, p = 0.79; Figure S14G). However, there
was a trend toward a negative association between proteomicGD
and the percentage of immune-interacting tumor cells (Pearson’s
r ="0.46, p = 0.13; Figures 3E and S14H), and a borderline signif-
icant negative association between proteomic GD and the per-
centage of immune-interacting epithelial cells (Pearson’s
r ="0.52, p = 0.084; Figure S14I). Cellular interaction was defined
as tumor or epithelial cells and immune cells having a physical dis-
tance less than 30 mm (see STARMethods). Negative correlations
between proteomic GD and the percentages of immune-interact-
ing tumor and epithelial cells were observed for most immune cell
types, and were most pronounced for the macrophage and T cell
populations (Figures S14H and S14I). These results suggest that a
larger fraction of tumor cells interact with immune cells in random
than in clustered GD tumors.

(E) Correlation between proteomic GD and percentage of immune-interacting tumor cells.

(F) Correlation between proteomic GD and percentage of tumor-interacting endothelial cells.

(G) Correlation between proteomic GD and percentage of tumor-interacting mesenchymal cells.

(H) Examples of patient biopsies with high and low frequencies of tumor-interacting endothelial and mesenchymal cells. Imm., immune cells; Non-tumor Epi.,

non-tumor epithelial cells; Tumor, tumor cells; Endo., endothelial cells; Mes, mesenchymal cells; Other, other cells.
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To examine the spatial arrangement of tumor cells in the
broader microenvironment, we also carried out a similar analysis
to assess the interactions between tumor cells and endothelial
and mesenchymal cells. We found that proteomic GD was not
significantly correlated with the percentage of endothelial cell-in-
teracting tumor cells (Pearson’s r = 0.16, p = 0.61; Figure S15A) or
the percentage of endothelial cell-interacting epithelial cells (Pear-
son’s r = "0.14, p = 0.66; Figure S15B). Similarly, proteomic GD
was not significantly correlated with the percentage of mesen-
chymal cell-interacting tumor cells (Pearson’s r = 0.42, p = 0.18;
Figure S15A) or the percentage of mesenchymal cell-interacting
epithelial cells (Pearson’s r = 0.26, p = 0.42; Figure S15B). Howev-
er, proteomic GDwas significantly correlated with the percentage
of tumor-interacting endothelial cells (Pearson’s r = 0.71,; p =
0.0099; Figure 3F), the percentage of epithelial cell-interacting
endothelial cells (Pearson’s r = 0.59, p = 0.046; Figure S15C),
and the percentage of tumor-interacting mesenchymal cells
(Pearson’s r = 0.74, p = 0.0059; Figures 3G and S15D). Represen-
tative examples of different tumor-immune landscapes illustrating
these interactions are shown in Figure 3H.

To further investigate these results, we examined the propor-
tions of mesenchymal, endothelial, epithelial, tumor, and
immune cells in random GD and clustered GD tumors. As ex-
pected based on the RNA-seq data, we found that the proportion
of immune cells was higher in random GD tumors, although this
trend was not significant based on our CyCIF data (p = 0.34, Wil-
coxon test). By contrast, we found that, despite the relatively
small sample number, tumor cells were significantly enriched
in clustered GD tumors (p = 0.018; Figure S15E). Moreover, we
found that both the number and proportion of tumor cells within
30 mm of an endothelial cell was significantly higher in clustered
GD tumors (p = 0.005 both comparisons, Wilcoxon test; Fig-
ure S15F), and we made similar observations for the number
and proportion of tumor cells within 30 mm of a mesenchymal
cell (p < 0.02; Figure S15G). This observation suggests that the
observed correspondences between proteomic GD and
percentages of epithelial cell and tumor-interacting endothelial
and mesenchymal cells may be due to differences in overall
levels of tumor cells between samples exhibiting different pat-
terns of geographic diversity. One potential explanation for these
findings may be that, in randomGD tumors, increased tumor cell
motility leads to lower observed levels of tumor cells, which are
able to migrate away from areas of high density. These findings
support our hypothesis that the random GD pattern results from
higher tumor cell motility. Further data are needed to validate this
hypothesis.

Genomic intra-tumor spatial heterogeneity
To investigate whether the GD patterns identified in proteomic
space could also be observed in genomic space, we performed
genome-wide single-cell copy number profiling of multiple sec-
tions of seven tumors from patients in the discovery cohort
(Figure 1C). Each frozen tumor specimen was macrodissected
into six to eight sections (Figures 4A and S16), followed by
FACS to isolate aneuploid cells that were then subjected to
single-cell copy number profiling at 220 kb resolution. In total,
1,942 single tumor cells were profiled, with about 300 cells per
patient and !40 cells per section (Figures 4B and S16). Two-

dimensional visualization using UniformManifold Approximation
and Projection (UMAP) demonstrated that the single cells clus-
tered by patient (Figure 4C), suggesting that the majority of cells
from individual tumors are genetically more related to each other
than to cells from other tumors.
The multi-region single-cell genomic profiling approach

allowed us to investigate subclonal distributions of individual
copy number changes within each tumor. Interestingly, we
observed distinct patterns of spatial distributions of subclones
as represented by the clusters identified (Figures 4B, 4D, S16,
and S17A). In some tumors, such as those from patient
P132630, single cells from each section clustered together in
both UMAP (Figure 4D) and clustering analyses (Figure 4B),
showing that single cells sharing a common ancestral lineage
proliferated in a restricted spatial location, representing a clus-
tered GD pattern. In contrast, in other tumors, such as
P137974, single cells from different sections co-localized in
both UMAP and clustering analyses (Figures 4D and S16F), sug-
gesting a potential loss of restrictions on motility leading to a
random GD pattern. These results suggest that the GD patterns
we observed in proteomic data also exist in genomic space.
To study the dynamics of tumor evolution in individual tumor

samples, we constructed phylogenetic trees from the single-
cell copy number data (Figure S18). The phylogenetic trees
were built usingminimumbalanced evolution trees fromdistance
matrices based on the segmented log2 copy number ratios. The
trees were rooted with a pseudo-diploid sample with zero log2
copy number ratios across all segments. The phylogenetic trees
of random GD samples show that tumor cells from distinct sec-
tions tend to intermix in the leaves of the phylogenetic tree, as
exemplified by P132234 (Figure S18A). In contrast, the phyloge-
netic trees of clustered GD samples show that tumor cells from
the same section tend to cluster together on the phylogenetic
tree since they have similar copy number profiles, as exemplified
by sample P132630 (Figure S18B). The phylogenetic trees of the
remaining samples are shown in Figures S18C–S18G. These re-
sults elucidate the evolutionary dynamics of individual tumors us-
ing phylogenetic reconstruction.
We next sought to quantify the extent of genomic ITH and

compare this quantity with identified patterns of proteomic
heterogeneity. Genomic ITH was measured using the scaled
mean cell-to-cell distance of copy number alterations (CNAs)23

aswell as the proportion of subclonal CNAs3 (see STARMethods
and Figure 4E). These two metrics agreed with each other (Pear-
son’s r = 0.76, p = 0.048; Figure S19A), but demonstrated non-
significant correlation with ITH estimated from MALDI data
(Pearson’s r = 0.14 and 0.3, p = 0.77 and 0.51; Figures S19B
and S19C). Genomic GDwas quantified using a k-nearest neigh-
bors-basedmethod, whichmeasures whether genetically similar
tumor cells reside within the same or different tumor sections
(see STAR Methods, Figures 4F, S19D, and S19E). In contrast
to ITH, we observed a borderline significant correlation between
GD estimated from genomic copy number and proteomic data
(Pearson’s r = 0.71, p = 0.07; Figure 4G). These results suggest
that the spatial distribution of tumor cells with regard to genomic
and non-genomic featuresmay have similarities, while the extent
of cell-to-cell ITH is less correlated between genomic and non-
genomic features. Given the limited number of samples
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Figure 4. Copy number spatial heterogeneity in lung adenocarcinoma
(A) Macrodissection of frozen tumor specimen of patient P132630. Each patient sample was cut into six to eight sections.

(B) Heatmap showing the copy number profiles of aneuploid tumor cells in patient P132630. Single cells are plotted along the y axis, and copy number alterations

(CNAs) are plotted in genomic order along the x axis. The single-cell clusters are shown on the left. Single cells from different regions are color coded on the left.

(C) UMAP plot of aneuploid tumor cells from seven patients. Single cells are colored by individual patients. The shades of the colors indicate different regions of

the same tumor.

(D) UMAP plot of aneuploid tumor cells from patient P132630, who exhibited a clustered GD pattern. Single cells from different regions are color coded.

(E) Genomic ITH represented by scaled mean cell-to-cell distance (left panel) and CNA clonality (right panel).

(F) Genomic GD quantified from single-cell copy number data.

(G) Correlation between proteomic GD and genomic GD.

(H) Distribution of clonality of CDKN2A, TP53, EGFR, and MET CNAs in macrodissected regions of each tumor. Copy number gain is plotted in red and copy

number loss is plotted in blue.
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available, further studies are required to validate these findings in
a larger sample size and to further evaluate the connection
between genomic and proteomic GD patterns.

Finally,we investigated theGDofCNAs for cancer genes in lung
adenocarcinoma obtained from the Cancer Gene Census and
TCGA databases. We found that, in our data, oncogenes experi-
enced copy number gain in 21% of cells on average (0.4%–67%
for different genes) while tumor suppressors exhibited copy num-
ber loss in 47%of cells on average (12%–73% for different genes)
across all 1,942 single cells (Figure S20A). We observed distinct
CNA clonality patterns for the same cancer genes in different tu-
mors (Figure S20B). Interestingly, some CNAs also displayed
distinct clonality in different macrodissected regions of the same
tumor, which is illustrated by the proportion of cells with the cor-
responding CNAs in each section (Figures 4H and S20C). For
example, the proportions of cells with CDKN2A loss ranged
from 51% to 100% in sections from patient P132630, but were
100% in all sections from patient P137889. This observation im-
plies that CDKN2A loss might be clonal in some regions and sub-
clonal in other regions of a single tumor. In other patients,
CDKN2A loss appears to be clonal across the entire tumor
(Figure 4H). This observation was also made for several other
CNAs of both oncogenes and tumor suppressors (Figures 4H
and S20C). When investigating whether EGFR and KRAS muta-
tion status obtained from bulk sequencing of DNA from 87 pa-
tients in the discovery cohort was associated with intra-tumor
spatial heterogeneity, we found that the mutation status of these
genes was not associated with random GD tumors (p = 0.06
and p = 0.096, Wilcoxon test; Figure S21C). Together, our results
demonstrate that clonality is not only different between tumors,
but can display distinct patterns of ITH.

DISCUSSION

In this paper, we present an integrative analysis of ITH and its
spatial organization (GD) in lung adenocarcinoma using multiple
orthogonal methods to profile large numbers of regions or single
cells from the same tumor while preserving spatial context. To
this end, we performed multi-region MALDI-TOF analysis
of !5,000 regional spectra from 147 patients in 2 independent
cohorts (Figure 1A), CyCIF on more than 10 million cells from
12 patient biopsies (Figure 1B), and multi-region single-cell
copy number sequencing of!2,000 single cells from 51 sections
of 7 patients (Figure 1C). When analyzing and integrating these
data, we found that proteomic ITH was not associated with sur-
vival while proteomicGDwas significantly correlatedwith patient
survival in both the discovery (Figure 2F) and validation
(Figure 2H) cohorts. In both cohorts, spatially clustered tumors
were associated with better clinical outcome than randomly
distributed tumors.

To explore the biological underpinnings of such features, we
compared RNA expression, proteomic, and imaging data. Bulk
RNA-seq data showed that patients with random GD tumors
exhibited downregulation of programs connected to cell-cell
adhesion pathways compared with patients with clustered GD
tumors. To determine whether these GD patterns might be asso-
ciated with different patterns of spatial interaction between
tumor cells and other cells in the tumor microenvironment, we

performed CyCIF analysis on 10 million single cells from 12
tumors. When analyzing patterns of immune infiltration across
spatially clustered versus random GD tumors as identified from
MALDI data, we found that there was no significant correlation
between proteomic GD and immune infiltration GD as measured
by imaging. We therefore concluded that proteomic GD does not
simply reflect geographic diversity in immune cell infiltration.
However, we found that proteomic GD is positively correlated
with the percentages of tumor-interacting endothelial cells and
mesenchymal cells. We also observed that clustered GD tumors
are characterized by increased tumor cell content, and that both
the number and proportion of tumor cells near to endothelial and
mesenchymal cells is higher in clustered GD tumors. These find-
ings are consistent with the possibility that decreased tumor cell
motility in clustered GD tumors leads to high densities of tumor
cells around mesenchymal and endothelial cells in these
samples.
We therefore performed single-cell whole-genome DNA copy

number profiling of about 2,000 single cells frommultiple sections
each of 7 tumors from the discovery cohort. Using these data, we
were able to characterize the extent of diversity in CNAs, both
within a section as well as across sections and patients. We
demonstrated that the clustered and random GD patterns
observed in proteomic data also exist in genomic space. We
also observed diverging patterns of subclonal CNA frequencies
(Figure 4H), both within and across patients, further elucidating
patterns of genomic heterogeneity in lung adenocarcinoma.
We have presented a comprehensive dataset that illustrates

the extent of spatial intra-tumor proteomic heterogeneity across
tens of regions in single tissue sections, depicts spatial patterns
of tumor-infiltrating immune cells, and elucidates spatial intra-tu-
mor genomic heterogeneity of single tumor cells in lung adeno-
carcinoma. Taken together, these findings suggest that the
cellular composition of the tumor microenvironment and, to an
even larger extent, genomic heterogeneity of individual tumor
cells, contribute to the spatial diversification of human lung
adenocarcinoma. Unlike ITH, which does not take into account
the spatial arrangement of molecularly different cells reported
in numerous previous studies,4,34–38 we found that such spatial
diversification was significantly associated with patient survival
in two independent cohorts.
Tissue analysis of individual biomarkers has been widely used

for cancer prognosis,39 such as expression of estrogen receptor
in breast cancer40 and expression of PDL1 for immunotherapy.41

Our results demonstrate the potential of a new strategy—that of
assessing higher-order tumor structural features, such as spatial
ITH. This strategy will provide new insights for the future devel-
opment of prognostic biomarkers in tissue sections.

Limitations of the study
Our study has some limitations. Although we were able to obtain
a large amount of proteomic data for spatially resolved ROIs,
only a small proportion of proteins profiled is identifiable in pub-
licly available databases. Characterization of each individual
protein would require significant follow-up investigation, which
is outside the scope of this work. Furthermore, we did not
perform single-cell single-nucleotide variant sequencing
because the TRACERx study3 showed that CNAs but not point
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mutations were prognostic in lung cancer. Also, our MALDI and
CyCIF data were not obtained from consecutive sections of tu-
mor material, which limits our conclusions by preventing direct
comparisons between these two data types. We also did not
perform CyCIF using all possible markers informative for lung
cancer for technical reasons reflecting as-yet incomplete valida-
tion of antibodies for analysis of lung tissue. Additional data of
this typemight be helpful in delineatingmechanisms of treatment
response and resistance if applied to patient cohorts treatedwith
different treatment modalities. Of particular interest would be a
careful characterization of tumor-immune interactions as well
as spatial localizations of neoantigens in patients treated with
immunotherapy.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Franziska Michor
(michor@jimmy.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Sequence data for bulk RNA-seq and multi-region single-cell copy number sequencing data have been deposited in the NCBI SRA
under BioProject PRJNA594320 and are publicly available as of the date of publication. Accession numbers are listed in the key re-
sources table. Multi-regionMALDI-TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight) data have been deposited at fig-
share (https://figshare.com/projects/MALDI_in_LUAD/74031) and are publicly available as of the date of publication. CyCIF (Cyclic
Immunofluorescence) full-resolution images and data derived from image data (e.g., segmentationmasks) and all single-cell intensity

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MCMICRO pipeline

(de0d76d7cf0 870f

1ed979722a46

5de0fc246b90b)

https://doi.org/10.1101/

2021.03.15.435473

https://github.com/la bsyspharm/mcmicro

UnMICST https://doi.org/10.1101/

2021.04.02.438285

https://github.com/HMS-IDAC/UnMicst

Imaris (9.7.1) http://www.bitplane.com/

imaris/imaris

RRID: SCR_007370

RIMA Snakemake pipeline https://github.com/liulab-dfci/RIMA/

ClinProTools 3.0 Ketterlinus et al. 200542 https://projet.chu-besancon.fr/rfclin/

ClinProTools/

mclust (5.4.5) Scrucca et al. 201643 https://cran.r-project.org/web/pack

ages/mclust/index.html

Scanpy (1.4.4) Wolf et al. 201844 https://scanpy.readthedocs.io/en/

stable/

Bowtie 2 (2.1.0) Langmead et al. 201245 http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

SAMtools (0.1.16) Li et al. 200946 http://www.htslib.org/

DNACopy (1.70.0) Venkatraman et al. 200747 https://bioconductor.org/pack

ages/release/bioc/html/DNAcopy.html

ggtree (3.4.0) Yu et al. 202048 https://bioconductor.org/packages/

release/bioc/html/ggtree.html

ComplexHeatmap (2.12.0) Gu et al. 201649 https://www.bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html

Rtsne (0.16) CRAN https://cran.r-project.org/web/packages

/Rtsne/index.html

Survival (3.3) CRAN https://CRAN.R-project.org/pack

age=survival

Survminer (0.4.9) CRAN https://cran.r-project.org/web/packages

/survminer/index.html

ComBat/sva (3.20.0) Bioconductor https://www.bioconductor.org/packages

/release/bioc/html/sva.html

PhenoGraph/cytofkit (1.4.8) Levine et al. 201527 https://dpeerlab.github.io/dpeerlab-

website/phenograph.html

R (3.4) CRAN https://www.r-project.org

Kallisto (0.46.0) Bray et al. 201650 https://github.com/pachterlab/kallisto

GSEA java software (4.0.1) Subramanian et al. 200551 https://www.gsea-msigdb.org/gsea

Ape (5.6) CRAN https://rdrr.io/cran/ap e
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data are publicly available as of the date of publication via the Harvard Tissue Atlas Portal (https://www.tissue-atlas.org/
atlas-datasets/wu-temko-maliga-2022/). Note that individual files are !100 GB in size, so an AWS S3–compatible download tool
should be used. Processed CyCIF data have been deposited at figshare (https://figshare.com/projects/CyCIF_in_LUAD/74037)
and are publicly available as of the date of publication. Additional processed data required to run the original code have been depos-
ited at (https://figshare.com/projects/LUAD_Bundled_Data/140567) and are publicly available as of the date of publication.

All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key
resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient cohorts
A waiver of authorization was obtained from the Memorial Sloan Kettering Cancer Center Institutional Review Board (IRB) with all
relevant ethical regulations affirmed to perform this retrospective study. Sample collection was conducted by the Director’s Chal-
lenge (DC) project, a consortium of four institutions: University of Michigan Cancer Center (UM), H. Lee Moffitt Cancer Center
(HLM), Memorial Sloan Kettering Cancer Center (MSKCC), and the Dana-Farber Cancer Institute (DFCI). Patients have given explicit
consent for the molecular profiling and data sharing for cancer research purposes. In this study, we utilized 147 previously untreated
surgically resected primary lung adenocarcinoma specimens collected at MSKCC: 95 in the discovery cohort and 52 in the validation
cohort. Data including demographic and clinical characteristics for these 147 patients were extracted from the prospectively main-
tained Memorial Hospital Thoracic Service database. The average patient age was 66.9 years old (66.6 in the discovery cohort and
67.5 in the validation cohort). And 66.0% of patients were female (71.6% in the discovery cohort and 55.8% in the validation cohort).
Clinical data for the discovery cohort are included in Table S1, and clinical data for the validation cohort are included in Table S4.

METHOD DETAILS

MALDI analysis of the discovery cohort
Materials
All solvents were purchased from Fischer Scientific (Pittsburgh, PA) and used as supplied. Sinapinic acid was obtained from Protea
Biosciences, Inc. (Morgantown, WV). Indium-tin oxide coated glass slides were purchased from Delta Technologies (Loveland, CO).
Tissue sectioning
Human lung biopsies were sectioned at 12 mm thickness using a Thermo Scientific CryoStar NX70 cryostat. Two sections were
collected from each sample, one on an indium-tin oxide (ITO) coated glass slide for MALDI analysis and one on standard microscopy
slide for hematoxylin and eosin (H&E) staining. The sections for MALDI analysis were dried in a desiccator for 30 min before being
washed/fixed to remove lipids and salts and to enhance protein signal as follows: 70% ethanol for 30 s, 100% ethanol for 30 s, Car-
noy’s fluid (60% ethanol, 30% chloroform, 10% glacial acetic acid) for 2 min, 100% ethanol for 30 s, water for 30 s, 100% ethanol for
30 s. After washing, the sections were allowed to dry in a desiccator overnight.
Microscopy
H&E stained sections were digitized using an Olympus VS-120microscope (Center Valley, PA) at 203magnification and uploaded to
the online viewing portal, ProteaScope (Protea Biosciences, Morgantown, WV). Histology images were reviewed by a pulmonary
pathologist (A. M.) and regions of interest (ROIs, diameter of 200 mm) were annotated on each digital image in a consistent manner.
All histologies were selected based on the H&E stains at random in an unbiased manner; the number of regional samples was deter-
mined by the area of the corresponding histological regions. Approximately, 40 annotations per tumor growth pattern per sample
were placed on the digital images. Growth patterns included micropapillary, lepidic, solid, papillary, acinar, cribriform, complex
gland, normal alveolar, and bronchial epithelium. Annotated images were downloaded and merged with images of the serial
unstained sections using Adobe PhotoShop (Adobe Systems, San Jose, CA) to allow for determination of locations of interest on
the unstained sections.
Matrix application
Sections were coated with a solution of 10 mg/mL of sinapinic acid in 90% acetonitrile, 0.1% trifluoroacetic acid using a SunCollect
Robotic Reagent Sprayer (SunChrom, Bremen, Germany). A total of 30 passes were applied with a flow rate of 10 mL/min for the first
two passes followed by a flow rate of 30 mL/min for all remaining passes. A track spacing of 2.5 mm was used with a track speed of
1200 mm/min. A 25 s drying time was allowed between subsequent passes to minimize over-wetting and delocalization. The matrix
on the slide was recrystallized in situ to increase protein extraction from the tissue sections by securing the slide to the lid of a glass
Petri dish. A solution of 1 mL of 22% acetic acid in water was applied to 503 50 mm piece of WypAll in the bottom of the Petri dish.
The dish was sealed with Petri Seal (Fisher Scientific) and placed in an 85 #C oven for 3.5 min.
Mass spectrometry
Mass spectrometry data were collected using a Bruker ultrafleXtreme MALDI TOF/TOF mass spectrometer (Bruker Daltonics, Bill-
erica, MA) operated in linear positive ion mode. Voltage and delayed extraction parameters were optimized for mass resolution at
12 kDa. The composite image from PhotoShop was used to align the plate in the instrument and guide the data acquisition from
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only the annotated locations on the slides. At each location, a single spectrum was acquired as a sum of 500 laser shots in 50 shot
increments. The laser position within the 200 mm area was rastered after each 50 shots.
Peak identification and integration
Data were loaded into ClinProTools 3.042 (Bruker) and spectra were preprocessed including baseline correction and alignment. Peak
boundaries were identified manually and the area under each peak integrated to represent the expression level of the corresponding
protein. Proteins were annotated by using the MS imaging database (https://ms-imaging.org/wp/msi-mass-list/). A total of 525
proteins for each individual spectrum were profiled and log2 transformed after which a pseudo signal of one was added. The
ComBat algorithm52_ENREF_43 was used to remove systematic biases introduced by different batches to generate the processed
expression matrix for further analyses. All 525 protein expression levels were used for the downstream analyses if not otherwise spec-
ified.Of the 525 protein peaks, 24 could be identified as knownproteins according to theMS imaging database (https://ms-imaging.org/
wp/msi-mass-list/),which areACBP, albumin (double charge), alpha-DEFA1, alpha-DEFA2, alpha-DEFA3, calcyclin, calgizzarin, calgra-
nulin A, calpactin, COX2, HBA1, HBB, histone H2A, histone H2B, histone H3, histone H4, histone H4 (acetylated), MIF, TMSB10,
TMSB10 (truncated), TMSB4X, TMSB4X (truncated), ubiquitin, ubiquitin-GG.

Distance matrix-based principal component analysis (PCA)
We calculated the Euclidean distancematrix from the processed expression matrix. The Euclidean distance matrix was then used as
the input for principal component analysis. The top two principal components were plotted in 2-dimensional space and labeled as
normal samples, histological tumor subtypes, or stem cells. PCA was performed on all samples.

t-distributed stochastic neighbor embedding (t-SNE)
t-SNEwas performed on individual patient samples with the processed expression matrix as input. Rtsne in R was used for this anal-
ysis with the parameter perplexity = 10 (https://cran.r-project.org/web/packages/Rtsne/index.html).

Clustering analysis
Clustering analysis was performed using PhenoGraph27 with k = 3 for regional samples per tumor.

MALDI analysis of the validation cohort
Tissue sectioning
Tissues stored at "80#C were placed inside the cryostat. The temperature of the cryostat was maintained between "20 and "30#C
and 12mm tissue sections were obtained for each sample. Tissue sections were placed on ITO slides for MALDI-imaging and Super-
frost slides for H&E staining. Serial adjacent sections from the MALDI slides were prepared for H&E staining. Tissue sections on ITO
slides were placed in a desiccator for 15 min before being washed/fixed to remove lipids and salts and to enhance protein signal as
follows: 70%ethanol for 30 s, 100%ethanol for 30 s, Carnoy’s fluid (60%ethanol, 30%chloroform, 10%glacial acetic acid) for 2min,
100% ethanol for 30 s, water for 30 s, 100% ethanol for 30 s. Subsequently the slides were placed in a desiccator for 30 min to com-
plete drying.
MALDI matrix deposition and recrystallization
Sections were coated with a solution of 10 mg/mL of sinapinic acid in 90% acetonitrile and 0.1% trifluoroacetic acid using a
SunCollect Robotic Reagent Sprayer (SunChrom, Bremen, Germany). A total of 30 passes were applied with a flow rate of 10 mL/
min for the first two passes followed by a flow rate of 30 mL/min for all remaining passes. A track spacing of 2.5 mm was set up
with a track speed of 1200 mm/min. A 25 s drying time was allowed between subsequent passes to minimize over-wetting and delo-
calization. Thematrix on the slidewas recrystallized in situ to increase protein extraction from the tissue sections by securing the slide
to the lid of a glass Petri dish. A solution of 1 mL of 22% acetic acid in water was applied to each 503 50 mm piece of WypAll on the
bottom of the Petri dish. The dish was then sealed and placed in an 85#C oven for 3.5 min.
H&E staining
Hematoxylin and Eosin (H&E) staining was performed on adjacent sections to the imaged ones since HE staining allows for the visu-
alization of different histological regions. Histology images were reviewed by a pulmonary pathologist (A. M.) and areas of interest
(200 mm) were annotated on each digital image.
Mass spectrometry analysis
MALDI-TOF acquisition was performed by using the following global parameters: Mode: linear mode; Ionization: positive ion mode;
Range: 2.7–15kDa; Laser frequency:1000–2000 Hz; Calibration mode: 2; Spatial resolution: 200 mm for entire tissue sections.
Peak identification and integration
The same baseline correction and alignment procedure used in discovery cohort was performed on data from the validation cohort. A
total of 464 proteins for each individual spectrum were profiled and a Z-score transformation was performed against the matrix to
remove unspecific signal.

Proteomic intra-tumor heterogeneity (ITH)
To estimate the degree of intra-tumor heterogeneity across regional tumor samples within patients, we used a metric called scaled
mean pairwise distance (sMPD). To this end, we first calculated themolecular distance of each sample pair using the protein profile of
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each regional spectrum in a tumor. The mean pairwise distance (MPD) was then quantified using mean intra-tumor pairwise dis-
tances; this calculation was followed by a normalization to scale the metric to a number between 0 and 1. Specifically, the pairwise
distances were calculated as Euclidean distances between any possible pairs of samples within a tumor. If there are n tumor samples
measured within one patient, xi is the Euclidean distance of one pair of samples, and there are m = nðn " 1Þ=2 non-redundant pair-
wise Euclidean distances, then the MPD is given by:

MPD = meanðxiÞ; i = 1;2;.;m

The score was then scaled to range from 0 to 1 to facilitate further comparison and application; this metric is termed scaled MPD,
sMPD. For the visualization of survival results, patients were stratified into two ITH groups (low and high) using the median sMPD
score across patients as cutoff.

Simulation study for proteomic ITH measurements
When subclonal information is available, the extent of ITH is usually quantified using metrics such as the Shannon and Simpson
indices.22 To test the performance of the sMPD of capturing the extent of ITH, we embarked on a simulation study by generating
a dataset with known subclonal information. Specifically, an expression matrix of m = 500 genes and n = 1000 samples equally
distributed across k = 10 subcloneswere simulated as follows. The expression value of gene i (=1, 2,., n) across samples was drawn
from aGaussian distributionN (mi, si

2). The mi of different genes were randomly sampled from another Gaussian distributionN (mt, st
2).

The mt and st were determined from the MALDI matrix of the discovery cohort. The relationship between si and miwas also estimated
from the MALDI matrix of the discovery cohort. For 2% of genes, the expected mean expression value as determined above of sam-
ples from each subclone was multiplied by a fold change (F = 5, 2, 1.5, 1.2) to represent distinct subclonal expression patterns. To
simulate different scenarios of heterogeneity of subclones, we generated all possible compositions/matrices (Dsce) of ns = 30 samples
belonging to s =1, ., k subclones from D. This approach is equivalent to investigating all possible ways to place ns objects into s
groups. For these Dsce matrices, we then determined the Shannon and Simpson indices based on the known subclonal information
– these values were then used as true ITH measurements (the ‘‘ground truth’’). Subsequently, the sMPD was calculated for each of
the Dsce matrices and was compared to the ground truth. The prediction performance of the sMPD was evaluated using a Receiver
operating characteristic (ROC) curve and the area under the ROC curve (AUC). Several scenarios of heterogeneity of subclones are
shown in Figure S2D.

Proteomic intra-tumor geographic diversification (GD)
One advantage of the MALDI approach is its ability to obtain molecular information (i.e. protein expression levels) and geographic
information (i.e. spatial locations of samples) simultaneously, allowing us to propose a model for evaluating the extent of intra-tumor
geographic diversification (GD) of samples. Within this model, tumor cells can have two possible GD patterns: clustered and random.
To distinguish between these two patterns, we calculated the Mantel correlation26 (also known as spatial correlation) between the
molecular distance matrix and the geographic distance matrix. The molecular distance matrix was calculated using the Euclidean
metric based on all protein features, while the geographic distancematrix was calculated using the Euclideanmetric based on spatial
information (i.e. based on x and y locations). Specifically, if there are n tumor samples measured within one patient, mij is the
Euclidean distance of spectrum i and j in terms of protein expression levels, gij is the Euclidean distance of spectrum i and j in terms
of spatial locations, and M is all mij, G is all gij, then the Mantel correlation is given by:

rm =

Pn
i = 1

Pn
j = 1ðmij " MÞ3

!
gij " G

"

varðMÞ1=2 3 varðGÞ1=2

Since the distances in M/G are not independent from each other (i.e., changing the physical location of one sample would change
the geographic distances from that sample to all others), a significance test of the Mantel correlation cannot be accomplished by
using a simple correlation test of paired samples. However, the significance level of the Mantel correlation can be obtained by using
a permutation test. To that end, the null hypothesis was obtained by permuting the rows and corresponding columns of one of the two
matrices. The Mantel p-value (pm) was then obtained by comparing the Mantel correlation r (rm) to the null distribution generated by
permutation using a two-sided test. We then used the pm to quantify GD and stratified patients into clustered (low pm) and random
(high pm) patterns. We hypothesized that if tumors developed in a more regulated fashion (referring to a clustered GD pattern), sam-
ples localized closer together in space would havemolecular profiles similar in protein expression levels, while tumor samples farther
from each other would have molecular profiles more dissimilar in expression levels. For more aggressive tumors (referring to random
GD patterns), we hypothesized that this concordance would not exist because of dysregulated growth. Several scenarios of GD pat-
terns are shown in Figure S3A.

Survival analysis
Overall survival was calculated from the date of surgery to the time of death from any cause or to the time of last follow-up, at which
point the data were censored. Progression-free survival was calculated from the date of surgery to the time of death, to the time of
disease progression, or to the time of last follow-up, at which point the data were censored. We focused on progression-free survival
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in the validation cohort because of the low number of deaths. Survival analyses were conducted using the ‘survival’ R package
(https://CRAN.R-project.org/package=survival). Kaplan-Meier plots were made using the ‘survminer’ R package (https://cran.
r-project.org/package=survminer).

Down-sampling analysis of proteomic ITH and GD measurements
To investigate the robustness of our ITH and GDmeasurements to sample size, all tumors in the discovery cohort with more than 10
ROIs profiled by MALDI were downsampled to multiples of 5. Each downsampling was performed 100 times and the median mea-
surements were compared to the original measurements obtained from the full dataset.

RNAseq analysis
To study the transcriptomal programs associated with different GD patterns, we performed RNA-sequencing on 53 of 95 tumors in
the discovery cohort. Total RNA underwent ribosomal depletion and Truseq library preparation according to instructions provided by
Illumina (TruSeqVRStranded Total RNA LT, cat#RS-122-2202) with six PCR cycles. Sampleswere barcoded and run on aHiseq 2500
in a 50 bp/50 bp paired-end run, using the TruSeq SBS Kit v3 (Illumina). Gene expression of mRNA was quantified by kallisto.50

Expression levels were reported as Transcripts Per Million (TPM). The transcriptional programs were compared between top 10 tu-
mors of clustered GD and top 10 tumors of random GD. Gene set enrichment analysis was carried out using the GSEA java software
with Gene Ontology terms.51 Inference of the proportion of various immune cell types (B cells, CD4+ T cells, CD45, CD8 T cells, Cyto-
toxic cells, DC, Exhausted CD8, Macrophages, Mast cells, Neutrophils, NK CD56dim cells, NK cells, T cells, Th1 cells, Treg and total
TILs) was performed using Danaher signatures.32 Note that these signatures do not includemarker genes for CD4+ T cells, the Davoli
et al.33 CD4+ T cell estimates were used instead. T cell receptor and B cell receptor repertoire characterization was carried out using
the RNA-seq Immune Analysis (RIMA) pipeline (https://kateyliu.github.io/RIMA/index.html).

Cyclic immunofluorescence (CyCIF)
Here, we performedmultiplexed tissue imaging by CyCIF using antibodies against KERATIN, CD45, PCNA, CD8A, CD3D, CD4, KI67,
PD1, CD163, CD11C, FOXP3, CD20, VIM, CK7, GZMB, CMA1, CD31, and S100A11 (https://www.cycif.org/antibodies/) on 12 tu-
mors from the discovery cohort. Antigen recovery and staining of formalin-fixed, paraffin embedded (FFPE) 5 mm tissue sections
were performed (Table S8), as described.53 Image datasets in the OME-TIFF format were segmented using a modified protocol
based on Saka et al.54 Briefly, a convolutional network model with UNet architecture was trained to recognize three classes: back-
ground, nuclei contours, and nuclei foreground. Using this model (https://github.com/HMS-IDAC/UnMicst), probability maps of the
nuclei foreground and contours were generated for each dataset and were segmented using a marker-controlled watershed seg-
mentation pipeline (https://github.com/HMS-IDAC/S3segmenter). False positives were filtered based on nuclei diameter and
masked out with a channel thresholded using Otsu’s method55; this channel represented overall tissue autofluorescence. Finally, la-
bel masks, in which each cell is represented by pixels and index numbers, were saved as tiff images and were used for downstream
analysis. The histology topography cytometry analysis toolbox histoCAT56 was used to extract mean fluorescence intensity mea-
surements of each antibody using the single cell segmentation masks. Those features were log-transformed followed by Z transfor-
mation to make sure the signals/expression levels of each protein across single cells have a mean of 0 and a standard deviation of 1
for further downstream analysis. Morphological features like centroid position, circularity and cell area were extracted for each single
cell. Cells lost during the course of CyCIF imaging had background staining for DNA in the final cycle of imaging and removed from the
downstream analysis. Feature details on CyCIF can be found at https://www.cycif.org/. Histological regions were annotated as
described above for MALDI data.

Cell type identification in CyCIF data
Epithelial cells and immune cells were identified by gating intensity distributions of KERATIN and CD45 protein levels (Figure S10B).
Major immune cell types were identified using a consensus clustering method (see below) based on the lineage-specific markers
CD45, CD8A, CD3D, CD4, CD163, FOXP3, CD20, CMA1, GZMB, PD1, and CD11C. Other minor subpopulations were identified by
gating intensity distributions of specific cell type markers (VIM, CD31, PCNA, CD11C, GZMB, and PD1; Figure S10H). Specifically,
endothelial cells were identified among non-immune, non-epithelial cells using a Gaussian mixture model fit to the distribution of
CD31 expression among these cells, implemented using the R package mclust.43 Using the threshold derived from the mixture model
cells with CD31 expression greater than 0.96were classified as endothelial. Remaining non-immune, non-epithelial cells were classified
asmesenchymal if they had VIM expression levels larger than 2 to capture the non-background signals (2 standard deviations from the
mean). Tumor cells were KERATIN + cells and had PCNA expression levels larger than 0 (mean signal across single cells). To classify
CD4+ and CD8+ T cells into cytotoxic and exhausted subsets, Gaussian mixture models were fit to the distributions of GZMB and PD1
across single cells. Using the thresholds derived from these models, CD4+ and CD8+ T cells were classified as cytotoxic if they had
GZMB expression greater than 1.26, and remaining CD4+ and CD8+ T cells were classified as exhausted if they had PD1 expression
levels greater than 0.86. CD4+ and CD8+ T cells not classified as cytotoxic or exhausted were designated as other CD4+ T cells and
other CD8+ T cells, respectively. Similarly, a Gaussianmixture model was fit to the distribution of CD11C expression across single cells.
Using the threshold derived from this model, macrophages were classified as activated macrophages if they had expression of CD11C
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greater than 0.53, and otherwise were classified as othermacrophages. Finally, gating intensities for a subset of lineagemarkers (CD31,
PD1, GZMB, CD11C, CD163) was confirmed by visual inspection of 20 representative fields in the primary CyCIF data.

Consensus clustering of immune cells in CyCIF data
All immune cells were randomly divided into 10 groups of !600,000 cells each. Single cells in each group were clustered using the
Louvain algorithm27,57 in the Scanpy Python package44 with default parameters. The clustering was performed on the lineage-spe-
cific markers CD45, CD8A, CD3D, CD4, CD163, FOXP3, CD20, CMA1, GZMB, PD1, and CD11C. The clusters with the highest
average expression among CD8A, CD4, FOXP3, CMA1, CD163, and CD20 were assigned to mast cells, CD8+ T cells, CD4+

T cells, Tregs, mast cells, macrophages and B cells, respectively. Figure S10E lists all conditions required for cell type assignment
in this algorithm. Cell clusters that do not meet the conditions listed in the table were assigned to unidentified immune cells (UIC). An
example of cell type assignment is provided in Figure S10F. For robustness, we repeated this process 10 times to obtain 10 cell type
assignments for each single cell. Each single cell was then assigned to the cell typewith the largest number of votes, while single cells
with a vote tie were assigned to UIC. A consensus score was then generated as the percentage of times a specific cell was assigned
to its final cell type (Figure S10G). To obtain cell type assignments of more single cells, we used the greedy cutoff of a consensus
score R0.3, but the distribution is relatively stable from 0.3–0.7. The fact that the proportion of cells assigned to each specific im-
mune cell type increases with the consensus score indicates a general agreement among repeated processes. Our method is scal-
able to the analysis of an even larger number of single cells by subdividing the entire set into groups of cells.

Low dimensional visualization of single cell CyCIF data
To visualize epithelial and immune cells, t-SNE was performed on representative samples of 5% of identified cells (484,854 single
cells) on all proteins except S100A11 (Figure 3C upper panel; for marker expression see Figure S10C). To visualize different immune
cell types, t-SNE was also performed on representative samples of 5% of identified immune cells (202,215 single cells) based on the
immune markers CD45, CD8A, CD3D, CD4, CD163, FOXP3, CD20, CMA1, GZMB, PD1, and CD11C (Figure 3C lower panel; for
marker expression see Figure S10D). The scanpy Python package44 was used to perform t-SNE analyses.

Immune infiltrating patterns in CyCIF data
The whole image of each tumor was split into 3003 300 mm sliding regions with 150 mm overlaps in both the x and y directions. Im-
mune cells in sliding regions were analyzed; their distribution represents how uniformly immune cells are localized across the entire
tumor. Sliding regions with fewer than 20 annotated cells were excluded from the analysis to remove blank or low-quality regions.

Tumor interaction landscape in CyCIF data
An immune cell was considered to be in a tumor-immune interacting environment if there was a tumor cell located within a 30 mm-
radius circular region around it, and was termed a tumor-interacting immune cell. A tumor cell was considered to be in a tumor-im-
mune interacting environment if there was an immune cell located within a 30 mm-radius circular region around it and was termed an
immune-interacting tumor cell. We used the percentage of tumor-interacting immune cells among all immune cells and the immune-
interacting tumor cells among all tumor cells to represent features of the tumor-immune landscape across tumor specimens. Endo-
thelial cells, mesenchymal cells and specific immune cell subsets (mast cells, B cells, T cells, CD4+ T cells, cytotoxic CD4+ T cells,
exhausted CD4+ T cells, other CD4+ T cells, CD8+ T cells, cytotoxic CD8+ T cells, exhausted CD8+ T cells, other CD8+ T cells, Tregs,
macrophages, activated macrophages, and other macrophages) were analyzed in the same way as for total immune cells to obtain
the tumor-immune interactions between tumor cells and specific cell populations.

Quantification of intra-tumor spatial heterogeneity in CyCIF data
The percentage of total infiltrating immune cells, mast cells, B cells, T cells, CD4+ T cells, cytotoxic CD4+ T cells, exhausted CD4+

T cells, other CD4+ T cells, CD8+ T cells, cytotoxic CD8+ T cells, exhausted CD8+ T cells, other CD8+ T cells, Tregs, macrophages,
activated macrophages, and other macrophages and the number of cells in different histological regions were used as feature input
to calculate ITH and GD in the same manner as when using MALDI data.

Multi-region single cell copy number sequencing
Tumorsweremacrodissected into 6–8 regions and nuclear suspensionswere prepared from frozen tissue using aDAPI-NST lysis buffer
(800 mL of NST (146 mM NaCl, 10 mM Tris base at pH 7.8, 1 mM CaCl2, 21 mMMgCl2, 0.05% BSA, 0.2% Nonidet P-40)), 200 mL of
106 mM MgCl2, 10 mg of DAPI). The nuclear suspensions were filtered through a 35 mm mesh. Single nuclei were flow sorted (BD
FACSMelody) into individual wells of 384-well plates from the aneuploidy peak. After sorting single nuclei, direct tagmentation chemistry
was performed following theDirect Library Preparation (DLP) protocol previously described.58 To calculate single-cell copy number pro-
files we demultiplexed sequencing data from each cell into FASTQ files, allowing 1 mismatch of the 8 bp barcode. FASTQ files were
aligned to hg19 (NCBI Build 37) using bowtie2 (2.1.0)45 and converted fromSAM to BAM files with SAMtools (0.1.16).46 PCR duplicates
were removed based on start and end positions. Copy number profiles were calculated at 220kb resolution using the variable binning
method.59 Single cells with <10 median reads/bin were excluded for downstream copy number analysis. GC normalized read counts
were binned into bins of variable size, averaging 220kb, followed by segmentationwith the circular binary segmentation (alpha = 0.0001
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and undo.prune = 0.05) method from the R Bioconductor DNACopy package.47 The log2 copy number ratio were calculated and used
for subsequent analysis. We filtered out noisy single cells with mean 5-nearest neighbor correlation less than 0.8. The mean 5-nearest
neighbor correlation is calculated as the average of the Pearson correlation coefficients between any single cell and its 5-nearest neigh-
bors. This step removed single cells with poor whole-genome amplification from the subsequent data analysis.

Clustering analysis of multi-region single cell copy number data
Single cell copy number profiles (log2 copy number ratio) were analyzed using the Scanpy Python package44 to obtain Uni-form
Mani-fold Approximation and Projection (UMAP) and clustering results. UMAPwas performed using default parameters.60 Clustering
analysis of single cells was performed using the Louvain algorithm (resolution = 0.5)27,57. Different clusters of single cells were consid-
ered to be different subclones in the analysis.

Quantification of genomic ITH from multi-region single cell copy number data
We used two metrics to quantify the extent of genomic ITH based on single cell DNA copy number data: (i) The scaled mean cell-to-
cell distance (sMCD), which was calculated in the same way as sMPD by replacing MALDI data from regional samples with copy
number data from single cells. A similar metric has previously been used to quantify ITH using single cell RNA-seq data in breast
cancer.23 (ii) The proportion of subclonal copy number aberrations (CNAs), which was calculated as the proportion of genomic
regions with subclonal CNAs. Specifically, genomic regions with a copy number ratio larger than 0.3 and lower than"0.3 were iden-
tified as gains versus losses in DNA copy number, respectively. CNAs present in at least 95% of cells in individual tumors were iden-
tified as clonal; CNAs present in 5–95% of cells are called subclonal; and CNAs present in less than 5% of cells are treated as noise.
We determined the proportion of genomic regions with clonal, subclonal and no CNAs and used the subclonal CNA proportion to
represent the level of ITH in each patient. A similar metric has previously been used to quantify ITH using bulk DNA copy number
data in NSCLC.3

Quantification of genomic GD from multi-region single cell copy number data
To quantify the extent of genomic GD in our single cell dataset, we identified the k nearest neighbors of each cell and formed k pairs of
cells; this procedure was repeated for all n cells in each tumor to obtain kn pairs of cells. The genomic GD of a sample was then quan-
tified by the proportion of the # of pairs of cells whose two cells are located in the same region of the tumor among all pairs of cells.
This metric represents a measure of how different types of tumor cells were spatially distributed within a tumor in patterns that range
fromclustered to randomly distributed. The parameter kwas chosen to be 10 in themain analysis, but different values of kwere tested
showing a minimal effect on the final score (Figures S19D and S19E).

CNAs in cancer genes in lung adenocarcinoma
We obtained cancer genes in lung adenocarcinoma from two databases: the Cancer Gene Census (https://cancer.sanger.ac.uk/
census) and the TCGA pan-cancer analysis.61 The genes present in both lists were used as a curated cancer gene list in this study.
Gene CNAs were quantified by the average copy number of genomic regions they span, with log2 copy number ratios larger than 0.3
and lower than "0.3 identified as gains and losses, respectively. Gene regions in any sample with less than 5 bin counts were
removed from the analysis to obtain high confidence data of CNAs.

Phylogenetic analysis of single cell copy number data
Phylogenetic analysis was performed using a previously described method.62 The "fastme.bal" function in ape R package63 was
used to construct the minimum balanced evolution trees from distance matrices built from the segment log2 copy number ratios.
The phylogenetic trees were rooted using a pseudo-diploid sample with zero log2 copy number ratios across all segments. The
ggtree R package48 was used to visualize the phylogenetic trees of single cell copy number data.

Heatmap vizualizations
Heatmaps were produced using the ComplexHeatmap R package.49

QUANTIFICATION AND STATISTICAL ANALYSIS

All data were analyzed using R version 3.4 (http://www.R-project.org/) if not specifically described. The software packages and
custom code used in this study are described in the method details section and the key resources table. The statistical details of
experiments are described in themethod details and results sections, and the figures and figure legends. Unless otherwise specified,
results were considered significant if the corresponding p-value or Q-value was less than 0.05.
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