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Precision Oncology
Highlights
Tumor heterogeneity, stochasticity in
tumor progression, and a limited detec-
tion threshold of drug-resistant variants
necessitate a dynamic and farsighted
approach to personalized therapeutic
interventions that incorporates consider-
ations of long-term efficacy and toxicity.

A clear working framework for the formu-
lation and implementation of dynamic
Dalit Engelhardt1,2,3,4,* and Franziska Michor1,2,3,4,5,6

The complexity and variability of cancer progression necessitate a quantitative
paradigm for therapeutic decision-making that is dynamic, personalized, and ca-
pable of identifying optimal treatment strategies for individual patients under
substantial uncertainty. Here, we discuss the core components and challenges
of such an approach and highlight the need for comprehensive longitudinal
clinical and molecular data integration in its development. We describe the
complementary and varied roles of mathematical modeling and machine learning
in constructing dynamic optimal cancer treatment strategies and highlight the
potential of reinforcement learning approaches in this endeavor.
decision-making in cancer can drive
and facilitate multidisciplinary clinical and
research collaborations in treatment
optimization.

A dynamic decision-making algorithm
should include a specification of optimi-
zation criteria, structural constraints,
mechanisms for projections of se-
quences of outcomes, and an optimiza-
tion mechanism.

Longitudinal integrative data – genomic,
imaging, clinical, and others – collected
from patients is essential for the person-
alized optimization of dynamic treatment
strategies.

The synthesis of mathematical modeling
of tumor dynamics and advances in
machine learning approaches to
dynamic decision-making provides a
promising avenue for addressing the
challenges of developing personalized
interventions in oncology.

The incorporation of deep learning into
reinforcement learning algorithms has
significant potential in optimization
across variable datasets with a large
number of features, and future work in
this field should consider howalgorithmic
improvements can best serve the chal-
lenges of decision-making optimization
in cancer.
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New Frontiers for Decision-Making in Precision Oncology
Clinical oncology has undergone a period of revolutionary transformation owing to rapid
advances in precision therapeutics and personalized medicine. Progress in diagnostic resolution
and computational methods has yielded unprecedented insights into the complexity, heteroge-
neity, and dynamics of cancer and has led to the development of new therapeutic approaches
capable of delivering more effective treatments [1]. Yet, the variety of clinical options and
the large amounts of data that can be collected present new challenges for decision-making in
oncology. Clinicians must determine which therapeutic option should be chosen for a particular
patient at a particular time point while contending with uncertainty regarding the current state
and future course of disease. These options must take into account the long-term effects of
drugs administered early during treatment on the clonal tumor composition later during treatment
or upon recurrence, and they need to balance efficacy and side effects throughout treatments
that can last for decades. Clinical decisions need to account for all of these considerations in
order to maximize the potential of available therapeutics and the success of new ones.

In the face of these opportunities and challenges, a comprehensive quantitative approach to
personalized decision-making in precision oncology has become a practical imperative. Core
to this endeavor is the ability to match the dynamic and potentially recurrent nature of cancer
with a cohesive and farsighted treatment strategy – or sequence of treatment decisions – that
is capable of robustly and dynamically steering the temporally variable and stochastic progression
of cancer toward a desired path. Dynamic decision rules for medical interventions constitute an
active area of research that has seen growing interest with the broadening of applications of
personalized medicine. Generally known as dynamic treatment regimes, treatment policies, or
adaptive treatment strategies [2–10], they consist of sequences of decisions in which observa-
tions of the state of the disease are periodically made; this feedback is used to inform the course
of treatment until the next decision point at which new observations are made. These strategies
adapt to the current state of the disease subject to certain goals such as maintenance or progres-
sion milestones and manageability of side effects throughout treatment (e.g., by avoiding spikes
in drugs through pre-emptive and timely interventions). In particular, they can be made to be far-
sighted, with current decisions informed not only by their immediate expected outcome (e.g., the
Trends in Cancer, April 2021, Vol. 7, No. 4 https://doi.org/10.1016/j.trecan.2021.01.006 293
© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.trecan.2021.01.006
https://doi.org/10.1016/j.trecan.2021.01.006
https://doi.org/10.1016/j.trecan.2021.01.006
https://doi.org/10.1016/j.trecan.2021.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trecan.2021.01.006&domain=pdf


2Department of Biostatistics, Harvard
T. H. Chan School of Public Health,
Boston, MA, USA
3Department of Stem Cell and
Regenerative Biology, Harvard
University, Cambridge, MA, USA
4Center for Cancer Evolution,
Dana–Farber Cancer Institute, Boston,
MA, USA
5The Broad Institute of Harvard and MIT,
Cambridge, MA, USA
6The Ludwig Center at Harvard, Boston,
MA, USA

*Correspondence:
dengelhardt@ds.dfci.harvard.edu
(D. Engelhardt).

Trends in Cancer
expected range of tumor burden reduction in 3 months) but also by a long-term outcome (e.g.,
extending progression-free survival and avoiding multidrug-resistant recurrences). The transla-
tion of short-term predictions into flexible, farsighted, and long-term optimal sequences of deci-
sions is done through mathematical and computational mechanisms that have been developed
for the optimization of these dynamic decision processes [11].

This pan-treatment strategic view is of critical importance in oncology, where treatments can be
long term, and recurrences and resistance to treatment can go undetected for long periods of
time due to the variant detection limitations of even the highest-resolution methods [12–16].
Yet, despite substantial theoretical and computational research on clinical dynamic treatment
policies, practical applications of such approaches in oncology are rare. Cancer presents a
particularly complex treatment environment with high interpatient variability, and our current
understanding of its mechanisms and progression is the result of multifaceted efforts in data
collection and analysis, laboratory experiments, and mathematical modeling. Implementation of
a quantitative and robust dynamic decision-making approach requires distilling this complex
space into the mathematical structures that define a decision process in an integrative and
streamlined way that can facilitate collaboration between the different communities involved in
cancer research and care. To this end, we have set here to describe this process. In outlining
the components and development of a dynamic personalized decision-making model for cancer
treatment (Figure 1), we hope to lay the foundation for a common working framework for clinical
oncologists, biologists, and practitioners of decision theory to collaborate on the personalized
optimization of therapeutic decision-making in different areas of oncology.

Dynamic Decision-Making in Cancer Treatments
A dynamic sequential decision-making model (Figure 2) aims to select, as part of a sequential
strategy, the best action – here, treatment – for any observed state of the disease, subject to
specified optimization criteria and under structural constraints that define the decision process,
such as how often we are given information on a state, how often we can take an action, and
what types of actions are possible. Establishing these optimization criteria and structural
TrendsTrends inin CancerCancer

Figure 1. Depiction of an Integrative
Dynamic Decision-Making Process
in Cancer Treatment. Data collected
at patient presentation is supplied to a
trained decision-making model and used
to inform treatment decisions until
subsequent observations are supplied to
the model to inform the next therapeutic
decision. Molecular and imaging data can
be used to parameterize mathematical
models of tumor dynamics in order
to supplement and complement the
collected patient data; not all data types
may be available at each decision step.
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Figure 2. Optimization of a Dynamic
Decision-Making Process. This process
involves determination of what action
should be taken in a given state subject
to basic structural constraints (pink)
and optimization criteria (yellow). This
determination is implemented through a
decision optimization mechanism (purple),
which relies on recorded sequences of
events or projections based on data and/
or models of the likely outcomes of taking
any of the available actions given the
features of the current state (green).

Trends in Cancer
constraints comprises the first step in the formulation of a decision-making model. Structural
constraints include the typical frequency of appointments, the range of reasonable frequency of
appointments, the types of observations and tests (e.g., clinical examination, specimen collec-
tion, and biopsy) that can be collected and their acceptable frequency ranges, and the full
space of actions: which types of therapies or procedures may be available, including whether
these treatments are authorized for use only at certain times or based on certain patient covari-
ates within the diagnostic class. The optimization criteria include a specification of the general
goal of the decision process: does the treatment have a curative intent?What type of balance be-
tween quality of life and tumor burden reduction do we seek at different stages of treatment? Are
treatment cost and hospital resources major limiting factors? On a more specific level, it can
include preferences for specific treatments based on toxicity, cost, or other factors. In the decision
model, these criteria are captured as payoffs: numerical representations of these preferences that
determine the optimization of decision sequences. Ultimately, when the development of a decision-
makingmodel is complete, simulation studies should be conducted that explore different represen-
tations of optimization criteria. The results of these studies – simulated treatment trajectories under
different payoff assignments – should be presented to healthcare teams for feedback prior to final
model selection.

The central object of the decision-making model is the disease state. The true disease state is not
fully observable: it is comprised of every mechanism, interaction, and process taking place within
the patient. Instead, in defining the state in the model, we select from the set of features that
a decision-maker can access – either through observations or modeling – and on which we
have enough information to generate projections for the likelihood of transitioning from one set
of observed features to another under the actions considered in the decision-making process.
Features should therefore be derived from longitudinal patient observations, although not all
features must be known at every point of observation; for example, biopsies of solid malignancies
might be taken only initially and upon a recurrence. Given the substantial interpatient heterogene-
ity and the complexity of cancer treatments, longitudinal observations should also be horizontally
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integrated, incorporating diverse information from genomics, imaging, and clinical data into the
definition of the disease state (Figure 1). Individual features can range from high-level preidentified
biomarkers to raw inputs, with the caveat that while a large number of features will result in more
patient-specific information, model training will necessitate a larger amount of data. In addition to
greater personalization, horizontal integration can enhance the ability of themodel to generalize to
states not seen in the training data by identifying how distances, or extent of similarity, in this high-
dimensional feature space may correspond to similarity in treatment response. Due to the
crossdisciplinary challenges of data integration, successful construction of a disease state
would strongly benefit from collaboration between researchers familiar with different types of
data and models in bringing these efforts to fruition.

Projections of how a disease state will change under a certain action may be constructed from
raw data, distributions derived from data, or simulations based on models and data. Sequential
Multiple Assignment Randomized Trials (SMARTs) [2,7,17], which consist of multiple sequential
steps of participant randomization to different treatment options, provide a preferred mechanism
for generating the data used for estimating adaptive treatment strategies. SMART or SMART-
precursor designs have been implemented in several cancer studies [18–27], but the design
and use of cancer SMARTs for the purpose of analyzing adaptive treatment strategies has
been limited [28,29]. At present, most data available from cancer patients are acquired either
through more standard clinical trials or outside of trials, and hence our focus here is on this
type of data; for example, retrospective observational studies across multiple longitudinal
datasets or predictive analyses based on specific clinical trial designs.

Complementing Data-Driven Optimization with Mathematical Modeling
An important additional channel for addressing the limitations of observational studies in treat-
ment exploration is afforded by mathematical modeling and simulation of tumor dynamics
[30,31]. Modeling and simulation can be used to identify relevant features for use in optimization,
investigate the ability of a decision-makingmodel to generalize its performance to wide parameter
ranges not seen during training [32], and simulate and explore in silico the effects of potential
treatment sequences prior to clinical trials. For instance, mathematical models of cancer evolution
have suggested dosing schedules aimed at addressing the problem of acquired resistance to
tyrosine kinase inhibitors (TKIs) in epidermal growth factor receptor (EGFR)-mutant non-small
cell lung cancer (NSCLC) patients: high-dose pulses in combination with low-dose continuous
dosing of erlotinib was predicted to maximize the delay of onset of resistance [33], and such
schedules were subsequently tested in a clinical trial [34]. Another modeling approach [35]
recommended against prolonged pre-chemoradiotherapy use of TKIs due to predictions of
reduced efficacy of adjuvant TKI maintenance therapy. Amongmany other examples, mathematical
models have also been used to address the development of resistance during prostate cancer
therapy by capitalizing on longitudinal prostate-specific antigen (PSA) levels: models were used to
support clinical trials [36] of abiraterone adaptive therapy [37] cycles in metastatic prostate cancer,
and to predict individual patient response during intermittent androgen deprivation therapy of
biochemically recurrent prostate cancer to subsequent treatment cycles [38]. Imaging provides
an additional channel for non-invasive longitudinal monitoring of tumor progression, based
on which simulations of different treatment schedules can be constructed for in silico treatment
optimization [39].

Serial collection of genomic patient data can form the basis for predictive modeling of tumor
evolutionary trajectories [40–42]. While the invasiveness of tumor biopsies limits the availability
and frequency of longitudinal genomic datasets in solid malignancies, genomic analysis of cell-
free circulating tumor DNA is emerging as a promising and non-invasive avenue for detecting
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longitudinal tumor changes [43,44] and may present certain advantages, such as the ability to
capture greater spatial heterogeneity, over solid tumor samples, in particular in the detection of
acquired resistance [45]. For instance, a recent approach [40] combined serial sampling and
genomic profiling of cell-free DNA with tumor burden measurements and population dynamics
models for sensitive and resistant cell populations to predict time to treatment failure in a trial
cohort of colorectal cancer patients undergoing treatment with cetuximab.

Deep Reinforcement Learning for Decision Optimization in Cancer
We have described the optimization criteria, structural constraints, selection of features defining
the disease state, and mechanisms for generating projections that underly a dynamic decision-
making model. A key piece of machinery in such a model is the mechanism for determining
how an action should be optimally chosen in each disease state as part of a cohesive strategy
of sequential choices. In general, the methods that have been developed for optimizing treatment
policies span the spectrum from statistical causal inference approaches to computer science-
based reinforcement learning (RL) approaches [11]. In developing cancer treatment strategies,
the variability between molecular, cellular, and physiological data as well as simulation-based
synthetic data brings into question how such diverse sources of information should be combined
in an optimization algorithm (Figure 2). Deep learning approaches have become pervasive in
biomedical applications due to their ability to learn from complex, high-dimensional data such
as a large number of patient covariates or information-dense imaging data; however, in a
decision-making model, deep learning algorithmsmust be used in conjunction with a mechanism
to optimize a sequence of decisions based on the input data. Advances in recent years in the
incorporation of deep neural networks into RL [46,47] – a rapidly evolving area of machine learn-
ing approaches aimed at decision-making and control – provide mechanisms for combining the
advantages and successes of RL and deep learning in training on variable and complex input
data. RL algorithms are based on the idea that optimal decision-making strategies –which action
should be picked in a given state – can be learned through automated feedback (the payoffs, or
‘rewards’, defined through the optimization criteria) on sequences of states directly experienced
during training. The reliance on optimality-based feedback sets RL apart from supervised
learning, in which ground truth labels must be provided, and unsupervised learning, which is
aimed at finding structure in unlabeled data. The potential of deep RL for complex treatment
optimization problems in cancer has been gaining attention in recent years. For instance, deep
RL methods were used [48] to generate automated adaptive radiation protocols for NSCLC
patients by incorporating molecular and imaging patient data into optimization. Another
approach using deep RL was developed [49] for the prevention and treatment of graft versus
host disease in leukemia patients following allogeneic hematopoietic cell transplantation
using longitudinal transplant patient data. Deep RL was used for simulation-based optimization
of clinical trial chemotherapy and radiotherapy administration [50]. Deep RL was also
combined with evolutionary modeling [32] in a simulation-based study of drug resistance
suppression via optimal dosing in bacterial populations.

Despite growing interest, work incorporating deep RL into cancer treatment optimization remains
limited, in part due to the relative novelty of deep RL algorithms and the technical challenges
involved in their implementation. Future work in this field will need to address specific challenges
involved in using RL to learn from observational medical data [51,52], as well as general
challenges involved in the learning of RL policies without interactive data collection during training
[53]. There is a clinical need to address these challenges and apply such approaches to large-
scale integrated patient data, and reciprocal efforts in data acquisition and algorithmic
development between clinical researchers and machine learning practitioners will likely propel
productive work in this area (see Outstanding Questions).
Trends in Cancer, April 2021, Vol. 7, No. 4 297



Outstanding Questions
What should be done to foster
the creation of multidisciplinary task
forces dedicated to decision-making
optimization with expertise in geno-
mics, imaging data, electronic health
records, modeling and simulation,
and algorithmic development?

Can clinical data collection protocols
be modified to emphasize large-scale
collection of non-invasive serial diag-
nostics needed for sequential optimi-
zation studies?

What steps should be taken specifically
in cancer treatment optimization to
address the practical and theoretical
challenges of reinforcement learning
algorithms that use observational
clinical data?

What steps can be taken in the near
future in order to increase the data
available for model training without
compromising patient privacy and
data security? How can we ensure
that the benefits of data-driven treat-
ment optimization extend to smaller
healthcare facilities with limited data
and collaboration resources?

How can decision-making algorithms
best accommodate transparency and
patient and clinician feedback through-
out clinical implementation?

Trends in Cancer
Concluding Remarks
Despite breakthrough advances in precision diagnostics and treatments, the therapeutic decision-
making process in cancer remains highly complex and plagued by a number of challenges. We
have argued here that a systematic, quantitative framework for developing dynamic decision-
making models for cancer diagnoses stands to greatly advance personalized treatments in preci-
sion oncology. By outlining the main ingredients and the development process of suchmodels, we
hope to engender and facilitate collaborations between crossdisciplinary teams of clinicians and
researchers on the formulation and development of dynamic decision-makingmodels in oncology.

A major challenge that such endeavors face is data acquisition. Longitudinal datasets are of
critical importance in optimizing a multistep decision process with potentially long-term conse-
quences. These datasets should also be horizontally integrated across all data types (clinical
examinations, biopsies, blood tests, etc.) collected during treatment. Although longitudinal data
are routinely collected by clinics and hospitals, accessing such datasets for retrospective
research is often fraught with challenges: they can be dispersed between different hospital
data systems, retained by clinical groups using them for specific studies, present data curation
challenges [54], or are otherwise not available in a form that makes it feasible with limited re-
sources to longitudinally and horizontally combine and curate the treatment records of a patient
cohort with a particular diagnosis. Decision-making collaborations in smaller healthcare facilities
are further limited by small sample sizes.

Federated learning, a paradigm for collaboratively training models on data held securely in individual
institutions, has been gaining attention in healthcare informatics as a way to address the need for
large and diverse datasets while maintaining the security and privacy of patient information
[55,56]. Until such efforts become widely implemented, data sharing agreements between
healthcare systems with a streamlined, common data access application and approval process
for health researchers can provide a much-needed expansion of the data available for health
informatics and create increased incentives to standardize data collection across systems. When
possible, prospective studies can be designed in collaboration with decision algorithm developers
to implement an appropriate data recording scheme throughout the study. The focus of these
studies should be on keeping clear longitudinal records – time-resolved sequences of clinical
records and tests – of patients who are tracked as part of the study. Such data collection and
organization would significantly facilitate subsequent work in treatment optimization; like retrospec-
tive studies, a large collaboration between multiple clinics would result in a larger dataset for the
optimization analysis.

Ultimately, one of the greatest challenges in constructing decision-making models for cancer
involves the formation of interdisciplinary collaborations necessary for the development and
implementation of a decision-making model. The end-users of such models – clinicians – must
be involved in the process of their development to ensure that a model is trusted and
appropriately integrated in the clinical workflow [57]. For individual patients to fully benefit from
the data and diagnostics available today, sequential decision-driven analysis that is
comprehensive, integrative, and that leverages both data-driven and mathematical modeling
approaches provides unparalleled opportunities for advancing treatment optimization efforts
across the landscape of precision oncology.
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