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Abstract

The identification of optimal drug administration schedules
to battle the emergence of resistance is a major challenge in
cancer research. The existence of a multitude of resistance
mechanisms necessitates administering drugs in combination,
significantly complicating the endeavor of predicting the evo-
lutionary dynamics of cancers and optimal intervention strat-
egies. A thorough understanding of the important determinants
of cancer evolution under combination therapies is therefore
crucial for correctly predicting treatment outcomes. Here we
developed the first computational strategy to explore pharma-
cokinetic and drug interaction effects in evolutionary models of
cancer progression, a crucial step towards making clinically
relevant predictions. We found that incorporating these phe-
nomena into our multiscale stochastic modeling framework
significantly changes the optimum drug administration sche-
dules identified, often predicting nonintuitive strategies for

combination therapies. We applied our approach to an ongo-
ing phase Ib clinical trial (TATTON) administering AZD9291
and selumetinib to EGFR-mutant lung cancer patients. Our
results suggest that the schedules used in the three trial arms
have almost identical efficacies, but slight modifications in the
dosing frequencies of the two drugs can significantly increase
tumor cell eradication. Interestingly, we also predict that drug
concentrations lower than the MTD are as efficacious, suggest-
ing that lowering the total amount of drug administered could
lower toxicities while not compromising on the effectiveness of
the drugs. Our approach highlights the fact that quantitative
knowledge of pharmacokinetic, drug interaction, and evolu-
tionary processes is essential for identifying best intervention
strategies. Our method is applicable to diverse cancer and
treatment types and allows for a rational design of clinical
trials. Cancer Res; 77(14); 3908–21. �2017 AACR.

Introduction
As cancer arises due to a process of somatic Darwinian

evolution (1–3), researchers have to grapple with the inexor-
able reality of development of resistance to anticancer drugs
(4–6). As heterogeneous populations of cancer cells evolve in
the presence of drugs, chance mutations may arise that lead
to clones with greater proliferative abilities, or initially unde-
tectable drug-resistant clones can increase in frequency. This
evolutionary process allows cancer cells that are fitter in an
environment of drugs to evade drug action, eventually leading
to treatment failure (5–8). For example, in non–small cell lung
cancer (NSCLC) caused by activating mutations in the EGFR,
continuous exposure to tyrosine kinase inhibitors like gefitinib
and erlotinib invariably selects for mutant clones (9–11). The
expansion of these clones leads to treatment failure and
necessitates the development of third-generation inhibitors
able to inhibit cells driven by specific resistance mechanisms
(12, 13).

Many drugs are clinically administered at or close to the MTD
using a continuous dosing strategy, with the aim of eradicating
the maximum possible number of cancer cells. For example,
the clinical standard of care for the drug erlotinib is at the MTD
of 150 mg per day administered without any treatment breaks
(14, 15). However, theoretical considerations and in vitro
experiments suggest the intriguing possibility of significantly
increasing the number of cancer cells killed and prolonging the
time to resistance, by simply changing the drug dosing strategy
(16, 17). Moving beyond single resistance mechanisms and
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Major Findings
Drugs used in cancer treatment exhibit varied temporal

dynamics of absorption and clearance, summarized by their
pharmacokinetic parameters. Typically, these dynamics are
neglected in evolutionary models of cancer progression under
combination therapy. By developing a computational frame-
work to incorporate pharmacokinetic and drug interaction
effects, we showed that the complex interplay of dynamics of
drugs and various cancer clones significantly affect dosing
strategies. Applied to an ongoing phase Ib clinical trial, our
framework predicted efficacies of different dosing schedules
and suggested new strategies to significantly improve cancer
cell eradication and reduce associated toxicities.
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Quick Guide to Equations and Assumptions

The Expected Number of Cancer Cells in Different Clones after Treatment Initiation

We model tumor evolution as a multitype branching process (Fig. 1A). After the initiation of combination therapy,
the number of cancer cells evolve according to their individual birth and death rates, which are themselves modified as
a function of time by the changing drug concentrations (Fig. 1B–E; see Materials and Methods and Supplementary
Data for details). As outlined in the Supplementary Data, the expected number of cells at any time after treatment initiation
hniðtÞi is given by
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where i ¼ 0 denotes the original cell type containing all (epi)genetic alterations necessary for conferring the cancer pheno-
type and i ¼ 1; . . . ;N denotes the N different resistant cell types. The cell-intrinsic birth rates bi are time-dependent as
the drug concentration may modulate the rate of cell division. In the simplest case, we consider constant death rates di, but
the above expressions are equally valid for time-dependent death rates. The mutation rates are denoted by ui, and
Ni represents the number of preexisting cells of type i at the time of treatment initiation (Fig. 1F). The quantity

P
z uz

denotes a sum over the mutation rates of all N-resistant types. The above expression is derived under the assumption that
the waiting time between events (birth or death of cells in various clones) is distributed exponentially, thus amounting to

an assumption of Markovian dynamics (18). The expected total number of cells
Pi¼N

i¼0 hniðtÞi is calculated to compare the
efficacies of six dosing schedules (Supplementary Fig. S1) as functions of time. The expressions above cannot be solved
analytically for realistic pharmacokinetic profiles, and hence have to be solved numerically (see Supplementary Fig. S2 for
comparisons with exact simulations). We also derived expressions for the expected number of cancer cells when considering
cross-resistance to drugs (Supplementary Data).

The Probability of Resistance

If at the time of treatment initiation there exist no mutant cells of any type (Fig. 1G), we can estimate the probability of
such a mutation arising later as a function of time. As outlined in the Supplementary Data, the probability that there exists at
least one resistant cell of any type (i ¼ 1; . . . ;N) at time T after treatment initiation is given by
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where Pext;iðt;TÞ is the probability (19) that a clone generated from a single resistant cell of type i produced at time t goes
extinct by time T.

The Model Incorporating Drug Pharmacokinetics

To describe the time evolution of the drug concentrations in vivo, we use the following simple exponential model

CðtÞ ¼ Cmax e�kt ;

where CðtÞ is the concentration of the drug at time t, Cmax is the maximum concentration reached after a single drug dose,
and k is the clearance rate of the drug. This model well describes the pharmacokinetics of many drugs, especially those that
are absorbed on much faster timescales as compared with their clearance times. For such drugs, the absorption kinetics can
be neglected and an exponential clearance is a suitable description of the kinetics. Throughout the text, we will refer to Cmax

and k as pharmacokinetic or pharmacokinetic parameters.
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monotherapies, it has now become evident that a multitude of
resistance mechanisms may emerge in any particular cancer
type (20–23). This necessitates the use of a combination of
drugs, making the task of searching for an optimal drug dosing
strategy even more challenging than the single drug situation.
This realization has given rise to many quantitative models of
cancer evolution to determine the effects of various combina-
tions and their administration strategies (8, 17, 24–33). In
particular, a number of these studies have explored the idea that
general principles may exist for optimally dosing drugs in
combination. For example, in a series of studies (24, 34),
Goldie and Coldman proposed that an alternating non-
cross-resistant chemotherapy regimen is optimal when using
two drugs, which was then extended by Chen and colleagues to
the case of asymmetric drugs with different efficacies (32).
Building on the Goldie-Coldman framework, Day introduced
a "worst-drug rule" (29) that proposed administering the less
effective drug earlier or more frequently than other drugs in a
combination therapy regimen. This rule was later extended to
the case of cross-resistant drugs by Katouli and Komarova (30).
Lavi and colleagues used a structured population approach to
explore the role of heterogeneity and density dependence in
multidrug resistance (35), based on previous work by Lorz and
others, which treats resistance as a continuous physiologic
variable (36). Bozic and colleagues developed a multitype
branching process model of cancer evolution and predicted
that simultaneous therapy with two drugs is a better alternative
than sequential therapy (27).

Although these models for combination therapy have
become more sophisticated over time and approach the chal-
lenging problem of drug resistance from various viewpoints,
none of them take into account the crucial aspect of time
evolution of the drugs themselves. These pharmacokinetic

parameters (37) determine how fast drugs are absorbed, meta-
bolized, and cleared from an in vivo system (Fig. 1B; Materials
and Methods). We have previously shown that accounting for
such processes is important for determining optimal dosing
strategies in the context of single-agent therapies (2, 17, 38). As
the drug concentrations in the blood plasma may significantly
influence tumor response, accounting for pharmacokinetic is
crucial for predictions of clinically relevant dosing schedules. In
addition, when multiple drugs are involved in the treatment
strategy, the drugs may interact additively, synergistically, or
antagonistically (39–41). Although the importance of drug
interactions has been well established in classical methods of
drug development and dosing (42), very few evolutionary
models have explored its role in shaping the dynamics of
cancer. Exceptions exist, but largely in the field of bacterial
antibiotic resistance (43).

Here we developed a comprehensive, multiscale compu-
tational framework to investigate the effects of drug pharma-
cokinetics and concentration-dependent drug interactions
(see Fig. 1 and Materials and Methods for the basic model),
as well as their variability across patients, on the identification
of optimum multidrug dosing strategies. With the introduc-
tion of drug kinetics, evolutionary parameters like the birth/
death rates of various cancer clones become time-dependent
(Fig. 1C–E), a significant departure from prevalent modeling
approaches of drug combinations. We developed analytic
solutions for the expected number of cells in each clone and
the probability of resistance, for arbitrarily complex temporal
profiles of the drugs. Using this framework, we showed that the
best dosing strategy crucially depends on patient variability in
pharmacokinetic and evolutionary parameters of clonal
growth as well as concentration-dependent synergistic versus
antagonistic effects among drugs. Our results also highlight a

A Simple Model for Drug Interactions

We developed a simple model for the interaction of two drugs when there are two resistant clones (N ¼ 2). Both drugs are
considered to decrease the birth rates of the sensitive clone (type-0 cells), while each resistant clone is sensitive to either one of
the drugs (Fig. 1A). The concentrations of the two drugs A and B are denoted by CAðtÞ and CBðtÞ. The total concentration of drug
at any time is CTðtÞ ¼ CAðtÞ þ CBðtÞ. We first defined a variable Q, which is the product of the two drug concentrations:
QðtÞ ¼ CAðtÞCBðtÞ. We then defined a drug interaction parameter a as follows:

a tð Þ ¼ 1þ S Q tð Þ
1þQ tð Þ ;

where S, the strength of the drug interactions, is a constant such that S >� 1. As Q is positive at any time t, 0<a<1þ S.
Finally, we coupled a and the drug concentrations to the growth rates of the various clones as

b0 tð Þ ¼ b00 � a CT tð Þ; b1 tð Þ ¼ b10 tð Þ � CA tð Þ; b2 tð Þ ¼ b20 � CB tð Þ;

where b00; b10; b20 are the birth rates in the absence of any drug. Coupling a to CT allows for synergy among the two drugs if
a >1, antagonism if 0<a<1, and purely additive interactions if a ¼ 1. The strength constant S controls the degree of synergy or
antagonism: for S � 0, the drugs are strongly synergistic while for �1 < S <0, the drugs are antagonistic. When S ¼ 0, we
have a ¼ 1, describing purely additive interactions. The dependence of a on Q as described above introduces concentration
dependence to the drug interactions: for a fixed total drug concentration CT and fixed S > 0, Q is close to zero if either one of
the two drugs is present at a very low concentration and hence a � 1. On the other hand, for the same fixed values of CT and S,
if both drugs are present at moderate concentrations, Q is greater than zero and a >1.
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number of counterintuitive scenarios of combination therapy
strategies, which occur as a result of the complex interplay
between the pharmacokinetic parameters, population dynam-
ics parameters, and toxicity constraints. Finally, as a demon-
stration of the applicability of our method in clinical settings,
we analyzed the relative efficacies of various dosing strategies
currently evaluated in TATTON, an ongoing phase Ib clinical
trial of EGFR-mutant lung cancer patients (44). We focused on
two drugs, AZD9291 and selumetinib, and identified several
easily implementable changes to the current dosing schedules
that would lead to a significant increase in cancer cell killing as
well as reduced toxicities. Our study highlights the need to
account for drug pharmacokinetics and drug interactions,
without which clinical use of drugs in combination might be
far from optimal.

Materials and Methods
To quantitatively describe the clonal evolution of cancer cell

populations and their responses to therapeutic intervention over
time, we developed a novel multiscale computational framework
(Fig. 1A; Supplementary Data). Our approach is based on a
stochastic model known as a multitype branching process and
considers an arbitrarily large number of cell types. Theoriginal cell
type, denoted by the index i ¼ 0, contains all (epi)genetic altera-
tions necessary for conferring the cancer phenotype but is sensi-
tive to all drugs considered.Cells of this typedivide anddie at rates
b0(t) and d0, respectively; in our model, the birth rate is a function
of time as it is determined by the drug concentrations, whichmay
themselves vary over time. Death rates can also be a function of
timebut are kept constant here for ease of explanation. Type0 cells
may accumulate different mutations at rate ui per cell division,
thus generating new clones harboring specific resistance mechan-
isms, which are again characterized by their birth, death and
mutation rates bi(t), di, and ui (Fig. 1A). The birth and death rates
can be roughly approximated as the inverse of the average time for
cells to undergo the next birth and death event, respectively, from
the time they are born. These quantities therefore cannot become
negative. However, the difference between the two can become
negative, for instancewhen there is a high concentration of drug in
the system and the total cell number decreases with time. The
various clones respond to a particular drug each, but are resistant
to theother drugs. Eachof these cell types can then againmutate to
accumulate further alterations, giving rise to cross-resistance
(Supplementary Data). This evolutionary approach is coupled
with a pharmacokineticmodel to form amultiscale description of
drug metabolism and cancer evolution (Fig. 1B–E; Supplemen-
tary Data). Figure 1C–E depict how the birth rates of individual
cell types change over time in response to a particular two-drug
regimen, as shown in Fig. 1B.Our quantitative approach describes
both situations in which there is preexisting resistance, such that
the tumor at diagnosis consists ofNi cells of each type (Fig. 1F), or
no preexisting resistance, such that new cell types arise over time
according to the evolutionarymodel specified above (Fig. 1G).We
derived analytic solutions for the expected number of cells of any
type as a function of time, for an arbitrary number of cell types,
mutation rates, and cross-resistance to multiple drugs (Quick
Guide to Equations andAssumptions; SupplementaryData), thus
allowing rapid predictions and optimizations without the need
for detailed stochastic simulations of the evolutionary process.
The expected number of cells at the end of a dosing period was

used to compare the efficacies of different drug dosing schedules
in allfigures, exceptwhere specificallymentioned.Wealsoderived
analytic results for the probability that there exists at least one
resistant cell of any type (i ¼ 1; . . . ;N) at time T after treatment
initiation (Supplementary Data). For all our analyses, we com-
pared the efficacies of six different dosing schedules of two drugs
(Supplementary Fig. S1). The efficacy of a particular dosing
schedulewas judged either by the expected number of total tumor
cells remaining or the probability of resistance development after
a certain time. Finally, as these analytic expressions need to be
evaluated numerically when time-dependent drug concentrations
are considered, we checked our numerical procedures against
exact computer simulations (details in Supplementary data; Sup-
plementary Fig. S2).

When several drugs are administered at the same time, they
may interact (39) such that the combined inhibitory effect on
their targets may be more (i.e., synergism) or less (i.e., antag-
onism) than the sum of their individual effects. This phenom-
enon has been investigated, generating different methods to
quantitatively characterize additivity, synergy, and antagonism
(40, 41). However, drug interactions are usually not studied in
conjunction with evolutionary models of cancer progression,
although some simple models have been explored in the realm
of bacterial drug resistance (43). Here, we developed a simple
parametric model of drug interactions where "additivity" and
"synergy/antagonism" are defined in the sense of the Loewe
additivity model (40, 41). This approach allowed us to incor-
porate drug interactions into our evolutionary framework and
explore the combined effects of time-dependent concentration
changes and drug interactions on the efficacy of multidrug
dosing schedules.

We defined a drug interaction or synergy factor aðCA; CB; SÞ,
which is a function of the individual drug concentrations
and a single "strength" parameter S (Supplementary Data).
The birth rate of sensitive cells is then coupled to a and the
total drug concentration, such that a ¼ 1 defines additivity,
a > 1 represents synergistic drug interactions and 0 < a < 1
gives rise to antagonism (SI).

Results
Variability in pharmacokinetic parameters can significantly
influence outcomes

To quantitatively explore the effects of tumor cell evolution,
pharmacokinetics, and drug interactions, we explored six indi-
vidual treatment schedules of two anticancer agents (Supplemen-
tary Fig. S1); these serve as illustrative examples while ourmethod
is applicable to any dosing schedule. We included simultaneous
dosing schemes, high-dose/low-frequency schemes, alternating
doses with the drug administration times interchanged and also a
low-dose continuous (daily dose) strategy. For ease of comparing
the outcomes of the different schemes, we maintained two con-
straints: (i) a constant total concentration of administered drug
over the dosing period and (ii) a constant maximum concentra-
tion allowed in one dose.

We then investigated the effects of pharmacokinetic variability
by comparing combination treatment strategies using two drugs
with fast clearance times (Fig. 2A–C), two drugs with slow
clearance times (Fig. 2D–F), and one of each (Fig. 2G–I). The
drug concentrations over time for dosing schedule (ii) are shown
in Fig. 2A, D, and G and the resulting birth rates of sensitive cells
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are displayed in Fig. 2B, E, and H. Although each scenario
investigates the same dosing strategy, the difference in pharma-
cokinetic parameters leads to a big difference in the temporal

trajectories of drug concentrations, which in turn affect the time
dependence of the birth rates. Ultimately these differences in
pharmacokinetic parameters cause changes in thedosing schedule

Figure 1.

Model of cancer evolution accounting for
drug pharmacokinetics. A, The sensitive
cell (type 0, red) proliferates with rate b0
and can mutate to give two different cell
types, type 2 (green) and 3 (purple). The
type 0 cell is sensitive to both drugs A and
Bwhile the other two types are sensitive to
either drug A or drug B. B, The drug
concentrations change over time,
governed by the pharmacokinetic
parameters of the drugs. The dosing
regimen shown here corresponds to
regimen (ii) (see Supplementary Data for
details). C–E, The varying drug
concentrations inB cause the birth rates of
all the cancer cell types to be functions
of time. F andG, Preexisting resistant cells
(F) as well as de novo mutations (G)
coming up during treatment can be
handled using our framework.
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predicted to lead to optimum efficacy among the six different
strategies, as shown in Fig. 2C, F, and I.

As is evident from Fig. 2C, when both drugs are metabolized
rapidly compared with the frequency of dose administration,
there is a negligible difference between the dosing strategies,
with the best strategy (iv) better than the worst (vi) by only
0.07%. In stark contrast, if at least one of the drugs accumulates
due to slow clearance (Fig. 2F and I), there is a 25%–30%
difference in outcomes of different strategies. Strategies (iv) and
(v), which are both high-dose alternating schedules, reduce
tumor cell numbers about 25% more than the low-dose con-
tinuous strategy (vi; Fig. 2F). However, with a different set of
pharmacokinetic parameters, (v) is no longer a good dosing
strategy and proves to be almost 30% worse than the optimum
(Fig. 2I). Type 2 cells have the largest net proliferation rate
under zero drug conditions. Drug B targets type 2 and type 0
cells, and hence, when it has a fast clearance rate as in Fig. 2G,
dosing it first [as in schedule (iii) and (v)] amounts to a period
of time with very little drug in the system, thereby allowing all
types of cells to proliferate at essentially their zero drug rates

and subsequently poor behavior of schedule (v) (Fig. 2I). When
the order of the two drugs is switched, as in schedule (iv), drug
A builds up, leading to a reduction of type 0 and type 1 cells
and good performance of this schedule (Fig. 2I). If both drugs
have slow clearance rates, however, as shown in Fig. 2D, the
situation is symmetrical and both schedules (iv) and (v) work
equally well (Fig. 2F). Finally, the reason schedule (ii) does
not work as well as (iv) even though drug A is dosed first in
both schedules (Fig. 2F and I) is that the lower concentration
in each administered dose in (ii) allows less accumulation
of drug as compared with (iv), even though the frequency of
dosing in (ii) is higher than that in (iv). For essentially the
same reason, schedules (ii) and (iii) do not work as well as
schedule (i) in Fig. 2F, as both drugs have slow clearance rates
in this example, simultaneous dosing in (i) allows the plasma
drug concentration to increase after every dose administration
as compared with (ii) and (iii), thus leading to greater cancer
cell eradication.

Notwithstanding these large variations in drug pharma-
cokinetics, Fig. 2C, F, and I shows that it may be possible that

Figure 2.

Effect of drug pharmacokinetics on the optimal schedule. The same dosing strategy (ii) shown in Supplementary Fig. S1 is used in the three columns
A–C, D–F, and G–I. Results in each column were generated using three different parametrizations of the drug pharmacokinetics, as shown in A, D, and G.
The different pharmacokinetic parameters lead to very different time profiles for the birth rate of sensitive cells, shown in B, E, and H. Finally, C, F, and I show
comparisons of the outcomes of six different dosing schedules. The best dose (least expected number of cancer cells at T ¼ 20 weeks) has the highest bar,
while the worst dose has zero height. Error bars were generated by varying b00 by 2% of its original value of 0.185. Parameters used are as follows:

b00 ¼ b10 ¼ b20 ¼ 0:185, d0 ¼ 0.14, d1 ¼ 0.2, d2 ¼ 0.01, u1 ¼ u2 ¼ 0.001, N0 ¼ 5 � 107; N1 ¼ N2 ¼ 104 . For the first column, the drug clearance rates
are kA ¼ kB¼ 3 per week, for the second, they are kA ¼ kB¼ 0.1 per week, and for the final column, they are kA¼ 0.1, kB¼ 3 per week. The drugs are purely
additive, hence S ¼ 0 and a ¼ 1.
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a particular schedule is robustly the best way to administer drug
combinations. Our analyses uncovered that schedule (iv) is
optimum in all three scenarios, which highlights the crucial
role evolutionary models could play in selecting optimum
dosing strategies, particularly in the presence of interpatient
heterogeneity in pharmacokinetic parameters.

To obtain more general insights regarding the role of phar-
macokinetics in combination therapies, we then explored other
parameter combinations and model assumptions for the same
set of six dosing schedules tested above (Supplementary Figs.
S3–S6). We explored a number of parameter sets within two
model choices: different birth rates of the various clones
(Supplementary Fig. S3A and S3B), different death rates (Sup-
plementary Fig. S3C and S3D), different clearance rates of the
two drugs (Supplementary Fig. S3E and S3F) for a model in
which drugs decrease birth rates (Supplementary Fig. S3A, S3C,
and S3E) as well as a model where drugs increase death rates
(Supplementary Fig. S3B, S3D, and S3F). We also explored
scenarios with different mutation rates of the two resistant
types (Supplementary Fig. S4), minimizing the probability of
resistance development (as opposed to the expected tumor
size) when preexisting mutant cells do not exist at time of
therapy initiation (Supplementary Fig. S5) and a model that
allows for cross resistance to both drugs (Supplementary
Fig. S6). These calculations highlight a universal feature that
holds irrespective of the details of the parameter set being used:
when at least one of the two drugs has a slow clearance rate
such that it accumulates over time in the various dosing
schedules being tested, we can expect to see significant differ-
ences among the different schedules and hence searching for
the optimal schedule is a worthwhile endeavor. The specifics of
the particular cell types under investigation and the drugs
being administered then determine which treatment strategy
results in optimal cancer cell eradication. On the other hand, if
both drugs have fast clearance rates and cannot be induced
to accumulate over time in the dosing regimens, then there
will be only tiny differences in the outcomes of these various
dosing schemes. Our work therefore provides a general prin-
ciple regarding when we can expect different dosing schemes to
lead to significantly different outcomes in the two-drug com-
bination therapy scenario.

Drug interaction effects influence treatment efficacy
We then used our quantitative description of drug interac-

tions (Supplementary Data) within our multiscale framework
to investigate the effects of additivity (Fig. 3A–E) versus synergy
(Fig. 3F–J) between two drugs on the efficacy of different dosing
schedules. Figure 3A and F show the three-dimensional surface
of drug inhibition in the additive and synergistic scenarios,
respectively. To further highlight the nature of the drug
interactions, Fig. 3B and G depict the contour lines (isobolo-
grams) of 20%, 50%, and 80% inhibition. The curvature of the
contours in Fig. 3A and B are well known signatures of addi-
tivity and synergy, respectively, within the framework of the
Loewe model (40, 41). Figure 3C and H show how the synergy
factor a behaves under additive and synergistic scenarios,
while Fig. 3D and I display birth rates of sensitive cells in
response to treatment regimen (ii). Finally, the outcomes of the
six dosing schedules under the different drug interaction sce-
narios are shown in Fig. 3E and J. For both figures, the initial
condition used was N0 ¼ 5 � 107; N1 ¼ N2 ¼ 104, represent-

ing a case of preexisting resistant clones. The number of tumor
cells decreases with time to varying degrees depending on the
dose and drug interaction. In Fig. 3E, the number of tumor
cells remaining after 20 weeks of the best drug schedules, (iv)
and (v), is approximately 9:2 � 106, which is 25% less than the
worst schedule (vi). Thus, a high-dose alternating strategy
works best under this scenario of additive drugs (see next
section and Fig. 4 for a detailed analysis of the underlying
reason). In contrast, when the drugs are highly synergistic with
S ¼ 1,000, Fig. 3J shows that the high-dose low-frequency
simultaneous scheme (i) works 31% better than the alternating
strategies (iv) and (v). This result is in agreement with the
intuitive expectation that strongly synergistic drugs work best
when dosed simultaneously.

Interestingly, our analysis demonstrates that between the
two simultaneous strategies, (i) and (vi), the high-dose low-
frequency schedule (i) works approximately 25% better than
the low-dose continuous strategy (vi). As the synergy factor a is
larger for higher concentrations of drugs (Supplementary
Data), the high-dose schedule allows a to build up to larger
values faster (Fig. 3H) in comparison with the low-dose
continuous schedule. As a result, the birth rate of the sensitive
cells decreases faster in regimen (i), leading to greater tumor
cell death.

Simultaneous administration of drugs may not be optimum
even when multiple resistant clones preexist at the time of
therapy initiation

Finally, intuition suggests that when different resistant clones
exist at the time of treatment initiation, the best dosing strategy
should be to use all drugs simultaneously instead of alternating
them. However, as the outcome of the drug treatment is a
complex function of many factors, the birth and death rates of
individual clones, the pharmacokinetics of the drugs, the drug
interactions as well as the toxicity constraints imposed on the
dosing schedules, only detailed evolutionary analyses can pre-
dict the optimum dosing schedule. This expectation is highlight-
ed by the surprising fact that the high-dose alternating strategy
(iv) was optimum in Fig. 3E, significantly surpassing the low-
dose, continuous simultaneous strategy (vi) and also the other
simultaneous strategy (i). Note that the initial conditions were
N0 ¼ 5 � 107; N1 ¼ N2 ¼ 104 cells, which models preexis-
tence of both types of resistant clones at the time of treatment
initiation.

We now dissect the reasons for the surprising optimality of
dosing schedule (iv). Figure 4A–Cdepict the concentrations of the
two drugs as well as the total drug over the dosing period in
schedules (i), (iv), and (vi), respectively. Although the total
amount of drug administered is identical in each of the three
schedules over the entire period of dosing, the higher concentra-
tion pulses in schedule (iv) (pink curve in Fig. 4B) initially allow
for a more rapid build-up of the total drug concentration as
compared with schedule (vi) (yellow curve in Fig. 4C). As a
consequence, the net proliferation rate of type 0 cells under
schedule (iv) (pink curve in Fig. 4D) becomes negative, implying
that the number of these cells starts to reduce. On the other hand,
the net proliferation rate of type 0 cells under schedule (vi)
(yellow curve in Fig. 4D) initially remains positive (although
smaller than the zero drug scenario), implying that these cells still
increase in number albeit at a slower rate. As time progresses and
the lower dosing frequency of schedule (iv) causes greater
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variability in drug concentration as compared with schedule (vi),
the net proliferation rate of type 0 cells under the former regimen
transiently becomes larger than the net proliferation rate under
the latter regimen (pink and yellow curves in Fig. 4D). Neverthe-
less, the net proliferation rate remains more negative under
regimen (iv) for longer periods of time, as is evident from a
comparison of the pink and yellow curves in Fig. 4D. This
argument applies to type 1 cells as well (Fig. 4E), but not type 2
(Fig. 4F, see below). This reason ultimately leads to a significantly
smaller number of type 0 and type 1 cells at the end of the dosing
period under schedule (iv) as compared with schedule (vi)
(Fig. 4G and H, respectively).

A similar argument applies to a comparison of schedules (iv)
and (i), although in this case the two schedules are much closer
to each other as can be seen from the pink and blue curves in
Fig. 4D and pink and blue bars in Fig. 4G. As mentioned above,
this argument does not hold for the type 2 cells: schedule (i)
does marginally better than (iv) in terms of cell kill, as the
latter involves starting the dosing with drug A (Supplementary
Fig. S1), which does not affect type 2 cells. This results in an ini-
tial period when the net proliferation rate of type 2 cells is

significantly smaller when using schedule (i) (blue curve in
Fig. 4F) as compared with schedule (iv) (pink curve in Fig. 4F),
leading to amarginally lower number of type-2 cells after the end
of the dosing period (Fig. 4I). In all, as type 0 and type 1 cells
dominate the total tumor population, the high-dose alternat-
ing strategy (iv) works best for reducing the total tumor burden.
This nonintuitive result would not have been easily deducible
without a thorough mathematical treatment.

An in silico clinical trial characterizes effects of interpatient
pharmacokinetic variability

To explore the effects of heterogeneity among patient
pharmacokinetic parameters, we then used our framework to
calculate the expected number of cancer cells as a function of
time for a cohort of 20 patients with drug clearance rates
varying between 0.1 and 0.3 per week (6 of the 20 patient
tumor trajectories are shown in Fig. 5A), for the dosing
schedule (i) shown in Supplementary Fig. S1. In each trajec-
tory, there initially are 5 � 107 sensitive cells and 104cells of
each resistant type, thus mimicking conditions of preexisting
resistance. Note that while the different cell types have

Figure 3.

The optimal dosing scheme depends on drug interactions. A–E show purely additive interactions while F–J show synergistic interactions. A and F show
3D plots of drug inhibition as functions of the two drug concentrations. B and G show isobolograms (contours of equal drug inhibition) generated from the
3D surfaces. The curvature of the isobolograms define additive and synergistic interactions, respectively, according to the Loewe definition of drug
interactions. C, For drugs that are purely additive, a ¼ 1 for all concentrations of the drugs (Supplementary Data). H, For drugs that are synergistic,
a>1 and are concentration dependent as described by our model (Supplementary Data). E and J show the time evolution of a tumor starting out with
approximately 50 million cells under the six different dosing schemes (i)–(vi). All parameters are identical, except S: S ¼ 0 in A–E while S ¼ 1; 000 in F–J.
Schedule (iv) works best in E while schedule I is best in J, representing two very different ways of dosing two drugs. Parameters used are as follows:

b00 ¼ b10 ¼ b20 ¼ 0:185, d0 ¼ 0.14, d1 ¼ d2 ¼ 0.1, u1¼0.01, u2 ¼ 0.0001, kA ¼ kB ¼ 0.1 per week, N0 ¼ 5 � 107; N1 ¼ N2 ¼ 104 . For the first column, S ¼ 0
implies purely additive drug interactions, while for the second column, S ¼ 1,000 indicates strongly synergistic drug interactions. Dosing schedule (ii) was
used to generate C, D, H, and I.
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different birth/death kinetics (Fig. 5), they remain identical
between different patients. Only the clearance rates of the
drugs are allowed to vary from patient to patient, which
therefore drives the observed interpatient heterogeneity in
treatment response. As drugs A and B are administered (Fig.
1A), the tumor rapidly shrinks as sensitive cells decrease in
number. However, the selection pressure exerted by the drugs
leads to fitness advantages for the resistant clones, thus causing
a rebound in each trajectory. Fig. 5B displays the distribution
of time to progression for the cohort, highlighting the vari-
ability in patient responses as a result of heterogeneity in
pharmacokinetic parameters.

Finally, an example scenario of administering an identical
schedule of four drugs, A–D (Fig. 5C and D), exemplifies the
general nature of our approach. As there is increased interest in the
clinic in increasing the number of drugs in combination
therapies, Fig. 5C and D is an illustration of how our model can
be extended to such cases. Figure 5D displays the clonal size
composition of the tumors after 20 weeks of drug administration,
for two pharmacokinetic scenarios: all drugs have a clearance rate
of (i) 0.1 (PK-1) or (ii) 0.2 per week (PK-2). As evident in both

scenarios, the resistant clones undergo rapid clonal expansion and
by the end of 20 weeks reach numbers comparable with the
sensitive clone, causing a tumor relapse. Although the dosing
schedule is the same for both scenarios, the faster rate of drug
clearance in scenario (ii) leads to a poorer outcome in terms of
tumor volume.

Identification of superior dosing strategies for the ongoing
TATTON clinical trial

Having established our general computational framework in
the previous sections, we now demonstrate how it can be used
to predict outcomes of dosing regimens using clinical and
preclinical data on two drugs, AZD9291 and selumetinib, for
the treatment of NSCLC. AZD9291 is a third-generation EGFR
inhibitor that is effective against both cells carrying the EGFR
tyrosine kinase inhibitor (TKI)-sensitizing alterations as well
as cells harboring the EGFR T790M–resistant mutation
(45, 46). Compared with other EGFR TKIs, AZD9291 was
shown to have significantly less toxicity (47), and hence was
combined with the MEK inhibitor selumetinib to decrease the
chance of development of resistance. Selumetinib reduces cell

Figure 4.

Detailed analysis of drug and tumor cell population dynamics under three treatment regimens from Fig. 3E — (i), (iv), and (vi). A–C, pharmacokinetics
of drugs A, B, and total drug for treatment schedules (i), (iv), and (vi), respectively. As the schedules (iv) and (vi) involve simultaneous dosing of
drugs A and B, their curves overlap and the blue curve representing the time course of drug A is not visible. D–F, Temporal evolution of the net
proliferation rates of type 0, type 1, and type 2 cells, respectively. Blue curves represent dosing schedule (i), pink schedule (iv), and yellow schedule (vi).
G–I, Number of type 0, type 1, type 2 cells remaining after T ¼ 20 weeks, respectively. The color code is as described for D–F. Parameters used are
identical to Fig. 3E.
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proliferation by inhibiting the RAS–MAPK pathway (46),
amplification of which is a frequent cause of resistance in
NSCLC cell lines. Here, we combined growth kinetics data
from in vitro cell culture experiments and pharmacokinetic data
from clinical trials to predict outcomes of the various dosing
schedules tested in TATTON, "A Multi-arm, Phase Ib, Open-
Label, Multicentre Study to Assess the Safety, Tolerability,
Pharmacokinetics and Preliminary Anti-tumour Activity of
AZD9291 in Combination With Ascending Doses of Novel
Therapeutics in Patients With EGFRmþ Advanced NSCLC Who
Have Progressed Following Therapy With an EGFR TKI," a
currently ongoing phase Ib clinical trial (44). Our model
suggests that simple modifications to the currently employed
dosing strategies have the potential to significantly improve
clinical outcomes.

We first used data from the PC9 and NCI-H1975 NSCLC cell
lines (Fig. 4A and B in Eberlein and colleagues; ref. 46) to
parameterize growth and death rates of cell types 0, 1, and 2 in
the presence and absence of drugs. The method is given
in detail in the Supplementary Data and the results are shown
in Fig. 6A and B. Type 0 cells proliferate significantly faster

than the other cell types when no drug is present (Fig. 6A).
The net growth rates of type 0 and type 1 cells were also
quantitatively consistent with the results of a previous study
(17). As the earlier study had also characterized the birth and
death rates of these two cell types separately, we used the
same values for the death rates as estimated in (17)
(d0 ¼ 0:12 day�1; d1 ¼ 0:06 day�1) to calculate birth rates of
the various clones. Under the influence of 160 nmol/L
AZD9291, type 0 cells die faster than they grow, and hence
have a net negative growth rate (Supplementary Fig. S7). The
net growth of type 1 cells slows down when treated with
AZD9291, but remains positive (Supplementary Fig. S7).
On the other hand, as type 2 cells are insensitive to this drug,
they have a net proliferation rate that is higher than that of
type 1 cells, explaining the observation that KRAS or NRAS
mutations, but not T790M mutations, are observed in all
parental PC9 populations (type 0 cells) treated with AZD9291
(46). Finally, the data showed that a combination of 160
nmol/L AZD9291 and 100 nmol/L selumetinib completely
prevented the emergence of resistance during the period of
observation (46). This finding implies that 100 nmol/L

Figure 5.

Interpatient pharmacokinetic variability can lead to different clinical outcomes. A, Six example tumor growth trajectories are shown, highlighting
tumor rebound after initial decrease in size for different pharmacokinetic parameters. The two drugs have identical clearance rates (kA ¼ kB) in
one trajectory and vary between 0.1 (bottom curve) to 0.3 (top curve) per week between the different trajectories. B, Distribution of time to
progression, defined as the time at which the expected number of tumor cells reaches a minimum. Twenty patient trajectories were calculated,
with the drug clearance rates varying between 0.1 and 0.3 per week. Dosing schedule (i) was used for A and B and parameters used are:

b00 ¼ 0:185; b10 ¼ 0:3; b20 ¼ 0:2; d0 ¼ 0:14; d1 ¼ 0:01; d2 ¼ 0:01; u1 ¼ 0:01; u2 ¼ 0:0001; N0 ¼ 5 � 107; N1 ¼ N2 ¼ 104: C, An extended version
of the model in Fig. 1A, with four resistant cell types and drugs. Type 0 cells are sensitive to all drugs while all other types are sensitive to only
one drug each. D, Clonal composition for different patient pharmacokinetic parameters, in the presence of four drugs. The dosing schedule used is
0.02 units of each drug A, B, C, and D administered simultaneously on days 0, 4, 8, 12, and 16. PK-1 and PK-2 correspond to drug clearance rates of
0.1 and 0.2 per week, respectively. The different colors correspond to the different cell types as shown in C. Other parameters are: b00 ¼ 0:185; b10 ¼
b20 ¼ b30 ¼ b40 ¼ 0:35; d0 ¼ 0:14; d1 ¼ 0:2; d2 ¼ 0:01; d3 ¼ 0:1; d4 ¼ 0:14; u1 ¼ u2 ¼ u3 ¼ u4 ¼ 0:001; N0 ¼ 5 � 107; N1 ¼ N2 ¼ N3 ¼ N4 ¼ 104:
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selumetinib reduces the net growth rate of type 2 cells to at
least 0 and possibly to negative values (see Supplementary
Data for further discussions on this point).

The last step in parameterizing our model is to obtain the
pharmacokinetic parameters of the two drugs, AZD9291 and
selumetinib. As phase I clinical trials have already been performed
onpatient cohorts with both drugs, we obtained pharmacokinetic
parameters from the literature. We used Cmax (the maximum
observed plasma concentration) and t1=2 (the elimination half
life) values after a single dose for both drugs, as this allowed us to
predict the pharmacokinetic time course for the entire period of
drug dosing (see Supplementary Fig. S8 for details).

Three dosing strategies are being used in the AZD9291 þ
selumetinib arm of the TATTON trial (44). In all three strat-
egies, 80 mg AZD9291 is administered once daily. For selu-
metinib, either 50 or 75 mg is administered twice daily in two
continuous dosing strategies that we call "C1" and "C2,"
respectively, for convenience. In the third, intermittent strategy,
referred to as "I," selumetinib is administered at 75 mg twice
daily for four days a week, accompanied by three days of drug
holiday. Figure 6C and D show the pharmacokinetic time
course of AZD9291 and selumetinib in C2 and I as predicted
from the respective single-dose parameters.

As the total drug administered in I is less than that in either
C1 or C2, and as the drug holidays in I allow the selumetinib
concentration to decrease to zero periodically (Fig. 6D), we first
investigated whether the intermittent strategy would be signifi-
cantly less effective in tumor shrinkage as compared with the
continuous schemes. The results shown in Supplementary Fig. S9
predict that there is very little difference between the dosing
schedules C1, C2, and I—drug holidays (the three days when
selumetinib is not dosed) in schedule I alter the reduction of the
total number of tumor cells by less than 0:5%. The three drug
holidays of selumetinib only make a small difference, in absolute
terms, in the number of type 2 cells remaining at the end of the
treatment period. The selumetinib concentration becomes almost
zero during the drug holiday, which allows type 2 cells to start
proliferating. As a result, at the end of the entire intermittent
dosing period, there are approximately 26,000 type 2 cells,
whereas there are approximately 2,800 type 2 cells when the
continuous scheme is used (assuming there are 10,000 type-2 cells
to begin with in both cases; see Supplementary Data for a
discussion on initial clone sizes). Therefore, the intermittent
scheme is worse than the continuous scheme in absolute terms.
However, relative to the size of the entire tumor, this increase from

10,000 to 26,000 type 2 cells is negligible. As selumetinib is a
highly toxic drug and drug holidays are essential for patients, our
result suggests that these holidays may not makemuch difference
to the entire tumor dynamics.

The concentrations of selumetinib achieved in vivo (Fig. 6C
and D) are very high compared with what is required to reduce
the birth rate of type 2 cells. As is evident from Fig. 6B, b2 is
reduced to zero in vitro by treatment with as little as 125 nmol/L
selumetinib (blue line); hence higher concentrations do not
decrease the net proliferation rate of type 2 cells any further. On
the basis of this observation, we hypothesized that reducing
the administered selumetinib dose should not significantly
alter the extent of tumor reduction, but would be desirable
as the drug is associated with significant toxicities—the MTD is
100 mg twice daily. On the other hand, clinical trials (47)
have shown the absence of any dose-limiting toxicity even at
240 mg daily dose of AZD9291, and the in vivo concentrations
of AZD9291 achievable are comparable with the active range of
the drug (Fig. 6B and C). Thus, we also hypothesized that
increasing the AZD9291 dose would be both feasible from a
toxicity standpoint and could also increase tumor cell kill. We
therefore investigated three modified dosing schedules, C1�,
C2�, and I�, where AZD9291 is dosed twice a day instead of
once, and selumetinib is reduced from twice to once a day. The
days of administration of these new doses remain identical to
the original doses. The results of our proposed schedules are
shown in Fig. 6E and F. The total amount of cancer cell killing
achieved by our proposed dosing strategies (C1�, C2�, and I�) is
higher than for the original dosing schedules, for three arbi-
trary time points after the initiation of dosing (Fig. 6E). The
uncertainty regarding the proliferation rate of type 2 cells in
the presence of selumetinib does not significantly affect the
results (see Supplementary Fig. S10).

However, the percentage reduction in cancer cells from
baseline is not a good measure to characterize the difference
between the original (C1, C2, and I) and proposed (C1�, C2�,
and I�) dosing strategies, as the difference changes with time. A
better (time-invariant) measure to judge the efficacy of our
proposed dosing schemes is the percentage decrease in the
total cancer cell number between the original and proposed
dosing schemes (Fig. 6F). The proposed dosing schedule is
about 25% better than the dosing schemes being currently
used in TATTON. Varying the initial clone size distributions
predicts a range of about 20%–26% improvement (Supple-
mentary Fig. S11).

Figure 6.
Analysis of clinical and preclinical data on AZD9291 and selumetinib and prediction of improved dosing schedules for the TATTON phase-Ib trial. A, Linear
regression of in vitro growth assay data provides net growth rates of the three cell types. B, Estimated birth rates of the three cell types as a
function of drug concentration (AZD9291 for type 0 and 1; selumetinib for type 2 cells). C and D, Pharmacokinetics after multiple doses of the C2 and
I dosing strategies of the TATTON trial, respectively. Both schedules involve 80 mg once a day daily AZD9291 (pink). In the case of selumetinib, the
doses are 75 mg twice a day (green) treatment (C) and 75 mg twice a day (D), 4 days a week (green) treatment. E, Predicted reduction in the total
number of cancer cells for the original and proposed dosing strategies C2 and C2� , respectively, at three time points after the start of treatment.
F, Predicted improvement in outcomes of our proposed dosing strategies C1� , C2� , and I� compared with the original strategies. This metric of comparing
the effects of original and proposed dosing schedules is invariant with time, unlike measures shown in E. Our proposed dosing strategy involves
administering AZD9291 twice a day (instead of once) and selumetinib once a day (instead of twice). The days of dosing remain identical to the original
schemes used in TATTON. G, Other dosing strategies tested to investigate saturating benefits of increasing AZD9291 concentration. Selumetinib was

administered at 75 mg per dose in each of these schedules. Initial conditions in E–G are N0 ¼ 50 � 106;N1 ¼ 1 � 106;N2 ¼ 104 cells. Other parameters
used (see Supplementary Data for details) are b0 ¼ 0:77� 0:0041½AZD9291�; b1 ¼ 0:414� 0:0019½AZD9291�; b2 ¼ 0:294� 0:00234½selumetinib�; d0 ¼
0:12 day�1; d1 ¼ d2 ¼ 0:06 day�1; kAZD9291 ¼ 0:302 day�1; kselumetinib ¼ 3:538 day�1:
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Given that selumetinib has been shown to have dose-limit-
ing toxicities, we hypothesize that reducing selumetinib doses
is preferable for the management of side effects and the adher-
ence of patients to the recommended schedule. As the drug
holiday of three days per week is predicted to not significantly
affect the number of cancer cells (Fig. 6F; Supplementary
Figs. S9 and S10), the clinical suggestion based on our analy-
ses is to use schedule I� as a better alternative to the
ones currently implemented in TATTON. Given that 80 mg
AZD9291 and 75 mg selumetinib tablets are already available
clinically, our proposed modifications are easily implementa-
ble and would not require any additional manufacturing.

Finally, we sought to identify the highest doses of AZD9291
that would significantly increase the efficacy of this treatment. We
found that the improvementdue todrug saturates at about160mg
once-daily AZD9291 as shown in Fig. 6G (interestingly, 160 mg
once daily is about 10% better than 80 mg twice daily)—increas-
ing the administered concentration any further does not signif-
icantly improve the outcomes any more, indicating that at these
concentrations AZD9291 accumulates to a higher concentration
than is required for it to be active. This observation suggests that
drugs need not necessarily always be dosed at their MTD levels—
lower doses could be equally efficacious asMTDdosing strategies,
while leading to lower side effects and associated toxicities.

Discussion
Here we have developed a framework for exploring the effects

of pharmacokinetics and concentration-dependent drug interac-
tions on the outcome of multidrug dosing schedules within a
multiscale evolutionary medicine framework. Our analyses
uncovered important and nonintuitive possibilities arising in the
considerations of optimum dosing schedules. The time-depen-
dent dynamics of the drugs coupled to the population dynamics
parameters of the tumor cell clones lead to a complex interplay
between time scales, whose outcomes are nontrivial to predict
a priori. We showed that a particular combination therapy regi-
men, which is optimal under one set of pharmacokinetic condi-
tions, may be the worst strategy of drug administration when the
drug pharmacokinetics are slightly different. Drug interactions
add yet another layer of complexity, and our analysis highlights
the need for including these effects into a systematic, rational
framework for correctly identifying and analyzing optimal dosing
strategies of multidrug treatments. For instance, we showed that
when different resistant clones exist at the time of treatment
initiation, the best dosing strategy may or may not be simulta-
neous dosing of all the drugs, depending on whether the drugs
behave in a synergistic or additive manner. By combining such a
computational framework with careful experimental parameter-
ization of growth and death rates of tumor cell clones (17), and
optimization techniques like simulated annealing to search
through a high-dimensional space of treatment strategies (26),
investigators will be able to design robust combination dosing
strategies for heterogeneous patient cohorts.

To demonstrate how our quantitative computational frame-
work can be applied in clinical settings, we analyzed the
evolutionary dynamics of non–small cell lung cancer (NSCLC)
in response to the two targeted drugs AZD9291 and selume-
tinib. By combining results from preclinical and previous
clinical studies, we were able to suggest a simple way of
significantly improving the efficacies of the treatment strategies

being used in an ongoing phase Ib clinical trial of EGFR-
mutant lung cancer patients. Instead of the currently used
dosing strategy of once a day AZD9291 and twice a day
selumetinib, we predicted that administering AZD9291 twice
a day and selumetinib once a day would be significantly better
in terms of cancer cell eradication as well as lowering toxicities.
In addition, we showed that reducing selumetinib dosing to
four days a week (instead of every day) would make no
difference with regard to the rate of cancer cell eradication
while reducing toxicities. Our analysis of the TATTON dosing
strategies also highlighted a crucial point: that schedules
administering lower drug concentrations can sometimes be
equally efficacious as MTD schedules, thereby possibly reduc-
ing side effects and associated toxicities. Our work highlights
the role that evolutionary modeling can play in the develop-
ment of rational and more efficacious drug dosing strategies
while taking complexities such as drug interactions and patient
heterogeneities into account.

Our proposed strategies and general principles require
validation in the clinic in the future. However, we believe
that the strength of this work lies in the fact that we
highlight, for the first time, the importance of accounting
for pharmacokinetics and drug interactions in building pre-
dictive models of combination therapies. This approach is
therefore an important step towards validating evolutionary
mathematical models in the clinic. Finally, our modeling
approach does not take into account effects of the immune
system, the extracellular matrix and many other cell-extrinsic
factors that are known to affect the dynamics of cancer cells.
These are active areas of research, and as experimental model
systems allow for better characterization of such effects,
evolutionary models will become more accurate and trans-
latable to the clinic.
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