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Abstract 

The rate of acquisition of genomic changes in cancer has been the topic of much 

discussion, with several recent investigations finding evidence of punctuated 

evolution instead of gradual accumulation of such changes. Despite forays into the 

description and quantification of these punctuated events, the effects of such 

events on subsequent cancer evolution remain incompletely understood. Here we 

investigate how non-gradual mutagenesis affects the ability of tumor cells to 

acquire and retain fitness-enhancing adaptations. We find that punctuated 

mutagenesis significantly facilitates adaptation in scenarios where adaptation 

requires crossing a fitness valley, i.e. when multiple mutations are required which 

individually are maladaptive but jointly confer a fitness advantage. By increasing 

the probability that multiple mutations occur in close succession, punctuation 

increases the chance that mutants in a fitness valley mutate further to reach a 

fitness peak before going extinct. Analyzing data from The Cancer Genome Atlas, 

we find that tumors with signatures of APOBEC mutagenesis, which has been 

shown to proceed in episodic bursts, exhibit patterns consistent with higher rates 

of crossing fitness valleys. Lastly, we characterize how the interplay between this 

enhanced ability to cross fitness valleys and adaptation-limiting effects of clonal 

interference affects overall adaptability in complex fitness landscapes.  
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Introduction 
Tumors evolve via the acquisition of randomly arising genetic and/or epigenetic 

alterations and their selection1. The rate at which tumor cells accumulate such 
genomic changes to produce potentially adaptive innovation is thus an important 

determinant of the capacity of tumor cells to adapt to diverse selection pressures2,3, 
affecting their propensity to progress locally, to metastasize, or to evolve resistance to 

therapeutic intervention. Several methods to quantify mutation rates have been 
developed4–6 and proxies for mutation rates such as tumor mutation burden often 

feature in prediction models of therapeutic outcomes7,8. 

Most existing methods deal with constant mutation rates6,9, assuming gradual 

evolutionary change over time. However, accumulating evidence suggests that 

mutagenesis in cancer is fluctuating. Indeed, a recent study10 demonstrated in vitro 

that mutations associated with DNA-editing activity of APOBEC cytidine deaminases11 

occur in episodic bursts, with more than 100-fold differences in the rate of APOBEC-

associated mutations across otherwise identical cell culture replicates (Fig 1A). This 

episodicity observed in vitro aligned with patterns in previously published in vivo data 
investigating APOBEC mutagenesis in lung cancer12,13, and data from intestinal 

crypts14 later confirmed explicitly that this episodic pattern also occurs in patients. 
Other recent studies using genomic data to reconstruct evolutionary histories of 

tumors have found evidence of punctuated evolution across several cancer types15–17. 
These studies have demonstrated the existence of distinct phases of mutation 

bursts17,18 (Fig 1B), challenging the prevailing paradigm of gradual emergence of 

mutant lineages (Fig 1C). Various mutagenic processes such as chromothripsis19,20, 

chromoplexy21 and other drivers of chromosomal instability22 have been implicated in 
causing such punctuated patterns23.  

How punctuated mutagenesis affects the evolutionary dynamics of tumor cell 

adaptation across complex fitness landscapes remains incompletely understood. 
Addressing this question with existing experimental data is inconclusive, as only short 

time horizons are observed (single expansions10; time to a most recent common 
ancestor17,18), and as fitness differences between observed cell lineages are 

incompletely characterized. Mathematical modelling of human cancer genomics data, 
however, can elucidate the dynamics of adaptation during punctuated tumor 

evolution. Here, we set out to systematically investigate the evolutionary 

consequences of punctuated mutation acquisition during tumorigenesis using 
mathematical modeling and analysis of genomic data from The Cancer Genome Atlas 
(TCGA). 

Results  

Temporal clustering facilitates multi-step adaptation 

We set out to investigate how temporal clustering of mutagenic events into distinct 

episodes affects the ability of a cell population to achieve multi-step evolutionary 
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adaptations.  We considered two scenarios: tumor evolution via a single advantageous 

step, such as an oncogenic adaptation24 (“1-step adaptations”, Fig 1D), and 

accumulation of multiple mutations with synergistic fitness effects (“multi-step 
adaptations”, Fig 1E).  Indeed, the two hit-hypothesis25 for tumor suppressor genes 

(TGSs) suggests that deactivation of one copy of a TSG can be inconsequential or 
maladaptive, while bi-allelic deactivation confers a selective advantage26. While some 

TSGs exhibit (context-dependent) haploinsufficiency27–29, synergistic fitness effects for 
successive (epigenetic27,28,30) alterations in the same gene remain the prominent 

feature of TSGs. Analogously, there are ample examples of successive alterations 
across different genes acting synergistically31–33. High mutation rates are known to 

limit the rate of 1-step adaptations due to clonal interference34–36 (Fig 1F), which has 
been highlighted as a potential consequence of punctuated cancer evolution37.  The 

dynamics of multi-step adaptation have been studied extensively26,38–44, elucidating 

two modes of evolution (Fig 1G): ‘sequential fixation’ refers to the scenario in which 
the second mutation only emerges after cells harboring the first mutant have taken 

over the population, while ‘stochastic tunneling’ refers to situations in which the 
second mutation arises sooner. In large populations, mutants with a selective 

disadvantage become vanishingly unlikely to reach fixation, so that stochastic 
tunneling becomes the dominant mode of evolution for multi-step adaptations.  

To thus investigate how the rate of successful stochastic tunneling events – enabling 

multi-step adaptation – is affected by punctuated mutagenesis, we simulated selection 

dynamics of a population of cells which proliferate according to a Wright-Fisher 

process 45,46 and accumulate mutations according to a constant (Fig 1H) or temporally 
clustered (Fig 1I) rate. The Wright-Fisher process models evolution as successive, non-

overlapping generations of constant size. Each new generation is populated by 

drawing with replacement from the cells in the previous generation, with probabilities 
proportional to their fitness (Fig 2A). Cells can accumulate mutations that change 

their fitness, i.e. increase their probability to survive to the next generation. We 
considered fitness landscapes in which two-step adaptations are the only way by 

which cells can increase their fitness, with fixed fitness ratios across subsequent two-
step adaptations (Fig 2B,C). 

Interestingly, for two-step adaptations for which the intermediate mutants that carry 

only one of the two required mutations have a strong selective disadvantage (Fig 2B), 
we found that the population undergoes substantially (3.55 times) more two-step 

adaptations when accumulating mutations in a temporally clustered rather than in a 
uniform way (Fig 2D). This effect arises because intermediate mutants in “fitness 

valleys” have a high chance of going extinct before acquiring the next mutation. During 

mutation bursts, acquiring the next mutation in time before the disadvantageous 
mutant goes extinct becomes more likely. Similarly, intermediate mutants are more 
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likely to emerge in a mutation burst. This temporal clustering of the likelihood of two 

succeeding mutation events increases the rate of successful two-step adaptations.  

This effect also emerges for two-step adaptations that do not constitute proper 
fitness valleys, i.e. for which the intermediate mutant is not maladaptive (Fig 2E; 1.15-

fold increase). Under stochastic selection dynamics, even mutants with a slight 
selective advantage (Fig 2C) have a high chance of going extinct due to random drift. 

Lineages acquiring sets of synergistic mutations, thus, often do so without prior 
fixation of each intermediate mutant – via stochastic tunneling26. In those regimes, 

temporal clustering of mutations therefore also increases the speed of adaptation, as 
confirmed with simulations (Fig S2A-D). Moreover, the proportion of such sets of 

synergistic mutations acquired via stochastic tunneling rather than sequential fixation 

also increases with temporal clustering (Fig S2E). 

Our findings are not unique to models of constant population size, as confirmed 

with investigations of a branching process model (Methods, Fig S1) which yielded 
qualitatively similar results. Furthermore, our results also generalize to multi-step 

adaptations with arbitrarily many steps (SI1). To demonstrate this result, we 
compared a uniform mutation process with mutation rate 𝜇 to temporally clustered 

mutation processes in which mutations emerge exclusively during burst phases that 

constitute a fraction 
1

𝑘
 of the time, but at a 𝑘-fold increased rate, 𝑘𝜇 (Fig S2A). We 

showed analytically that in the limit of the average mutation rate 𝜇 going to zero, the 

rate 𝑓𝑘 of successful (𝑛 + 1) -step adaptations is 𝑘𝑛 times higher in the temporally 

clustered mutation process than in the uniform mutation process. We validated this 

result with simulations of a Wright-Fisher process for two-step adaptations, 𝑛 = 1, 
and a range of small values for µ (Fig S2F,G). As the mutation rate increases, this fold-

increase  becomes smaller. However, since the absolute rates fk and f1 are 

proportional to µn+1 (SI1), the absolute effect of temporal clustering on the rate of 

fixations of mutants with multi-step adaptations increases in µ (Fig S2F). In light of the 
large fold-changes in mutation rates during a burst and before or after a burst10,15,17,18, 

our findings suggest that the resulting effect on rates of multi-step adaptation is 
substantial.  

 

Temporal clustering in an exploration-exploitation setting 

The increased rate of valley crossing is driven by phases of high mutation rates, when 
the fold-increase in the chance of valley-crossing is larger than the fold-increase in the 

mutation rate. This effect improves adaptability while the fitness landscape offers 
scope for multi-step adaptation. However, in fitness landscapes which have global 

maxima, as the population adapts there is ever less scope for (further) multi-step 

adaptations, and excessive exploration of the landscape becomes costly.  
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To investigate the effect of temporal clustering in such an exploration-exploitation 

setting, we constructed a two-dimensional fitness landscape (Fig 3A) which is 

randomly re-drawn at regular intervals mimicking exposure to novel physical 
environments or drugs during cancer evolution and treatment (Methods). Between 

subsequent re-drawings, the population may move to a global fitness maximum where 
any further mutation decreases fitness. We considered mutation processes with 

different average mutation rates µ and different values of the clustering parameter k 
(Fig 3B) and investigated the average fitness of the cell population over long time 

horizons. As before, the clustering parameter k denotes the fold-increase of the 
mutation rate in burst phases relative to the average mutation rate µ. However, rather 

than fixing the out-of-burst mutation rate at zero, the burst duration is now held 
constant (Fig 3B) to control for differences in waiting time until a burst occurs. 

We found that, in this scenario, relative to the uniform mutation process (k = 1) 

increasing k initially increases the average fitness of the population for any fixed µ (Fig 

3C). Similarly, for a fixed k, increasing µ when starting at low µ-values increases the 

average fitness. However, moving further in either of these directions in the parameter 
space – towards increasing µ or towards increasing k – eventually brings about a 

decrease in average fitness (see SI2 and Fig 3D-F for detailed descriptions and plots of 
the dynamics). For any fixed k, average fitness peaks at intermediate µ, and the highest 

average fitness on the k-µ-plane is achieved by a k > 1. Maximizing average fitness, 
thus, involves temporal clustering even when there is a trade-off between exploration 

and exploitation. 

Proxies for valley crossing and for temporal clustering found in 

patient data 

We then sought evidence of this effect in patient data, leveraging whole exome 
sequencing (WES) data from TCGA. We reasoned that among tumors in which similar 

numbers of mutations had emerged, those tumors with more temporally clustered 
mutation processes in their evolutionary history would be more likely to have 

undergone a larger number of multi-step adaptations. We would, thus, expect the ratio 
of detectable indicators of multi-step adaptations, such as two deactivating mutations 

in a TSGs relative to the total number of mutations in a tumor sample, to correlate with 
indicators of fluctuations in the mutation rate history of a tumor such as those found 

for APOBEC mutagenesis. 

Before considering the TCGA data, to confirm in silico that such a correlation would 

indeed emerge under biologically realistic parameters, we performed large-scale 

simulations of tumor growth from a single cell to up to realistically detectable cell 
numbers of 106−107 cells47 (Methods). We recorded the fraction of mutations that 

emerged during burst phases, constructed a TSG deactivation score (Fig 4A,B) by 
counting the number of TSGs (modelled as mutations with synergistic fitness effects) 

with at least two mutations across the population and divided by the total number of 
mutations across the genome (Methods). Our simulation results confirmed that these 
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two readouts are correlated (Pearson correlation 0.42, p<0.01; Fig 4C), showing that 

in silico predictions about the relative ease of acquiring 2-step adaptations under 

mutation processes with more vs. less temporal clustering are well reflected in our 
score for TSG deactivation. 

Next, to construct similar readouts from the TCGA data, we first performed SBS 
signature decomposition on each sample and computed the relative contribution of 

APOBEC associated mutation signatures (SBS2 and SBS13) vs all other mutation 
signatures48 (Methods). Given the evidence for episodic APOBEC mutagenesis 10,14, we 

used this relative contribution as a score for temporal clustering. As a score for multi-
step adaptations, a list of known TSGs (the TSGene 2.0 database49) was considered. 

For each TCGA sample, we counted the number of TSGs in this list which harbored at 

least two single nucleotide substitutions classified as a missense or nonsense mutation 

(Methods) normalized by the total number of single nucleotide substitutions in that 

sample. The TCGA WES data did not enable us to determine whether such mutations 

indeed deactivated different copies of a TSG, rather than appearing on the same copy. 

If the likelihood of appearing on the same copy varied with the contribution of the 
APOBEC signature, this association could confound our results. Since mutations that 

are interdependently generated on the same copy of a gene would likely appear in 
close spatial proximity11,50,51, we thus verified in a robustness check that our results 

remain unchanged when filtering out mutations with close-by genomic coordinates 
(Methods).  

We then ranked the different tumor types in TCGA by the average contribution of 

SBS2 and SBS13 relative to all detected mutation signatures, and for each tumor type, 

investigated the correlation between our proxies for multi-step adaptations and for 
temporal clustering. For the top four categories with the highest mean contribution of 

APOBEC-driven mutagenesis to all mutations, we observed a positive correlation 

between the two proxies. This correlation is significant at the 5% level (t-test on the 
Pearson correlation coefficient) for three out of four of these top four categories (Fig 

4D, further results in Fig S3).  

Consistent with the hypothesis that this correlation arises because TSG 

deactivation occurs more readily with APOBEC mutagenesis, we found that mutations 
which contribute to the TSG-deactivation score on average have a strongly increased 

likelihood of being caused by APOBEC (Methods, Fig 4E).  This finding is consistent 
across cancer types and independent of whether probabilities are averaged over 

samples or over individual mutations, suggesting that this result is not driven by 
outlier samples with many TSG deactivations and many APOBEC associated mutations 

(Methods, Fig 4F). 

 An alternative score for multi-step adaptations, in which the list of TSGs is 
replaced with a list of pairs of genes with synergistic fitness effects31(Methods) again 

exhibits a positive correlation with the relative contribution of APOBEC associated 
mutation signatures in all categories; this correlation is significant for two of these 
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categories (Fig S4). Taken together, these results show that tumors with a larger share 

of APOBEC-associated mutations are enriched for pairs of mutations with synergistic 

fitness effects. 

Stochastic Tunneling vs Clonal Interference during Punctuated 

Evolution 

In tumors evolving at high mutation rates, clonal interference may limit the rate at 

which a cell population manages to acquire and retain 1-step adaptations (Fig 1F). 
Previous literature has quantified this limiting effect as a function of the mutation rate 

and the distribution of fitness values of emerging mutants52–54. However, the effects of 
non-constant mutation rates in this setting have not been elucidated. We thus set out 

to investigate clonal interference in the setting of temporally clustered mutation rates 

(Fig 5A). 

We first considered a setting in which cells can only acquire 1-step adaptations and 

measured the rate at which novel 1-step adaptations reach fixation in the population 
across simulations with different clustering parameters k (Fig 5B). We found that 

fixation rates quickly decrease as k increases (Fig 5C). This pattern emerges because 
the extent to which clonal interference reduces fixation rates disproportionately 

increases with the mutation rate; for a fixed average mutation rate temporal clustering 
thus increases the effects of clonal interference.   

These findings stand in contrast to our results for 2-step adaptations whose rate of 

fixation increases when temporal clustering is introduced. However, if in-burst 

mutation rates are sufficiently large such that multiple clones in the population may 
acquire a 2-step adaptation independently before one of these clones has fixated, 

effects of clonal interference also play a role for 2-step adaptations. Performing 

simulations for 2-step adaptations, we found that fixation rates are non-monotone in k. 
While at low k increasing k leads to a steep increase in the fixation rate, this trend 

eventually levels off and becomes negative, with further increases in k leading to a 
decrease in the fixation rate. 

Having observed that temporal clustering increases effects of clonal interference 
but also facilitates stochastic tunneling, we next set out to investigate the relative 

contribution of these two effects on overall adaptation rates. We considered a setting 
in which cells can increase their fitness through both 1-step and 2-step adaptations 

(Fig 5D).  

We found that 1-step adaptations are acquired more quickly under the uniform 

mutation process (k=1), while 2-step adaptations are acquired more quickly under a 

temporally clustered mutation process (k=5; Fig 5E). The relative magnitude of both 
effects varies with time. As 1-step adaptations spread more readily in the population, 

differences in the speed at which they fixate manifest early in the dynamics. Over time, 
cells gradually exhaust the possibilities for 1-step adaptations and the difference 

between the adaptation rate in both processes becomes dominated by differences in 
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the speed of acquiring two-step adaptations. In this latter phase we observe large 

differences between the two mutation processes in the expected time until any given 

proportion of the possible two-step adaptations have spread in the population. 
Analogous time differences for reaching fixed proportions of one-step adaptations in 

the initial phase of the dynamics are much smaller (Fig 5E). 

  

We also investigated how this pattern depends on the ruggedness of the fitness 
landscape (Fig S5A). To this end, we varied the relative proportions of loci with and 

without fitness valleys and quantified adaptability differences. We found that the 
duration of the initial phase in which the uniform process yields higher adaptability 

varies with the ruggedness of the fitness landscape: this phase is roughly three times 
as long when the proportion of loci with fitness valleys is 5% compared to when it is 

95% (Fig S5B-D). However, over this range of proportions, we consistently observed 

that this initial phase only accounts for a small fraction of the time it takes to acquire 
all adaptations.  

Discussion 
Accumulating evidence suggests that mutagenesis in tumor cell populations proceeds 
in punctuated bursts rather than gradually; however, the effects of such punctuation 

on the ability of a tumor cell population to acquire and retain fitness-enhancing 

adaptations remains incompletely understood. Here we set out to investigate the 

evolutionary dynamics of these processes using mathematical modeling and genomics 
data analysis of human tumors. 

We found that when a population acquires multi-step adaptations via stochastic 

tunneling, the rate of adaptation is substantially enhanced by punctuation. Stochastic 
tunneling is the predominant mode of evolution in large populations that traverse 

fitness valleys. However, stochastic tunneling also occurs when the necessary mutation 
steps to reach a substantial fitness advantage are not individually maladaptive, i.e. if 

steps do not constitute a fitness valley but confer a slight fitness advantage. 
Punctuated evolution therefore facilitates the accumulation of sets of mutations that 

jointly and synergistically confer a fitness advantage, while the fitness effect of 
carrying only a subset of these mutations can range from being strongly maladaptive 

to being moderately adaptive. 

  For the limit of low average mutation rates we show analytically that the rate of 

stochastic tunneling under a temporally clustered processes is kn times larger than 

under the time-invariant process, where k is the fold-increase in the mutation rate 
relative to the average mutation rate during mutation bursts in the temporally 

clustered process, and n is the number of mutation steps that is required to exit the 
fitness valley. Moving towards higher average mutation rates, this fold-change in the 
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stochastic tunneling rates decreases, but the absolute difference between the rates 

increases. 

While temporal clustering facilitates multi-step adaptations, it also impedes 1-step 
adaptations due to clonal interference. We examined the interplay between these 

contrasting effects in a setting in which cells can acquire both types of adaptations. We 
showed that the relative importance of both effects varies over time. Since 1-step 

adaptations tend to be acquired more readily, clonal interference matters most in the 
early phase of the process. As the share of possible 2-step adaptations relative to 1-

step adaptations increases, differences in the tunneling rate become the more relevant 
determinant for the speed of adaptation. A uniform mutation rate, thus, makes a 

population more efficient at finding local fitness maxima. However, temporal 

clustering allows the population to more quickly move between local maxima, thus 

speeding up the search for a global maximum. 

While our theoretical results are easily verified in simulation settings where we can 
choose a fitness landscape, applying these results to real data remains challenging 

because of the inherent complexities in determining fitness effects in biological 
systems. Estimating fitness effects of individual mutations requires either intricate 

experimental approaches55 or large patient cohorts to control for differences in the 
(epi-)genetic background against which these mutations emerge; and such estimations 

become considerably harder when considering joint fitness effects of sets of multiple 
mutations.  

To circumvent these challenges, we focused on TSGs as a representative set of gene 
pairs with synergistic effects and on one mutation process known to tend to fluctuate 

over time – APOBEC-driven mutagenesis. Consequently, we observed only a subset of 
groups of mutations with synergistic fitness effects in the data and possibly only a 

small fraction of the variability in mutagenic punctuation between different samples. 

Nevertheless, we find that these scores significantly correlate, which aligns with our 
model predictions. 

Our results have implications for both mechanistic and statistical modeling of 
tumor evolution. A key quantity in mechanistic models such as those used to optimize 

treatment schedules56 is the likelihood that resistance-conferring adaptations arise 

during therapy; our results show that this likelihood depends on the temporal 

dynamics of the mutation process. Analogously, in statistical models, incorporating 
measures of punctuated mutagenesis may improve the ability to predict treatment 
outcomes by accounting for how these temporal dynamics shape adaptability. 

 

Methods 
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Simulations of a Wright-Fisher and a branching Process in an 

unbounded fitness landscape 

In the simulations presented in Fig 2 and Fig S1, mutations occur between selection 
steps and are independent of divisions. In the Wright-Fisher process simulations (Fig 2 

C) with a temporally clustered mutation rate, the out-of-burst mutation probability per 
cell and per update step (between two divisions) was set to 0.01 and was increased to 

0.1 in bursts. For the corresponding uniform mutation rate trajectory, this probability 
was simply set equal to the total amount of mutations that occurred in the simulations 

under the temporally clustered mutation rate, divided by the total number of update 
steps. 

Mutation rates in the branching model simulations (Fig S1) were chosen 

analogously. However, to achieve temporally equidistant mutation bursts in the 
branching process simulations, we scaled the burst duration and the time between 

bursts by the population size. 

Simulations Wright-Fisher Process in exploration/exploitation 

setting 

To produce the results shown in Fig 3, we ran agent-based stochastic simulations of a 

Wright-Fisher Process with 20 cells. Cells were characterized by their location on a 
discrete fitness landscape (a 30 by 30 two-dimensional lattice). The fitness values f 

associated with the positions on the lattice were drawn independently at random as f = 

0.5 + x4 where x ∼ U[0,1] is distributed uniformly between zero and one. The lower 

bound of 0.5 ensures that cells at all positions have a non-negligible probability of 
dividing. 

Raising x to the fourth power creates a landscape with few peak-positions surrounded 

by many valley-positions with little variation in fitness. 

In each selection step, one cell was randomly chosen to divide with probability 

proportional to its fitness, and replaced a cell which was drawn uniformly at random. 
Mutations occurred between consecutive selection steps, and the mutating cell was 

chosen uniformly at random amongst all cells in the population (independently of the 

preceding selection step). If a cell mutated, it would move to a location in the fitness 

landscape chosen uniformly at random from the set of (at most 8) locations in the Moore 
neighborhood of its current location. 

The rate at which mutation events occurred was governed by the parameters µ and 
k. Mutation bursts lasted 102 division events and started every 103 division events. 

Fitness landscapes were redrawn every 50714 (  ) division events, to 

periodically vary the relative timing of mutation bursts and re-drawings of the fitness 

landscape. In this manner, we avoid artifacts in our results caused by phase-alignment 
of bursts and re-drawings. 
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Larger-scale simulations 

We simulated tumor evolution as a branching process, starting from a single unmutated 
cell, up to a randomly drawn target cell number between 106 and 107 cells. We assume 

a constant death rate, so that over the course of a simulation the probability that the 

next event is a death event rather than a division event remains fixed (at a value of 0.35). 
In case of a death event, one cell picked uniformly at random is removed from the 

population. In case of a division event, one cell is chosen to divide with probabilities 
proportional to its fitness. 

We assume that the number of mutations per division follows a binomial 
distribution Bin(105,µ), and for each simulation we randomly draw a baseline mutation 

probability µ uniformly between 0 and 3·10−5. In mutation bursts, this probability gets 

multiplied by a factor of 20 or 50, again chosen randomly for each simulation. The 

population enters a burst phase with probability  per division, where n is the current 

population size, and exits a burst phase with probability , so that in expectation bursts 

phases last 3 generations, and start every 10 generations. The first cell in a simulation 

is initialized to be in a burst with probability  consistent with the expected time spent 

in bursts given those parameters. 

The fitness effect of mutations is modeled as follows. The starting cell has a fitness 

of one. Each new mutation has an additive effect on the cells fitness. We assume that 
mutations occur uniformly at random across the genome ant that multi-step 

adaptations can occur in a fraction θ = 0.01 of the genome, roughly aligning with the 

ratio of the number of TSGs vs the total number of genes in the human genome. We 

subdivide this part of the genome into 200 TSGs which are all hit by a mutation with 
equal probability. For each individual TSG, the first mutation reduces a cell’s fitness by 

0.05. The second mutation increases fitness by 0.15, and all further mutations are 
fitness neutral. For the remaining (1 − θ) fraction of the genome, we assume that 

mutations are fitness-neutral with a probability of 0.9, and that fitness effects are 

otherwise drawn from a Gaussian with mean equal to −0.005 and standard deviation 
equal to 0.005. 

To produce the results in Fig 4A-B, we keep track of all mutations that arise in a 
population, and remove all mutations with less than 1% variant allele frequency from 

the output, as those would be unlikely to be detected in WES. Moreover, we keep track 
of the fraction of mutations that a sample acquired during a mutation burst. For each 

simulation, we then count the number of TSGs for which there are at least two mutations 
found in the population and divide this by the total number of mutations in the sample. 

Analysis of TCGA WES data 

Whole-exome sequencing data was acquired from The Cancer Genome Atlas. We 

performed mutation signature decomposition using the cosmic fit() function in python 

from the package SigProfilerAssignment57 version 0.1.8 with cosmic version 3.4. 
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Moreover, we used the mutation-level signature probabilities generated via 

SigProfilerAssignment to compute mean probabilities of signatures SBS2 and SBS13 for 
individual SBSs (Fig 4 D,E).  

To compute our TSG deactivation score, we filtered the SNV data for missense and 
nonsense mutations in genes belonging to the TSGene 2.0 database49. For each sample 

we calculated the number of TSGs with at least two mutations and divided by the total 
number of SNVs. 

Analogously, to construct our synergistic mutations score, we filtered for missense 
and nonsense mutations in frequently co-mutated gene pairs identified by Gu et al.31 1, 

and for each sample divided the number of pairs in this list with mutations in both genes 
by the number of SNVs. 29This enrichment for co-occurrences of mutations in both genes 

in a pair suggests that mutations in the two genes tend to have a synergistic fitness 
effect. For each sample in the TCGA WES data we thus computed the number of gene-

pairs from this list for which there is at least one non-synonymous single nucleotide 

substitution mutation in each of the two genes, and divided this number by the total 
number of single nucleotide substitutions in the sample. 

As a robustness-check, we investigated whether the results change if we require a 
minimum distance between the genomic locations of the mutations in TSGs that we 

count to our TSG deactivation score. APOBEC has been linked to clustered mutagenesis 
through processes of kataegis and omikli11,50,51. If samples with higher APOBEC activity 

have higher rates of having multiple close-by mutations on the same allele, and if such 

a sample has multiple deactivating mutations in a TSG, these deactivations might be 

more likely to lie on the same allele compared to samples with lower APOBEC activity. 
Since we use appearances of more than one deactivating mutation as a proxy for bi-

allelic deactivation of TSGs, such a pattern would bias our results. To account for that, 

we explored filtering TSG mutations in the data based different minimum-distance-
thresholds ranging from 1 to 100 bp and found no impact on our results. 

  

 
1  Enrichment for co-occurrence of mutations in pairs of genes, relative to the product of the 

frequencies of each individual gene being mutated suggests that the two mutations have a synergistic 

fitness effect. 
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Supplementary Information 
 

Derivations of results on multi-step adaptation rates in the limit of 
infrequent mutations 

We discussed differences in the rate of multi-step adaptations fk as a function of a 
temporal clustering parameter k. Here we formalize this discussion, and derive the 

result presented in the main text. 

We consider processes in which multi-step adaptations occur via stochastic 

tunneling rather than sequential fixation, i.e. processes in which mutants with a 
selective disadvantage are negligibly unlikely to reach fixation. We assume that 

mutations happen sufficiently infrequently, so that we can neglect valley crossing 
scenarios in which the same mutation in a multi-step adaptation sequence occurs 

multiple times. Additionally, we require that valley crossing happens solely via 

stochastic tunneling, i.e. that the probability that a maladaptive mutant fixates is 
vanishingly low. 

We denote the average rate at which cells acquire mutations by µ, and compare 
dynamics under different mutation processes which we index by a temporal clustering 

parameter k ≥ 1. Starting every d units of time, a process with parameter k undergoes a 
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mutation burst lasting   units of time, during which mutations occur at a rate kµ. 

Outside of bursts, the mutation rate is 0. We assume that the time   between 

subsequent burst phases is sufficiently long such that we can restrict attention to multi-

step adaptations that occur during a single burst, and that the duration of each burst  

is sufficiently long relative to the time that it takes to cross a fitness valley, so that valley 
crossings, which fail because the burst phase ended but which would have been 

successful, have a negligible effect on fk. 

As stated in the main text, with this setup we can show that for any population 

dynamics process for which the above limits can be motivated, the fold-increase in the 

rate fk at which (n + 1)-step adaptations occur in a process with clustering parameter k 
relative to the uniform process approaches kn. 

 

 

 

Deriving this result for any selection process indeed becomes straightforward, if it 

can be motivated that the mutation rate does not affect the fate of any mutant lineage 
once the first mutant in this lineage has emerged. 

Somewhat more formally, we index the steps in an n-step adaptation sequence by i 

∈ {1,...,n}, and denote the expected size of the lineage descending from mutant i by Yi(t). 

This quantity Yi(t) of course depends on the specificities of the selection process, but for 
our derivations it suffices to only require that Yi(t) does not depend on the mutation 

rate. 

Since all intermediate mutants have a selective disadvantage, and since we assume 

that we are in a parameter regime in which the likelihood that a disadvantageous 

mutant fixates is negligibly low, it follows that the integral converges. 

 

In the limit of a low (and for now time-invariant) mutation rate µ, the probability 
that the i’th mutant produces a further mutant P(i → i + 1) is simply the product of the 
mutation rate and this integral. 

 

The probability that the first mutant spawns a sequence of n+1 mutants can, thus, 
be written as follows. 
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Lastly, we use ˜µ to denote the rate at which new mutants with only one mutation 

emerge. For a given selection process, this rate may vary with the population size. We 

arrive at the following formulation for the rate at which new advantageous mutants 
emerge f1. 

 

Finally, we can introduce our clustering parameter k to scale both u and ˜u, and 

multiply by a factor of  to arrive at the average rate of valley-crossing in the temporally 
clustered process with parameter k. 

 

One consequence of our assumption that none of the maladaptive intermediate 
mutants reaches fixation is that the composition of the population once the final 

mutant emerges in the limit of µ → 0 does not depend on the mutation rate. For 
population dynamics models with a constant population size in which the probability 

that an emerging mutant (absent further mutation events) reaches fixation only 

depends on this composition, such as the Wright-Fisher process, we can interpret  
therefore also as the ratio of the rates at which mutants with n+1 mutations fixate. 

Analogously, in certain models of branching evolution in which the prospects of one 
branch do not depend on other co-evolving branches, such as the Galton-Watson 
process58, whether the lineage of an emerging mutant with (n + 1) mutations survives 

is independent of the mutation rate in the limit of µ → 0. The ratio  therefore also 
reflects the ratio of the rates at which surviving lineages with (n+1) adaptations arise 
in such models. 

The above result suggests that the effect of temporal clustering on relative rates of 

valley crossing is substantial, and gets exponentially stronger the wider the fitness 
valley is (n). We validated this result with simulations of a Wright-Fisher process for a 

range of small values for µ (Fig S2 B-E). As we move away from the limit of rare 
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mutations, the relative effect of temporal clustering  gets smaller, as will be discussed 

below. However, as the absolute rates fk and f1 are proportional to µn+1 (Appendix), the 
absolute effect of temporal clustering on the rate of fixations of mutants with multi-

step adaptations initially increases in µ (Fig S2 D). 

 

 

Dynamics in exploration-exploitation setting 

Our simulations show that for given µ the effect of increasing the clustering 
parameter k on the average fitness becomes negative at some k (Fig 3C). In the 

simulations in this section, this effect is driven by two main factors. Firstly, after a re-
drawing, the population often is not in a local maximum of the fitness landscape, and 

hence may be able to increase its fitness by single mutations (1-step adaptations), 

without tunneling. Waiting for a burst to occur and thereby delaying such local 
explorations decreases average fitness. Second, once the population has found a peak 

in the fitness landscape, having very high mutation rates in bursts temporarily scatters 
cells to lower points in the landscape, and may even cause drift to points of lower 

fitness. Both of these effects become apparent when considering a representative 
snapshot of the simulations (Fig 3D). The misalignment of re-drawing and burst 

causes the population to remain in a valley for several divisions until the first burst 
occurs. Moreover, relative to similar snapshots of simulations with lower k (Fig 3E,F), 

once the population has reached a peak, the scattering during bursts at higher k leads 
to sharper decreases in fitness, and the population may even remain in a lower fitness 

point after a burst (Fig 3D). 

This increased scattering can also be seen when going from k = 1 to k = 5 (Fig 3E,F). 
However, at k = 1, the population spends much time in local maxima, as large jumps in 

fitness only occur right after re-drawings, whereas at k = 5 jumps occur also long after 
the landscape was re-drawn and the population found a local maximum. These later 
jumps to higher points in the landscape correspond to tunneling events. 
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Figure 1 Population dynamics under gradual vs punctuated mutagenesis. (A) Evidence for punctuated APOBEC 
mutagenesis (Petljak et al. 2019) from successive cell culture expansions, seeded with single progenitors from the 
preceding expansion. Sequencing of the expanded populations revealed large fluctuations in APOBEC-associated 
mutagenic signatures SBS2 and SBS13. (B) Evidence for punctuated copy-number evolution (Gao et al. 2017, Minussi et 
al. 2021). Patterns in branch lengths of reconstructed phylogenetic trees reveal fluctuations in the rates of copy number 
alterations. Dynamics prior to most recent common ancestor (MRCA) are unidentifiable. (C) Gradual vs. punctuated 
evolution. In gradual evolution novelty emerges and spreads at a constant rate over time. In punctuated evolution novelty 
emerges and spreads during distinct burst phases.  (D) Fitness schematic of two 1-step adaptations which each 
independently confer a fitness advantage. (E) Fitness schematic for a 2-step adaptation, in which carrying one mutation 
confers a fitness disadvantage but carrying two mutations confers a fitness advantage. (F,G) Schematic of possible 
evolutionary dynamics for two 1-step adaptations (F) and of modes of valley-crossing with or without prior fixation of the 
first mutant (G). Sequential fixation occurs at low mutation rates where emerging mutant lineages are likely to have 
fixated or gone extinct before the next mutation occurs. At higher mutation rates, the second mutation can occur in a 
multi-clonal population. (H) Sketch of failing two-step adaptation under a uniform (time-invariant) mutation rate. (I) 
Sketch of a successful two-step adaptation via stochastic tunneling under a punctuated mutation process with distinct 
clusters of high mutation rates.  
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Figure 2 Simulation results: valley-crossing under uniform vs. temporally clustered mutation rates. (A) Schematic of 
a Wright Fisher Process. (B)-(C) Fitness landscapes used for the simulations in Panel (D) and (E) respectively.  Mutations 
move a cell from left to right through the landscape. Each 2-step adaptation corresponds to a fitness increase by a factor 
of 1.5. Having an odd number of mutations comes at a multiplicative fitness disadvantage of 0.5 in (B) and an advantage 
of 1.01 in panel (D). (D)-(E) Simulation results for a Wright-Fisher process with 50 cells. The mutation rate trajectories in 
each panel are chosen such that the total expected number of mutations under the uniform trajectory is identical to that 
under the temporally clustered trajectory. 
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Figure 3 Exploration and exploitation with temporally clustered mutation 
rates. (A) Cells move through two-dimensional fitness landscapes. These fitness landscapes are randomly redrawn every 
50714 divisions. (B) Mutation rate trajectories are parameterized with a mean mutation rate μ, and a clustering parameter 
k. (C) Average fitness in simulations of a population of 20 cells in a Wright Fisher Process. Simulations were run for 108 
division events. (D)-(F) Average fitness trajectories for representative snippets of the simulations in (C). 
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Figure 4 Proxies for valley crossing and temporal clustering in simulations and in TCGA 
data. (A) Sketch of the simulation analysis workflow. (B) Distributions of the fraction of 
mutations acquired during mutation bursts and the TSG deactivation score in simulations. 
(C) Joint distribution of the quantities in (B) indicates strong correlation. (D) Schematic of 
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analysis workflow for TCGA data (methods) and results for the four cancer types with 
highest APOBEC signature contribution. (E) Probabilities that single base substitutions 
(SBSs) in samples of the cancer types in (C) were caused by APOBEC associated signatures 
SBS2 and SBS13. On the left, these probabilities are averaged over all SBSs. On the right, 
only those SBSs are considered which are classified as “nonsense” or “missense”, and 
which appear in a TSG with at least 2 such deactivating SBSs. The average probabilities 
between both groups are significantly different (t-test, p<0.001). (F) Average probabilities 
analogous to those in panel (D) were constructed for each individual sample and then 
averaged across samples. Samples without deactivated TSGs were excluded. The average 
probabilities between groups are significantly different for the four cancer types (*, ** and 
*** respectively indicate that the p-value in a t-test lies below 0.05, 0.01 and 0.001).  
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Figure 5 Stochastic tunneling vs clonal interference under temporally clustered mutation rates: (A) Schematic of the 
simulation approach. (B) Sketch of the mutation process. (C) Simulation results: measuring fixations of higher-fitness 
mutations per generation as a function of the clustering parameter and of the fitness landscape. In the 1-step adaptation 
setting fitness is defined as 1.5#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠. Fitness in the 2-step adaptation setting is defined as in Fig 2B. Results are 
averaged over simulation runs with 107 generations. (D) Sketch of fitness landscape for simulations shown in (E). Cells 
start with an unmutated genome of 200 loci. Mutations on each locus have independent multiplicative effects on cell 
fitness. In the first 100 loci a single mutation confers a multiplicative fitness change of 1.5. In the remaining 100, 2 
mutations are required to reach this multiplicative fitness change of 1.5, with the first mutation conferring a multiplicative 
fitness change of 0.5. (E) Simulation results for adaptation with genome sketched in (D). Results are averaged over 100 
simulation runs per value of k. Shaded regions indicate 10th and 90th percentiles. Smaller plots (left) are zoomed in 
versions of the first 1200 generations of the larger plots (right), with identical color-coding. 
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Supplementary Figure1:  Simulation results: valley-crossing under uniform vs. temporally clustered mutation rates 
in branching process. (A) Schematic of fitness landscape as in Fig 2. (B) Schematic of Branching Process model. (C) 
Simulation results for the Branching Process model. The mutation rate trajectories in (C) are chosen such that the total 
expected number of mutations under the uniform trajectory is identical to that under the temporally clustered trajectory. 
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Supplementary Figure 2: Effect of temporal clustering on stochastic tunneling rates as a function of the mutation 
rate. (A) Sketch of the mutation process with clustering parameter k. (B) Sketch of the fitness landscape as in Fig 2. (C) 
Description of the simulations.  (D)-(E) Simulation results of a Wright-Fisher process with 100 cells over 106 generations 
with a fixed average mutation rate of10−5 per cell per generation and varying temporal clustering k. The fitness is as in (B), 
with subsequent peaks differing in fitness by a factor of 1.5. However, on the y-axis in (F) and (G) we vary the fitness of the 
valleys relative to the preceding peak from 0.5 (as in (B)) to 1.5. Panel (D) shows the number of valleys crossed per 
generation (color bar in log10 values), where contrary to the previous panels it is no longer true that every valley crossing 
leads to a fixation – the next mutant might emerge before that. Panel (E) the share of these valley crossings that occur 
without fixation of the first mutant.(F) Simulation results of the process described in (A)-(C). Each simulation ran 
for105/(𝑘𝜇) generations. The y-axis measures fixations of adaptive mutations per generation (see Fig 5D). (G) Fixations 
per generation relative to the uniform mutation process (k=1) for k=5 and k=10.  
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Supplementary Figure 3: TSG deactivation scores in TCGA. Distribution and correlation of APOBEC signature 
contribution and TSG deactivation scores as in Fig 4, sorted by cancer type. 
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Supplementary Figure 4: Synergistic mutation scores in TCGA. Distribution and correlation of APOBEC signature 
contribution and synergistic mutation scores, sorted by cancer type. 
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Supplementary Figure 5: Temporal clustering and adaptation in fitness landscapes with varying ruggedness. (A)  
Sketch of the setup. Like in Fig 5, we assume that cells have two types of loci on which one-step or two-step adaptations 
are possible respectively. Fitness effects per locus are as in Fig 5. Here, we run simulations in which we vary the relative 
shares of the two types of loci. (B) Simulation results over time, averaged for 100 simulation replicates per row and 
clustering parameter k. Colors indicate the fitness ratio between simulations with k=5 and k=1 on a log10 scale. (C)-(D) 
show the corresponding absolute numbers of loci with adaptative mutations (i.e. loci in the black and blue states in panel 
(A)).  
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