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MSs are regions of the genome characterized by repetition of a short 
sequence motif (usually 1–6 bp)1. MSs are abundant in nontran-
scribed regions of the human genome but also occur in exons and 
untranslated regions (Supplementary Fig. 1). In the germ line, rates 
of insertions and deletions (indels) in MSs are significantly higher 
than rates of single-nucleotide substitutions elsewhere in the genome 
(10−4 to 10−3 compared with ~10−8 per locus per generation, respec-
tively)2. The increased mutation rate within MS indels is thought to 
arise because of DNA polymerase slippage during replication, thus 
leading to changes in the number of repeats. MS indels frequently 
result in frameshift mutations and can therefore dramatically alter 
protein function or expression1.

More than 40 hereditary diseases are caused by germline MS 
indels3–5. In addition, many cancer-associated genes6 (e.g., PTEN and 
NF1) contain MS loci, and in some cases, somatic MS indels have been 
causally implicated in cancer7. Tumors with microsatellite instability 
(MSI) have dramatically higher numbers of MS indels, owing to a loss 
of normal mismatch repair (MMR) function8. Although the MSI phe-
notype has been observed across tumor types, it appears to be most 
common in colon adenocarcinoma (COAD), stomach adenocarci-
noma (STAD), and uterine corpus endometrial carcinoma (UCEC)8. 
Given the important prognostic and therapeutic implications of MSI 

status, many clinical centers perform PCR- or immunohistochemis-
try-based MSI testing for these tumor types9–12.

Despite their potential importance, somatic MS indels have not 
been systematically analyzed in cancer, owing to challenges asso-
ciated with their detection in current massively parallel sequenc-
ing data, including read-length limits and PCR errors13. The  
frequency of such sequencing errors varies significantly across MS 
loci (Online Methods); therefore, methods using principled statisti-
cal modeling and noise estimation are required to accurately identify 
MS indel events.

Discovering cancer-associated MS loci relies on identifying evi-
dence of positive selection (i.e., mutation frequencies higher than 
expected by chance). However, simply comparing the frequency 
of mutations at each MS locus to the average mutation frequency 
across the genome is inadequate, because the background mutation 
frequency can vary by nearly two orders of magnitude14. Therefore, 
accurate estimates of site-specific background-mutation frequencies 
are required to maximize the sensitivity to discover cancer-associated 
MS loci while minimizing the rate of false calls15.

To address these challenges, we developed two new tools: MSMuTect 
(Supplementary Software 1) for detecting somatic MS indels from 
sequencing data and MSMutSig (Supplementary Software 2) for 
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detecting loci with a significantly higher-than-expected frequency 
of MS indels. Applying these tools across 6,747 tumors represent-
ing 20 tumor types, we uncovered unique properties of MS indels 
and identified MS loci that probably represent cancer driver events. 
Comparison of MS indels across clinical MS groups revealed differ-
ences between microsatellite stable (MSS) and MSI tumors that may 
be relevant for clinical decision-making.

RESULTS
MSMuTect identifies MS indels from exome sequencing data
In an effort to improve detection of somatic MS indels, we globally 
re-aligned reads from whole-exome sequencing data of 6,747 tumor–
normal pairs across 20 tumor types from The Cancer Genome Atlas 
(TCGA) to the unique sequences flanking 383,515 MS loci, defined as 
sites with at least five repeats of a 1- to 6-bp motif in the exome terri-
tory1 (Online Methods and Supplementary Fig. 2). This re-alignment 
step, compared with the standard alignment, decreased the fraction 
of misaligned reads (Supplementary Fig. 3). For every MS locus, 
we then counted the number of reads supporting each MS repeat 
length, thus producing two histograms of MS repeat lengths: one for 
the tumor and one for the matched normal sample (Fig. 1a).

Sequencing errors, PCR amplification errors, and other sources 
of noise can change the number of MS repeats present in a given 
read. Therefore, the true underlying alleles must be statistically 
inferred from the data (Fig. 1b). Critical to this inference is the 
empirical estimation of the noise associated with each type of MS. 
We trained empirical noise models, one for each MS type (defined 

by its motif and number of repeats), using data from homozygous 
sites derived from the X chromosome of 4,411 male normal samples 
(i.e., sites with only one true allele at each MS locus). We had suf-
ficient data to reliably estimate the noise models for the motifs A, 
C, AC, and AG, which together represented 98% of the MS loci in 
the exome (Online Methods).

To accurately identify the alleles present in the tumor and normal 
samples and to detect somatic MS indels, we used these noise models 
to calculate, for each MS locus, the set of most likely alleles (Fig. 1c 
and Online Methods). For each locus, we used a log-likelihood ratio 
test to compare models in which the locus contained one versus two 
distinct alleles (either distinct germline alleles or a somatic muta-
tion at a homozygous site). If the two-allele model fit the data better, 
we then compared it with a three-allele model, and so forth, to a 
maximum of four alleles. Finally, in cases in which the set of alleles 
was different between the tumor and normal samples, we reported 
a somatic MS indel event only after ensuring that the histogram of 
MS repeat lengths in the tumor was indeed described better by the 
inferred tumor alleles than by the inferred normal alleles (Fig. 1c and 
Online Methods).

We tested the sensitivity and specificity of MSMuTect by using 
an approach similar to that previously described for MuTect16.  
We analyzed sequencing replicates from a single individual and 
selected parameters that, on average, generated no more than five false 
positives per exome (Supplementary Fig. 4 and Online Methods).  
To evaluate sensitivity, we simulated MS indels by inserting or deleting  
a single motif repeat at different loci throughout the genome.  
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Figure 1  Identifying somatic indels in microsatellites (MS indels): schematic description of MSMuTect. (a) All reads containing an MS region and 
sufficient 3′ and 5′ flanking sequence are aligned to a collection of all MS loci, and the number of reads supporting each MS length are tallied to 
create a histogram of observed repeat lengths per locus. (b) The repeat-length histograms for all sites sharing the same underlying motif and number of 
repeats (i.e., sites with the same motif and mode length) from the X chromosome of male normal samples were combined into a single histogram. This 
combined histogram represents the empirical noise distribution (i.e., the probability that a true allele with i repeats will generate a read with j repeats). 
(c) The maximum-likelihood method and empirical noise distribution are used to identify the set of alleles that best describes the histogram for a given 
locus. This set includes the number of alleles, the length of each allele, and the fraction of DNA molecules representing each allele in the sample. After 
the most likely allele is determined for both the tumor (T) and normal (N) samples, somatic MS indels are nominated when the tumor model fits the 
tumor data better than the normal model fits the tumor data and vice versa (Online Methods). Variables are defined in Online Methods.
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We evaluated the sensitivity across various allele fractions and 
MS locus lengths and found that it was higher for shorter MS loci 
and decreased when the MS indel allele fraction fell below 20% 
(Supplementary Fig. 5 and Online Methods).

MS indel mutational landscape
We applied MSMuTect across 6,747 TCGA whole-exome tumor–
normal pairs representing 20 tumor types (Supplementary Tables 1  
and 2). Our analysis identified 174,638 MS indels, with a range of 0 
to 900 per tumor. We observed extensive inter- and intratumor vari-
ability in the MS indel frequency a result similar to the variability 
reported for single-nucleotide variations (SNVs) and copy-number 
alterations15 (Fig. 2 and Supplementary Fig. 6). The average MS indel 
frequency varied significantly across tumor types, and the highest 
frequencies were found in colorectal (COAD and READ), stomach 
(STAD), and endometrial tumors (UCEC), in agreement with the 
MMR deficiency frequently observed in these tumors.

Breast cancer (BRCA) had the fifth-highest MS indel rate, and 
although BRCA is not typically thought to have high rates of MS indels, 
there is a subset with known MSI features17. Moreover, a recent study6 
has identified mutational signatures consistent with loss of mismatch 
repair in BRCA. In a recent report, Hause et al.13 did not identify 
MSI-H cases in TCGA BRCA; however, the authors have analyzed a 
subset of the TCGA breast cancer cohort (266/1,069 cases) including 
only 3/36 tumors in which we identified >100 MS indels. Previous 
reports18–20 have identified a small fraction of MSI cases in cohorts of 
cervical squamous cell carcinoma and endocervical adenocarcinoma, 
uterine carcinosarcoma, and adrenocortical carcinoma, and our analy-
sis indeed identified MS indels in these tumor types (ranked sixth, 
seventh and eighth in average MS indel frequency, respectively).

To validate the identified MS indels, we analyzed RNA-seq data 
available for a subset of the samples (Supplementary Table 3). For 
each of the 150 significantly mutated MS indels (described below) 
with sufficient RNA-seq coverage (four or more reads), we manually 
compared the alleles inferred by MSMuTect with the alleles observed 
in the RNA-seq data and validated 87% of them (Supplementary 
Table 3). Importantly, RNA-seq probably underestimates the accu-
racy of MSMuTect, because MS indels that introduce premature stop 
codons can trigger nonsense-mediated decay of the altered mRNA 
transcript, thus decreasing the likelihood of observing RNA-seq reads 
that support the MS indel. Indeed, MS loci closer to the 3′ end of the 
transcript, which are less likely to trigger nonsense-mediated decay, 
had higher validation rates (e.g., ACVR2A (96%) and RNF43 (100%); 
Supplementary Table 3). For four of the five cases in which two distinct 
somatic events were identified at the same site, we were able to validate 
all three alleles (one wild-type and two distinct alternate alleles).

MSMuTect correctly classifies tumors with respect to  
MS stability
We next asked whether MSMuTect could recapitulate independent 
measures of tumor MS stability. Tumors from the COAD, STAD, and 
UCEC cohorts, as part of TCGA, were experimentally classified as 
exhibiting microsatellite stability (MSS, no indels) or microsatel-
lite instability (MSI-low (MSI-L), indel at one MS locus; MSI-high 
(MSI-H), indels at two or more MS loci), by using a PCR-based assay 
to assess size variability at the five Bethesda MS loci12. Applying 
MSMuTect, we found that tumors classified as MSI-H had signifi-
cantly more MS indels than did samples that were MSS or MSI-L 
(MSI-H versus MSS: COAD, median 104.5 versus 3.0, P < 10−22; 
STAD, 64.5 versus 1.0, P < 10−28; UCEC, 94.5 versus 2.0, P < 10−58, 
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Figure 2  Distribution of MS indels across 6,747 tumors from 20 tumor types. Red horizontal lines represent the mean fraction of mutated MS loci in 
each tumor type. Supplementary Figure 6 shows a comparison with the SNV distributions for each tumor type.
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two-tailed Mann–Whitney; Fig. 3a and Online Methods). There was 
no difference in the number of MS indels in tumors classified as MSI-
L versus MSS for COAD, but there was a small difference for UCEC 
and STAD (UCEC, median of 9 versus 2, P < 10−6; STAD, 3 versus 2,  
P < 10−3, one-tailed Mann–Whitney), because of the contribution 
from a small number of MSI-L cases with many MS indels (discussed 
below). In addition, we found that MSI-H tumors were significantly  
(P < 10−16, one-tailed t-test, Supplementary Fig. 7) more likely to have 
several MS indels at the same locus, at both germline homozygous 
and heterozygous MS loci.

Although MSMuTect was able to separate most MSI-H tumors from 
MSI-L and MSS tumors, there were several cases with an apparent 
discrepancy between the MS indel count and the Bethesda designa-
tion (Fig. 3a). MMR-deficient tumors are known to have a specific 

pattern of SNVs (MSI-SNV signature), and thus the fraction of SNVs 
associated with the MSI-SNV signature can be used as an orthogo-
nal metric to identify the MSI phenotype21 (Online Methods). As 
expected, tumors in which MSI-SNVs composed >15% of the total 
SNVs (red in Fig. 3a) were nearly all (264/277) classified as MSI-H 
and had high MS indel counts. In addition, 7 of the 12 MSI-H STAD 
and UCEC tumors with the lowest MS indel counts (fewer than ten) 
had an MSI-SNV fraction <15% (blue in Fig. 3a), thus suggesting 
that the samples may have been misclassified as MSI-H by the PCR-
based assay.

We also observed that many of the MSI-L and MSS samples with 
the highest numbers of MS indels also had a relatively high number 
of total SNVs (Fig. 3a). Mutations in the exonuclease (proofreading) 
domain of DNA polymerase ε (encoded by POLE) can dramatically 
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STAD, and UCEC cohorts). The correlation between MS indel frequency and replication timing was not significant in MSS tumors (slope = −0.03, 
Pearson correlation = −0.47, P = 0.43, two-tailed t-test) but showed a weak but significant negative correlation in MSI tumors (slope = −0.1, Pearson 
correlation = −0.995, P < 3 × 10−4, two-tailed t-test). (c) MS indel frequencies as a function of MS length are shown for MSS and MSI-H tumors. 
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change in the number of repeats in the tumor (x axis). The frequency of each specific event (i.e., an insertion or deletion of a given length) is based on 
the fraction of the total number of covered loci across all samples. MSI-H samples (top), MSS samples (bottom), and summarized data across all alleles 
(middle). MSI-H samples had more deletions, whereas MSS samples had more insertions (P < 10−31, χ2 test). Only MS loci with five or more repeats in 
both the normal and mutated samples were included.
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increase the number of SNVs; therefore, to investigate the poten-
tial interaction of POLE-mediated mutagenesis with MS indels, 
we calculated the fraction of SNVs that were probably contributed 
by POLE-mediated mutagenesis (POLE-SNVs; Online Methods).  
All but one of the 63 samples in which POLE-SNVs comprised >15% 
of the total SNVs had a somatic missense mutation in the exonucle-
ase domain of POLE (n = 60) or polymerase δ (encoded by POLD1;  
n = 2). Although most of the POLE/POLD1-mutated tumors (45/63) 
were classified as MSS or MSI-L, they had significantly more MS 
indels than did the other MSS and MSI-L tumors (median 54 versus 
2 among MSI-L and 18.5 versus 2 among MSS), thus raising the pos-
sibility that POLE/POLD1 exonuclease-domain mutations may con-
tribute to the MS indel burden and also highlighting the limitations 
of the PCR-based MSI assay (Fig. 3a).

Differences in MS indel properties in MSS and MSI samples
In addition to differences in the numbers of MS indels, MSI and MSS 
samples also differed in their association between MS indel frequency 
and DNA-replication timing, and both exhibited associations distinct 
from that reported for SNVs14,22. In general, unlike SNV density, MS 
indel density did not show a strong correlation with replication tim-
ing. Interestingly, there was no correlation in MSS samples (slope = 
−0.03, Pearson correlation −0.47, P = 0.43, two-tailed t-test; Fig. 3b), 
and there was a marginal but significant decrease with replication  
timing in MSI samples23 (slope = −0.1, Pearson correlation = −0.995,  
P = 0.0003, two-tailed t-test; Fig. 3b), a result opposite from the direc-
tion observed for SNVs.

Likewise, in both MSI and MSS tumors, MS indels were more com-
mon at loci with longer repeat lengths; however, the slope and shape of 
these relationships differed (Fig. 3c). Moreover, the ratio of insertions 
to deletions was different between MSS and MSI cases, and MSI cases 
had a tendency toward deletions23, whereas MSS cases tended toward 
insertions (Fig. 3d; P < 10−31, χ2 test). The tendency to increase repeat 
lengths in MSS cases was consistent with germline MS indels, which 
have been shown to preferentially undergo insertions in MS loci with 
<15 repeats (ref. 2).

MS indels in known cancer genes
We next sought to identify somatic MS indels that drive tumorigenesis. 
We first attempted to identify previously undescribed MS indels across 
727 known cancer genes6 in a cohort of 4,064 TCGA samples with curated 
mutation calls (Online Methods). We focused our analysis on MS loci 
for which the inferred germline allele matched the reference genome 
in at least 90% of the normal (germline) samples (Supplementary  
Fig. 8). MS indels at loci with greater germline diversity may have 

weaker functional effects or represent noisy sites. We detected 1,470 
MS indels across these genes (Supplementary Table 4), including 89 
indels that had been previously identified by the TCGA consortium 
and 1,105 indels in samples without any other indel or nonsynonymous  
SNVs reported in the same gene (thus potentially representing novel 
loss-of-function events in these genes). The remaining 276 indels were 
identified in samples that had a separate event (indel or nonsynony-
mous SNV) in the same gene; in those cases, the identified MS indel 
may represent the ‘second hit’24. In some genes, previously unidenti-
fied MS indels comprised a substantial fraction of the total number 
of mutations. Reassuringly, we found that MS indels were enriched in 
tumor-suppressor genes25 compared with oncogenes (993 MS indels 
in 70 tumor-suppressor genes versus 272 MS indels in 53 oncogenes, 
as well P < 10−58, one-tailed binomial test).

MSMutSig, a tool for identifying driver MS indels
Next, we extended our MutSig suite of tools15 for detecting candi-
date cancer genes and developed MSMutSig to specifically address 
the unique properties of MS indels. Our analysis of ~250,000 MS 
loci revealed that the two major factors (covariates) that influence 
the mutation frequency of an MS locus are the motif sequence and 
repeat length (Fig. 3c and Online Methods). We therefore estimated 
the background mutation frequency for each motif and repeat length 
separately. We first attempted to apply a binomial model but found 
that many loci contained more (or fewer) mutations than predicted 
by the model (Supplementary Fig. 9). To address this discrep-
ancy, we applied a more dispersed distribution, the negative bino-
mial, and fit the extra dispersion parameter such that no MS loci in  
noncoding regions would be nominated as significantly mutated (at 
Benjamini–Hochberg false discovery rate q <0.1). This model indeed 
captured the variability of MS indel rates in coding regions as well 
(Supplementary Figs. 10–12).

After it had been optimized, we applied MSMutSig across 20 tumor 
types. For the three tumor types with high frequencies of MSI cases 
(COAD, STAD, and UCEC), we considered the MSS and MSI sub-
groups (as defined by TCGA) separately (Fig. 3b–d). The only tumor 
types that yielded significant MS loci (q <0.1) were the MSI subtypes 
of COAD, STAD, and UCEC. In COAD, we identified three significant 
MS loci in the genes ACVR2A, RNF43, and DOCK3; in STAD, four 
loci in ACVR2A, RNF43, MSH3, and PRDM2; and in UCEC, five loci 
in RNF43, DOCK3, JAK1, ESRP1, and ACVR2A. Thus, our analysis 
nominated a total of seven MS hotspots in seven genes (Table 1). 
Three of these genes (ACVR2A, RNF43, and JAK1) have previously 
been identified as cancer genes on the basis of an increased mutation 
frequency in one or more tumor types6 (Fig. 5). In the TCGA colon 

Table 1  Significantly mutated MS loci

Tumor set Gene Protein/genomic change Mutated samples
Expected mutated 

samples P value q value
Most common MS 

indela

COAD-MSI ACVR2A p.K437fs g.chr2:148683686_148683693delA 80% (32/40) 6.25% (2.5/40) 6.4 × 10−9 3.1 × 10−5 A8 → A7 (100%)
COAD-MSI RNF43 p.G659fs g.chr17:56435161_56435167delC 40% (16/40) 4.25% (1.7/40) 6.1 × 10−6 0.015 C7 → C6 (100%)
COAD-MSI DOCK3 p.T1850fs g.chr3:51417604_51417610delC 39% (14/36) 4.4% (1.6/36) 2.1 × 10−5 0.08 C7 → C6 (86%)
STAD-MSI ACVR2A p.K437fs g.chr2:148683686_148683693delA 75% (52/69) 4.5% (3.1/69) 2.6 × 10−9 9.1 × 10−6 A8 → A7 (100%)
STAD-MSI RNF43 p.G659fs g.chr17:56435161_56435167delC 35% (24/69) 2.9% (2/69) 1.9 × 10−6 0.0034 C7 → C6 (100%)
STAD-MSI MSH3 p.K383fs g.chr5:79970915_79970922delA 41% (28/69) 4.5% (3.1/69) 3.2 × 10−5 0.037 A8 → A7 (85%)
STAD-MSI PRDM2 p.K1489fs g.chr1:14108749_14108757delA 48% (33/69) 8.7% (6/69) 8.2 × 10−5 0.07 A9 → A8 (93%)
UCEC-MSI RNF43 p.G659fs g.chr17:56435161_56435167delC 23% (36/155) 0.7% (1.2/155) 1.6 × 10−6 0.016 C7 → C6 (84%)
UCEC-MSI DOCK3 p.T1850fs g.chr3:51417604_51417610delC 23% (33/145) 1.6% (2.3/145) 3.9 × 10−6 0.019 C7 → C6 (81%)
UCEC-MSI JAK1 p.N860fs g.chr1:65306997_65307004delA 21% (33/158) 2.2% (3.5/158) 1.45 × 10−5 0.05 A8 → A7 (89%)
UCEC-MSI ESRP1 p.K511fs g.chr8:95686611_95686618delA 20% (31/158) 2.2% (3.5/158) 3 × 10−5 0.076 A8 → A7 (94%)
UCEC-MSI ACVR2A p.K437fs g.chr8:95686611_95686618delA 18% (29/157) 2.2% (3.5/157) 5.9 × 10−5 0.096 A8 → A7 (93%)

aThe percentage of tumors bearing the most common MS indel is shown in parentheses.
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cancer study26, MSH3 was not nominated as significantly mutated but 
was noted to be highly mutated on the basis of manual examination of 
the sequence data. Notably, owing to the high mutability of MS loci, 
beyond major cancer genome studies, the literature is inconclusive 
regarding which of the 17,398 genes with MS loci are associated with 
cancer27. The remaining three genes (ESRP1, PRDM2, and DOCK3) 
have not been previously identified as cancer-associated genes (dis-
cussed below). Previously identified cancer drivers such as TGFRB2 
(ref. 28) and RPL22 (ref. 29) were absent from our list because their 
MS loci were excluded from the analysis, owing to high variability in 
germline samples.

All seven of the significantly mutated MS indels caused a frameshift 
mutation within an exon. Frameshift mutations typically result in 
decreased gene expression, because the altered mRNA undergoes 
nonsense-mediated decay30. However, if a frameshift mutation 
occurs near the 3′ end of a gene, nonsense-mediated decay is less 
likely to occur31. Of the seven MS indels identified here, four (in 
ESRP1, MSH3, JAK1, and PRDM2) led to a significant decrease in 
mRNA expression levels (Table 1 and Fig. 4), whereas the MS indels 
in ACVR2A and DOCK3 occurred near the 3′ end of the gene and thus 
were not expected to lead to nonsense-mediated decay. The MS indel 
in RNF43 was in the second-to-last exon; however, the presence of this 
indel did not correlate with a decreased RNF43 expression level (one-
tailed Mann–Whitney P = 0.4) and may represent an exception to the  
’50-bp rule’, similarly to observations regarding UPF1 (refs. 32,33).

Genes nominated by MSMutSig are candidate cancer drivers
The ACVR2A gene, encoding activin A receptor type IIA, contains 
the most frequently mutated MS locus in our list (p.K437fs). We 
observed ACVR2A mutations in ~80% (32/40) of MSI colon tumors, 
~75% (52/69) of MSI stomach tumors, and ~19% (29/157) of MSI 
endometrial tumors (Table 1 and Fig. 5). ACVR2A is a member of 
the TGF-β signaling pathway, which plays a major role in cell growth 
and is known to be highly mutated in all three of these tumor types. In 
support of a tumor-suppressor role, two studies34,35 have shown that 
expression of wild-type ACVR2A in MSI colon cancer cell lines with 
mutated ACVR2A leads to decreased cell growth. When these previ-
ously undescribed MS indel events were considered with other reported 
alterations, ACVR2A was among the most frequently mutated genes in 
colorectal cancer, and mutations were observed in ~20% of all cases.

The gene encoding ring-finger protein 43 (RNF43) contained the 
MS indel p.G659fs in 40% (16/40) of MSI colon tumors, 35% (24/69) 
of MSI stomach tumors, and 23% (36/155) of MSI endometrial 
tumors. RNF43 is a negative regulator of the WNT signaling pathway, 
which is involved in controlling cell proliferation36. This gene has 
been reported to be significant in STAD by TCGA37 Giannakis et al.7  
have recently detected the same RNF43 MS indel through manual 
review of RNF43 sequence data and have determined that it is fre-
quently present in colon and endometrial tumors.

The MSH3 gene, encoding the protein MutS homolog 3, is a mem-
ber of the MMR pathway, and germline mutations in MSH3 are known 
to increase the risk of developing MSI tumors38. We identified the 
MS indel hotspot p.K383fs in 40% (28/69) of stomach tumors. In 
mouse models, inactivation of MSH3 alone does not lead to cancer, 
but concurrent loss of MSH3 and MSH6 results in an increased rate 
of tumor formation39.

PRDM2, the gene encoding the protein PR domain 2, is a histone 
H3 Lys9 methyltransferase that has been implicated as a tumor sup-
pressor in several tumor types40. Decreased PRDM2 expression has 
been associated with renal cell carcinoma41, esophageal squamous 
cell carcinoma42, and meningiomas43. We identified the MS indel 

hotspot p.K1489fs in 48% (33/69) of stomach tumors. Analysis of 
gene expression data revealed decreased expression in mutated cases  
(P = 0.016, one-tailed Mann–Whitney; Supplementary Fig. 13), a 
result consistent with partial nonsense-mediated decay.

The epithelial splicing regulatory protein 1 (encoded by ESRP1) 
is a splicing regulator in epithelial cells44. Its MS indel hotspot 
(ESRP1 p.K511fs) is mutated in approximately 20% (31/158) of 
MSI endometrial tumors. ESRP1 regulates alternative splicing of 
FGFR2 from the IIIc mesenchymal isoform to the IIIb epithelial iso-
form44. Thus, mutations in ESRP1 may contribute to the epithelial– 
mesenchymal transition. In pancreatic cancer45, the transition from 
expression of the FGFR2-IIIb isoform to the FGFR2-IIIc isoform is 
associated with increased cell growth, migration, and invasion. We 
analyzed TCGA RNA-seq data and found that MS indels in ESRP1 were 
associated with both a significant decrease in ESRP1 expression (Fig. 4a;  
P < 1.5 × 10−9, one-tailed Mann–Whitney) and a significant increase 
in the ratio of isoform IIIc to IIIb in ESRP1-mutant cases (Fig. 4b;  
P < 9 × 10−7, one-tailed Mann–Whitney).

Our finding that JAK1 contained the frameshift mutation p.N860fs 
in 21% (33/158) of endometrial tumors (Table 1) was somewhat unex-
pected, given JAK1’s known role as an oncogene46. Kim et al.23 have 
found that the JAK1 p.N860fs indel is associated with repression of 
transcript levels of JAK1 downstream targets, and a recent study47 
has suggested that truncated JAK1 modulates the IFNγ signaling 
pathway and enables tumor immune evasion. We compared expres-
sion of an IFNγ-related genes48 in tumors with or without the JAK1 
p.N860fs indel and found a significant decrease in expression in 21 of 
27 IFNγ-related genes in tumors with the p.N860fs indel. Therefore, 
JAK1 loss may promote tumor survival by inhibiting an IFNγ- 
mediated antitumor immune response.

P = 1.59 × 10–9 P = 9.6 × 10–7
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Figure 4  Transcriptional effects of the ESRP1 p.K511fs MS indel 
mutation. (a) ESRP1 transcript levels were significantly lower in the 
ESRP1-mutant (p.K511fs) than the wild-type (WT) MSI tumors from the 
UCEC cohort (P < 1.5 × 10−9, two-tailed Mann–Whitney test). (b) The 
ratio of FGFR2 isoform IIIc to IIIb was significantly higher (P < 10−7, 
two-tailed Mann–Whitney test) in ESRP1-mutant tumors than WT tumors. 
The increased ratio of FGFR2 isoform IIIc to IIIb was associated with 
epithelial–mesenchymal transition.
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Finally, DOCK3, which encodes the protein dedicator of cytokinesis 3,  
carried the MS indel mutation p.T1850fs in 40% of colon tumors 
(16/40) and 23% of endometrial tumors (33/145) (Table 1). DOCK3 
(also known as MOCA) is an exchange factor for Rac GTPases and 
has recently been implicated as an inhibitor of the WNT signaling 
pathway49. CTNNB1, encoding a core member of the WNT path-
way, was mutated in approximately 30% of endometrial tumors, and 
DOCK3 mutations were mutually exclusive to CTNNB1 mutations  
(P < 0.015, hypergeometric test in UCEC MSI cases; P < 0.005 among 
all UCEC cases).

DISCUSSION
Here, we introduce MSMuTect, a tool for accurately identifying 
somatic indels in MS loci, and MSMutSig, a tool for identifying 
candidate cancer genes with significantly enriched MS indel events. 
MSMuTect relies on careful re-alignment of MS-containing reads 
to MS loci and uses a principled statistical test to identify somatic 
events by applying an empirical noise profile based on motif and 
repeat length. Given the wide variation in background mutation rates 
across MS loci, this approach is necessary to decrease the rate of false- 
positive MS indel calls.

An alternate method for detecting somatic MS indels, recently 
reported by Hause et al.13, nominates a somatic MS indel if a single 
tumor read supports a number of motif repeats different from that 
observed in the normal sample. This approach for calling MS indels 
results in a large number of apparent MS indels, with a median of 
~900 MS indels per MSS sample compared with <10 with MSMuTect, 
and only an approximately threefold difference in the number of MS 
indels between MSS and MSI cases (897 in MSS versus 3,009 in MSI) 
versus an ~18-fold difference with MSMuTect (8 versus 145). These 
apparent differences may be due in part to the inclusion of many 
subclonal MS indels by Hause et al., whereas MSMuTect primarily 
considers clonal events.

MSMuTect infers the alleles in both the tumor and normal  
(germline) samples, and somatic MS indels are nominated only 
when the observed MS repeat lengths in the tumor are better 
explained by the tumor alleles than by the normal alleles. A recent 
report by Kim et al.23 has used the Kolmogorov–Smirnov (KS) test 
to compare repeat-length distributions in the tumor and normal 
samples at each MS locus for a limited set of endometrial and colon 
cancers. Although the total number of reported MS loci is compa-
rable to the number identified by MSMuTect (median of ~150 for 
MSI-H cases and ~2 for MSS), the KS test does not infer the actual 
(potentially multiple) alleles in the tumor and normal samples. 
In addition to decreasing the risk of false-positive MS indel calls, 
identifying MS alleles in the normal sample has the potential to 
discover novel germline MS indels. Indeed, we found that a small 
percentage of cases (5/6748, 0.075%) had a germline RNF43 allele 
that was identical to the most common somatic RNF43 mutant 
allele, thus raising the possibility of an inherited pathogenic RNF43 
MS indel. A recent study by Taupin et al.50 has shown that inherited 
RNF43 variants are a risk factor for the familial cancer syndrome 
serrated polyposis.

We applied MSMuTect across 6,747 cases representing 20 tumor 
types from the TCGA data set and identified nearly 175,000 MS indels. 
As expected, the tumor types with the highest rates of MS indels were 
those classically associated with the MSI phenotype: colon, rectal, 
stomach, and endometrial tumors. However, several other tumor 
types, including breast and cervical cancers, had a notable percent-
age of cases with high numbers of MS indels, thus suggesting that the 
MSI phenotype also occurs in these tumor types and that MSI testing 

may be warranted for these tumors in certain clinical settings, such 
as when screening for immunotherapy trials10,51,52.

Comparing traditional PCR-based stratification of the MSI status 
of the TCGA COAD, STAD, and UCEC cohorts with our results, we 
found a significant difference in MS indel frequency between MSI-H 
and both MSI-L and MSS tumors, but the difference between MSI-L 
and MSS tumors was less significant. Furthermore, there was signifi-
cant variability in the MS indel frequency within each MS subgroup, 
particularly among endometrial tumors.

We found that many MSI-L tumors had MS indel frequencies simi-
lar to those of MSS tumors, thus suggesting that some were misclassi-
fied by the MSI assay. However, a subset of MSI-L tumors, particularly 
endometrial tumors, had MS indel frequencies that more closely 
resembled those of MSI-H tumors. Proofreading deficient tumors 
arising from POLE/POLD1 exonuclease mutations had dramatically 
higher rates of SNVs and a characteristic mutational signature, as well 
as high MS indel rates, including in MSI-L and MSS cases (Fig. 3a). 
Thus, whereas some endometrial tumors appeared to have concomi-
tant POLE mutations and MSI, other MSI-L endometrial tumors had 
an SNV signature consistent with a POLE/MSS phenotype despite 
their relatively high number of MS indels. To our knowledge, an inter-
action between somatic POLE mutations and MS indels has not been 
reported, although a similar association has recently been reported 
in yeast53. It is possible that a dramatic increase in SNVs resulting 
from loss of POLE proofreading might saturate the capacity for MMR 
(which corrects both SNVs and indels) and thus indirectly result in a 
greater number of unrepaired MS indels.

Finally, we observed that many of the MSI-H/MSI-L endometrial 
tumors with the lowest MS indel frequencies lacked the MSI-SNV 
signature, thus suggesting that these tumors may have been misclas-
sified as MSI and further underscoring the differences between the 
PCR-based MSI assay and MSI classification derived from whole-
exome sequencing. These results highlight the limitations of clinical 
MSI assays and, given the recent identification of MSI as a biomarker 
of immunotherapy response, underscore the need for sensitive and 
reliable MSI assays10,51.

On the basis of our understanding of the features that influence the 
indel mutation rate at MS loci, we developed MSMutSig, a tool that 
identifies MS loci that are mutated more frequently than expected by 
chance. MutSig15 has been developed to handle SNVs and general 
indels (not necessarily within MSs), and its background-mutation-
rate model does not fit the unique properties of MS indels. Indeed, 
application of MutSig to the MSI-H endometrial cohort by using all 
mutations (SNVs, general indels and MS indels) yielded 296 signifi-
cant genes (q <0.1) and an inflated quantile–quantile plot, thus sug-
gesting an inadequate null model (Supplementary Fig. 14).

On the basis of a high frequency of MS indels, many genes have 
been proposed to drive cancer27; however, our analysis suggested that 
many of these MS loci have a high background mutation rate and 
therefore may be frequently mutated but may not have contributed to 
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Figure 5  Location of ACVR2A MS indel mutations in MSI-H STAD 
samples. The MS indel hotspot p.K437fs was identified in 52 of 69 cases 
(MSMutSig q = 2.4 × 10−7) and had not been previously identified in 
these samples. 
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positive selection. Applying MSMutSig across 6,747 cases, we identi-
fied seven significantly mutated MS loci, three of which occurred in 
genes not previously nominated as cancer-associated genes (ESRP1, 
PRDM2, and DOCK3). Although our analysis strongly supports a role 
for these MS indels as cancer drivers, direct experimental studies will 
be needed to further investigate the specific role of these mutations 
in cancer.

In these analyses, we assumed that all MS indels in noncoding 
regions were not under selective pressure and thus could serve as 
an upper estimate of the indel mutation rate arising from technical 
factors (such as PCR errors). However, cancer driver mutations are 
known to exist in regulatory regions54–56, and a deeper understanding 
of the covariates influencing MS indel rates across the genome may 
eventually enable us to adapt MSMutSig for accurate detection of 
significantly mutated MS loci in noncoding regions. Similarly, adapt-
ing MSMuTect for whole-genome analysis may further improve the 
sensitivity of MSMuTect and MSMutSig by providing a more accu-
rate noise model across loci of varying motif and repeat lengths. In 
addition, technical advances may also lead to improvements in MS 
indel calling. For example, sequencing technologies that produce 
longer read lengths will provide better coverage of long MS loci and 
enable more accurate mutation calling for longer MS repeats. Finally, 
integrating MS indel-calling tools such as MSMuTect with tools for 
identifying other recurrent somatic events such as SNVs or copy-
number alterations should provide a more comprehensive view of 
cancer driver events.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Data description. Whole exome sequencing (WES) data from 20 tumor types 
were downloaded from TCGA57 (Supplementary Table 2). We restricted our 
analysis to fresh-frozen samples sequenced on an Illumina platform.

For the analysis of MSS versus MSI tumors, only samples from the colon 
(COAD), stomach (STAD), and uterine (UCEC) cohorts that had MSI status 
annotated by the TCGA were used57.

For comparison with previously identified mutations, MAF files were 
downloaded from the Broad Institute’s Genome Data Analysis Center (GDAC; 
http://gdac.broadinstitute.org/), which includes data from samples used in 
the TCGA marker papers (https://tcga-data.nci.nih.gov/docs/publications/). 
We also analyzed MS indels in additional TCGA samples that were not  
part of the TCGA marker papers, but those did not have a curated MAF file 
for comparison.

The three BAM files for case NA12878 from the 1000 Genomes Project58 
(http://www.internationalgenome.org/), which were used for the false-positive 
and false-negative analysis, were uploaded to the Broad Institute’s FireCloud 
platform. All three of these samples were sequenced at the Broad Institute.

Microsatellite definition and identification. MSs are genomic regions con-
taining multiple copies of a repetitive motif of 1–6 bp. Although there is no 
consensus regarding the number of consecutive motifs required to constitute 
a microsatellite, we defined an MS locus as a sequence with at least five succes-
sive motifs, regardless of the motif size. We allowed the MS sequence to have 
impurities, i.e., bases that did not follow the exact repeated motif structure. 
For example, we considered the sequence GTCAAAAAAAACAAAAAAAA
AATCC (in which the base not matching the motif is in bold italic format)  
as one MS locus with 17 repeats of an A motif rather than two MS loci, each 
containing eight repeats of an A motif. We allowed up to 15% impurity (i.e., 
up to 15% bases that did not match the exact motif), and used the PHOBOS 
algorithm59 with default parameters to identify MSs with impurities in both 
the reference genome and WES sequencing reads. However, we do not suggest 
that impurities are errors in the reference genome but instead suggest that they 
reflect our looser definition of MSs. We identified 23,677,217 MS loci in the 
whole genome, 383,515 MS loci in the regions covered by the TCGA whole-
exome Illumina data, and 145,516 MS loci in the coding regions (as defined by 
Oncotator60). All coding MS indels are listed in Supplementary Tables 5.

MS-specific alignment. For each normal and tumor sequencing file (i.e., 
BAM file), we used PHOBOS to identify all reads that contained an MS 
sequence. Following the approach applied in lobSTR61, for each MS locus, 
we used the 5′ and 3′ flanking sequences of the MS to identify reads that 
supported the specific MS. We considered all reads that had at least 10 bp 
flanking the 5′ and 3′ ends of the MS. (We found that a minimum of 10 bp 
substantially decreased the number of reads that did not match the particular 
MS.) The alignment procedure was performed in two steps. First, we created, 
for each MS motif, a library of segments from the human reference genome 
(hg19) that contained 100 bases from the 5′ and 3′ ends of each MS locus. 
Then for each read that contained an MS sequence, we aligned only the non-
MS parts of the sequence to the library that contained loci corresponding 
to same motif that was found in the read (e.g., a read with seven AGs was 
aligned against all MS loci with the AG motif). The second step of align-
ment was then performed with Bowtie2 (ref. 62), and only reads that had a 
single best alignment were included in downstream analyses. MS-specific 
alignment decreased the number of incorrectly mapped reads by a factor of 
~5 (Supplementary Fig. 3).

Noise estimation. Using the MS-specific alignment, we compiled the set of 
reads that mapped to each of the MS loci in every sample. For each MS locus, 
we generated a histogram of MS repeat lengths (Fig. 1a). We hypothesized 
that not every length represented in the histogram reflected a true allele in the 
sample and that the observed numbers of MS repeats in a read that aligned to 
a specific MS locus fluctuated around the true value (or values, in the case of 
a heterozygous site). Some read lengths may be artifacts that were introduced 
by polymerase stuttering during PCR or sequencing, or by misalignment. The 
frequency of such sequencing errors varied across MS loci and depended on 
parameters such as the specific MS motif and the number of repeats.

To predict the true underlying alleles in the tumor and normal samples, we 
generated an empirical noise model to estimate, P k mj m( , ) ( , )Noise , the probability 
of observing a read with a length of k repeats of motif m, given that the true 
allele in the sample has j repeats of m. We assumed that all MS loci with the 
same motif and the same number of repeats had the same noise distribution 
(and hence could be pooled to improve the estimated noise model). In addi-
tion, we assumed that all normal samples from male donors had only one 
true allele at all MS loci on the X chromosome and that the true number of 
motif repeats corresponded to the observed mode of repeat lengths (i.e., the 
most common number of repeats), whereas other repeat lengths represented 
noise. Using this approach, we generated an empirical noise distribution for 
MS loci with a specific motif and number of repeats. Finally, we smoothed 
the noise model by using a nonparametric regression function (third-order 
polynomial) in Python.

Allele calling. We used the empirical noise model to infer the most likely 
alleles at each MS locus in every sample. We began with the assumption that 
the sample had only one allele at a given MS locus and found the most likely 
repeat length. In practice, we found the repeat length that maximized the log 
likelihood, 

ln ( | ) ln ( )
{ }

L A r P ri
r

A i
i

( )= ( )∑ noise

 

where A is the underlying allele, i.e., the repeat length of motif m, {ri} repre-
sents the set of repeat lengths observed in the reads that mapped to the MS 
locus, and PA

noise is the empirical noise model for the allele A.
Next, we tested a model in which a sample contains two distinct alleles at an 

MS locus present in an unknown ratio. These two alleles could either be germ-
line alleles (i.e., inherited from the two parents) or represent a somatic mutation 
at a homozygous site. The ratio between the alleles could be 1:1, as in a germline 
heterozygous site, or, in tumors, the ratio could vary depending on the number 
of copies of each allele, the purity of the tumor sample, and whether the muta-
tion appeared in all cancer cells or only in a subset of cells. We determined the 
likelihood for two alleles, A1 and A2, with fractions (f, 1 – f); e.g., a read with 
nine AC repeats (r = 9) and proposed alleles 


A  = (A1 = 6 AC, A2 = 8 AC, f = 0.4).  

The contribution of read r to the likelihood function is then given by: 

ln ( | ) ln ( ) ( ) ( )L

A r f P r f P rA A( )= × + − ×( )1 21noise noise

 

And on the basis of all reads at the locus, the log likelihood is: 

ln ( | ) ln ( | )
{ }

L L
  
A r A r

r
i

i

( )= ( )∑
 

As before, the allele set that had the maximum likelihood was chosen (by 
optimizing overt A1, A2 and f). We then compared the two models—the one-
allele model and the two-allele model—by using the log likelihood ratio test 
(with a χ2 null distribution), P D fc2

0 05( , ) .∆ <  , where D = −2 ln (L1) + 2 
ln(L2) and ∆f = 2, because we added two new parameters: the new allele and its 
fraction. If the χ2 test yielded a P value >0.05, we chose the one-allele model. 
If the χ2P value was <0.05, we repeated the test comparing a two-allele model 
to a three-allele model, and so forth, until we reached a maximum of four 
alleles. We applied the following restrictions to this process: (i) we analyzed 
only sites that had at least ten reads covering them, and (ii) we called an allele 
only if there were at least five reads supporting it.

Filtering normal loci. Even though normal samples should not have more 
than two alleles, we allowed the algorithm to continue scanning for more 
than two alleles in normal samples as a test to detect MS loci associated with 
increased noise. We did not call somatic MS indels at sites where the normal 
samples appeared to have more than two alleles or if the read counts were 
not consistent with a heterozygous site (i.e., binomial-test P value <0.05 with 
parameter of 0.5).

Mutation calling. For each tumor–normal pair, after separately inferring the 
alleles at each MS locus in each sample, we compared the inferred alleles 
in the tumor and normal samples. MS loci that had different alleles in the 
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tumor and normal samples were considered as potentially having somatic 
mutations and were nominated for downstream analysis. To ensure that alleles 
were indeed different, we tested whether the tumor data were described by the 
tumor alleles better than the normal alleles, and vice versa. This procedure was 
performed by comparing the Akaike information criterion (AIC) score for the 
two models and requiring that the difference exceed a predefined threshold, 
Tr (this was one of the parameters that were later optimized on the basis of 
the simulated data): 

AIC tumor data AIC (tumor data)>T

AIC

normalmodel tumormodel

tu

( )− r
mmormodel normalmodelnormal data AIC (normal data)>T( )− r

 

Finally, as an additional filter, we performed a KS test between the tumor 
and normal-repeat-length histograms. The KS test can identify sites with dif-
ferent alleles but cannot identify the exact alleles in the tumor and normal 
samples. The KS-test P value was used as another filtering criterion (optimized 
by using the simulated data).

False-positive analysis. The false positive (FP) rate was estimated by ana-
lyzing three independent whole-exome-sequencing data sets from sample 
NA12878 from the 1000 Genomes Project (each with an average depth of 
60×): NA12878_47, NA12878_49, and NA12878_51. All three of these samples 
were sequenced at the Broad Institute, each on the basis of a different WES 
library (to capture the variability introduced by library construction as well 
as by sequencing). From these three files, we created six tumor–normal pairs 
by selecting one to represent the tumor and a different one to represent the 
normal. Notably, MSMuTect is not symmetric with respect to the tumor and 
normal (hence the six possible pairs), because the tumor can have more than 
two alleles with different allelic ratios, whereas the normal sample is allowed 
at most two alleles that are consistent with a 1:1 ratio. Because all data were 
acquired from the same sample, all putative somatic MS indels identified by 
MSMuTect were false positives.

We used MSMuTect to call somatic MS indels across a range of parameter  
settings and estimated the FP rate by calculating the average number of 
apparent somatic MS indels nominated across the six pairwise comparisons 
(Online Methods and Supplementary Fig. 4). We found that the FP rates of the  
A motif and the C motif were similar across the range of Tr and KS parameters 
(Supplementary Fig. 4). The AC and AG motifs had only ~2,000 loci, and our 
analysis did not yield any FP mutations for either of these motifs. Therefore, 
we were not able to independently estimate the FP rates, but we assumed 
them to be similar to the FP rates of the A and C motifs and therefore used 
the same parameter values for all motifs. We chose parameters such that the 
FP rates for the different motifs resulted in an average of approximately five 
FP MS indels across the entire exome, in agreement with the FP cutoff used in 
MuTect16. To achieve this, we chose values of AIC Tr = 8 and KS test = 0.031 
for all the motifs.

True-positive analysis. To evaluate sensitivity, we simulated 20,000 somatic 
MS indels by inserting or deleting a single motif repeat at different loci 
throughout the exome and then measured the ability of MSMuTect to detect 
these changes as a function of the original number of motif repeats and the 
variant allele fraction. We chose to insert or delete a single motif, because 
these are the most prevalent MS indel events in the genome and are also the 
most challenging to detect.

We first created virtual tumor data sets by using the same three WES data 
sets from sample NA12878 (NA12878_47, NA12878_49, and NA12878_51). 
Here, we defined NA12878_47 as the normal sample and NA12878_49 as 
the tumor sample and simulated MS indels by using data from NA12878_51. 
We generated somatic MS indels by replacing a fraction fr of read lengths in 
a histogram representing a site with k repeats with read lengths from a site 
with l repeats, thus representing a somatic event from k to k,l with fractions  
(1 – fr,fr).

We then used MSMuTect to detect somatic mutations by comparing the 
simulated tumor and the third copy of NA12878 (serving as the matched 
normal sample). We evaluated the sensitivity of MSMuTect to identify MS 
indels for various allele fractions and repeat lengths (Supplementary Fig. 5). 

We evaluated MSMuTect by using different values of fr (ranging from 0.05 to 
0.5 with steps of 0.05) and generated 200 mutations for each allele (k), mutated 
at random, to alleles l = k ± 1. The sensitivity was highest for shorter MS loci 
(e.g., the sensitivity decreased from 98% for AAAAA (denoted A5), to 75% for 
A12) (Supplementary Fig. 5). Simulated MS indels with an allele frequency 
below 20% exhibited high rates of false negatives, probably because the allele 
fraction of ‘artificial’ MS indels generated by PCR exceeded the simulated MS 
indel fraction.

RNA validation. For the list of the seven significant MS loci, we manually 
compared the 161 MS indels found in the STAD cohort and the correspond-
ing tumor RNA-seq data obtained from TCGA. An indel was confirmed if at 
least two RNA-seq reads supported the mutant MS allele (Supplementary 
Table 3).

MSI and POLE classification. For each sample, a score associated with POLE 
mutations and a score associated with MSI mutations were calculated on the 
basis of the ratio of signal mutations (i.e., mutations uniquely associated with 
the mutational process) to background mutations (other mutations). For POLE, 
the signal mutation63 is C>A in the context TCT>TAT, and the background 
mutations are all other C>A mutations. The other common POLE-associated  
mutation, C>T in the context TCG, was not used as a signal mutation, because 
it is also present in other common mutational processes, including the  
signature associated with spontaneous cytosine deamination at methyl-CpG dinu-
cleotides (sometimes called the ‘aging’ signature) and the APOBEC-associated  
signatures63. For MSI, a set of three signal mutations were chosen: C(C>A)N, 
G(C>T)N, and Y(A>G)N (where Y is a pyrimidine, and N is any base), according  
to previous analyses21, and all other mutations were considered background 
mutations. Finally, we applied a sigmoid function to the ratio of these mutation 
counts to produce a final score value between 0 and 1.

Cancer genes. We used a list of 727 widely accepted cancer genes recently pub-
lished by Nik-Zainal et al.6, which combined genes from the Cancer Gene Census64 
list with gene lists from other accepted sources and recent publications.

Diversity in normal samples. In MSMuTect, we identify the MS alleles in the 
normal samples before comparing them with tumor alleles. For each MS locus, 
we analyze the alleles across all normal samples and calculate its diversity, i.e., 
the fraction of normal samples with an allele different from that in the refer-
ence genome. For the significance analysis (for both MSMutSig and the search 
for new events in known cancer genes), we exclude loci with >10% diversity. 
Although this rationale is similar to the rationale for using a panel-of-normals 
comparison to exclude sites with either missed germline events or sequencing 
artifacts16, in MS loci, this approach may also identify sites that are more prone 
to MS indels and have a naturally higher mutation rate.

MSMutSig. MSMutSig searches for MS loci that are mutated significantly 
more frequently than expected by chance. We found that the main two cov-
ariates that influence the mutation rate at MS loci are the specific motif and 
the number of repeats (Fig. 3b,c), whereas other covariates that are known 
to influence SNV rates (such as replication timing) have minimal effects on 
MS mutation rates. Thus, we separately estimated the background mutation 
frequency for each motif and repeat length in every tumor type.

We estimated the rates (and tested the significance) of loci containing at least 
one MS mutation across the analyzed cohort. We calculated these conditional 
rates (i.e., conditional on observing at least one event), because we observed 
broad variability in mutation rates with a significant enrichment of sites with 
no mutation. Estimating the mutation rate including these ‘stable’ sites would 
underestimate the overall background rate and hence expand the list of sig-
nificantly mutated loci. As an example, for the A motif with 11 repeats, there 
were 208/242 loci without any MS indel across the COAD MSI-H cohort, a 
value approximately six times higher than we would have expected (35 loci, P 
< 10−16, one-tailed binomial test) when using all sites and events to estimate 
the background rate. Therefore, we concluded that there is a subset of MS loci 
that are less prone to MS indels and should be excluded from the estimation. 
Even after exclusion of these ‘stable’ sites, there was still a high variability in 
mutation rates among MS loci with the same motif and repeat length, beyond 
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the variability that would be expected from a binomial distribution, assuming 
that all sites had the same underlying background mutation rate. This high 
variability was observed even among loci that reside in genomic regions that 
are less likely to contain functionally relevant MS loci than exons, such as 
untranslated regions and introns (Supplementary Fig. 9).

Therefore, we included an additional variable to attempt to capture this 
increased variability. We used a negative-binomial distribution (also known as 
the gamma-Poisson), which has two parameters that control the mean and the 
variability around the mean. We set the mean to reflect the average mutation 
rate (at sites with at least one MS indel) and then tuned the variability such 
that no significant loci were identified outside the exome (with FDR q <0.1). 
We then used these parameters to identify significantly mutated MS loci in 
the coding regions. The quantile–quantile plots for the noncoding MS loci 
and coding MS loci are shown in Supplementary Figures 10–12 (for different 
tumor types). There was no inflation of significantly mutated sites, and most 
MS loci followed the expected uniform P-value distribution (i.e., they resided 
close to the diagonal in the quantile–quantile plot).

Expression data. The RNA-seq-based normalized expression level for each 
gene was obtained from the Broad Institute’s Genome Data Analysis Center 
website (http://gdac.broadinstitute.org/). We used the log2-normalized RSEM 
values when available, but in cases in which they were not available, we used 
log2 RPKM values.

Code availability.  Code for MSMuTect and MSMutSig are supplied in 
Supplementary Software 1 and 2, respectively.

Data availability.The three whole-exome sequencing replicates of NA12878 
and a full list of the MS indels including noncoding and germline heterozygous 
sites are available via a TCGA-protected workspace in FireCloud (http://www.
firecloud.org/) upon request to the authors.

A Life Sciences Reporting Summary for this paper is available.
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    Experimental design
1.   Sample size

Describe how sample size was determined. We used all relevant samples from the TCGA.

2.   Data exclusions

Describe any data exclusions. We used only sequencing data from Illumina sequencers (the vast majority of 
cases). 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Not relevant

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Not relevant

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not relevant

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

We used tools that were developed as part of this work and they are described in 
the manuscript.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Not relevant.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Not relevant.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. Not relevant.

b.  Describe the method of cell line authentication used. Not relevant.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Not relevant.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Not relevant.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Not relevant.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Not relevant.
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